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Abstract

We investigate a general framework of multiplicative multitask feature learning which de-
composes individual task’s model parameters into a multiplication of two components.
One of the components is used across all tasks and the other component is task-specific.
Several previous methods can be proved to be special cases of our framework. We study
the theoretical properties of this framework when different regularization conditions are
applied to the two decomposed components. We prove that this framework is mathemati-
cally equivalent to the widely used multitask feature learning methods that are based on a
joint regularization of all model parameters, but with a more general form of regularizers.
Further, an analytical formula is derived for the across-task component as related to the
task-specific component for all these regularizers, leading to a better understanding of the
shrinkage effects of different regularizers. Study of this framework motivates new multitask
learning algorithms. We propose two new learning formulations by varying the param-
eters in the proposed framework. An efficient blockwise coordinate descent algorithm is
developed suitable for solving the entire family of formulations with rigorous convergence
analysis. Simulation studies have identified the statistical properties of data that would
be in favor of the new formulations. Extensive empirical studies on various classification
and regression benchmark data sets have revealed the relative advantages of the two new
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formulations by comparing with the state of the art, which provides instructive insights
into the feature learning problem with multiple tasks.

Keywords: Multitask learning, regularization, sparse modeling, blockwise coordinate
descent

1. Introduction

Multitask learning (MTL) improves the generalization of the estimated models for multi-
ple related learning tasks by capturing and exploiting the task relationships. It has been
theoretically and empirically shown to be more effective than learning tasks individually.
Especially when single task learning suffers from limited sample size, multitask learning re-
inforces a single learning process with the transferable knowledge learned from the related
tasks. Multi-task learning has been widely applied in many scientific fields, such as robotics
(Zhang and Yeung, 2010), natural language processing (Ando and Zhang, 2005), computer
aided diagnosis (Bi et al., 2008), and computer vision (Kang et al., 2011).

Research efforts have been devoted to various MultiTask Feature Learning (MTFL) algo-
rithms. One direction of these works directly learns the dependencies among tasks, either
by modeling the correlated regression or classification noise (Greene, 2002), or assuming
that the model parameters share a common prior (Yu et al., 2005; Lee et al., 2007; Xue
et al., 2007; Yu et al., 2007; Jacob et al., 2008), or by examining the tasks’ covariance matrix
(Bonilla et al., 2007; Zhang and Yeung, 2010; Guo et al., 2011; Yang et al., 2013). Another
research direction relies on a basic assumption that the different tasks may share a sub-
structure in the feature space. In order to exploit this shared substructure, Rai and Daume
(2010) project the task parameters to explore the latent common substructure. Kang et al.
(2011) form a shared low-dimensional representation of data by feature learning. More
recent methods explore the latent basis that can be used to characterize the entire set of
tasks and examine the potential clusters of tasks. For instance, Passos et al. (2012) assume
that subsets of features may be shared only between tasks in the same cluster. Kumar and
Daume III (2012) allow overlapping of tasks in different groups by having several bases in
common. Maurer et al. (2013) exploit a dictionary allowing sparse representations of the
tasks. Gong et al. (2012) detect if certain tasks are outliers from the majority of the tasks.

Regularization methods are widely used in MTFL to learn a shared subset of features.
A common strategy is to impose a blockwise joint regularization (Meier et al., 2008; Zhao
et al., 2009) on all task model parameters to shrink the effects of features across the tasks
and simultaneously minimize the regression or classification loss. These methods employ
the so-called `1,p matrix norm (Lee et al., 2010; Liu et al., 2009a; Obozinski and Taskar,
2006; Zhang et al., 2010; Zhou et al., 2010) that is the sum of the `p norms of the rows in
a matrix. As a result, this regularizer encourages sparsity among the rows. If a row of the
parameter matrix corresponds to a feature and a column represents an individual task, the
`1,p regularizer intends to rule out the unrelated features across tasks by shrinking the entire
rows of the matrix to zero. Typical choices for p are 2 (Obozinski and Taskar, 2006; Evgeniou
and Pontil, 2004) and ∞ (Turlach et al., 2005). Effective algorithms have since then been
developed for the `1,2 (Liu et al., 2009a) and `1,∞ (Quattoni et al., 2009) regularization.
Later, the `1,p norm is generalized to include 1 < p ≤ ∞ with a probabilistic interpretation
that the resultant MTFL method solves a relaxed optimization problem with a generalized
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normal prior for all tasks (Zhang et al., 2010). Although the matrix-norm based regularizers
lead to convex learning formulations for MTFL, recent studies show that a convex regularizer
may be too relaxed to approximate the `0-type regularizer for the shrinkage effects in the
feature space and thus results in suboptimal performance (Gong et al., 2013). To address
this problem, non-convex regularizers, such as the capped-`1, `1 regularizer (Gong et al.,
2013), have been proposed for the multitask joint regularization. However, using non-convex
regularizers may bring up computational challenges. For instance, non-convex formulations
are usually difficult to solve, and require more complicated optimization algorithms to
guarantee satisfactory performance.

For the existing MTFL methods based on joint regularization, a major limitation is that
it either selects a feature as relevant to all tasks or excludes it from all models, which is very
restrictive in practice where tasks may share some features but may also have their own
specific features that are not relevant to other tasks. To overcome this limitation, one of
the most effective strategies is to decompose the model parameters into either summation
(Jalali et al., 2010; Chen et al., 2011; Gong et al., 2012) or multiplication (Xiong et al., 2006;
Bi et al., 2008; Lozano and Swirszcz, 2012) of two components with separate regularizers
applied to the two components. One regularizer is imposed on the component taking care
of the task-specific model parameters and the other one is imposed on the component
for mining the cross-feature sparsity. Specifically, for the methods that decompose the
parameter matrix into summation of two matrices, the dirty model in (Jalali et al., 2010)
employs `1,1 and `1,∞ regularizers to the two components. A robust MTFL method in
(Chen et al., 2011) uses the trace norm on one component for mining a low-rank structure
shared by tasks and a column-wise `1,2-norm on the other component for identifying task
outliers. A more recent method applies the `1,2-norm both row-wisely to one component and
column-wisely to the other (Gong et al., 2012). For these additive decomposition methods,
it requires the corresponding entries in both components to be zero in order to exclude a
feature from a task.

For the methods that work with multiplicative decompositions, the parameter vector
of each task is decomposed into an element-wise product of two vectors where one is used
across tasks and the other is task-specific. To exclude a feature from a task, the multi-
plicative decomposition only requires one of the components to be zero. Existing methods
of this line apply the same regularization to both of the component vectors, by either the
`2-norm penalty (Bi et al., 2008), or the sparse `1-norm (i.e., multi-level LASSO (Lozano
and Swirszcz, 2012)). The multi-level LASSO method has been analytically compared to
the dirty model (Lozano and Swirszcz, 2012), showing that the multiplicative decomposition
creates better shrinkage on the global and task-specific parameters. The across-task com-
ponent can screen out the features irrelevant to all tasks. An individual task’s component
can further select features from those selected by the cross-task component for use in its
corresponding model. Although there are different ways to regularize the two components
in the product, no systematic work has been done to analyze the algorithmic and statis-
tical properties of the different regularizers. It is insightful to answer the questions such
as how these learning formulations differ from the early methods based on blockwise joint
regularization, how the optimal solutions of the two components intervene, and how the
resultant solutions are compared with those of other methods that also learn both shared
and task-specific features. We highlight the contributions of this paper as follows:
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• We propose and examine a general framework of the multiplicative decomposition
that enables a variety of regularizers to be applied. The general form corresponds
to a family of MTFL methods, including all early methods that decompose model
parameters as a product of two components (Bi et al., 2008; Lozano and Swirszcz,
2012).

• Our theoretical analysis has revealed that this family of methods is actually equiv-
alent to the joint regularization based approach but with a more general form of
regularizers, including matrix-norm based and non-matrix-norm based regularizers.
The non-matrix-norm based joint regularizers derived from the proposed framework
have never been considered previously. If they are considered in the joint regulariza-
tion form, the resultant optimization problems will be difficult to solve. However, our
equivalent multiplicative MTFL framework in this case uses convex regularizers on
the two components, which can be solved efficiently.

• Further analysis reveals that the optimal solution of the across-task component can be
analytically computed by a formula of the optimal task-specific parameters. This ana-
lytical result facilitates a better understanding of the shrinkage effects of the different
regularizers applied to the two components.

• Statistical justification is also derived for this family of formulations. It proves that
the proposed framework is equivalent to maximizing a lower bound of the maximum a
posterior solution under a probabilistic model that assumes generalized normal priors
on model parameters.

• Two new MTFL formulations are derived from the proposed general framework. Un-
like the existing methods (Bi et al., 2008; Lozano and Swirszcz, 2012) where the same
kind of vector norm is applied to both components, the shrinkage of the global and
task-specific parameters differs in the new formulations. We empirically illustrate the
scenarios where the two new formulations are more suitable for solving the MTFL
problems.

• An efficient blockwise coordinate descent algorithm is derived suitable for solving the
entire family of the methods. Given some of the methods (including the two new
formulations we study) correspond to non-matrix-norm based joint regularizers, our
algorithm provides a powerful alternative to solving the related difficult optimization
problems, allowing us to explore the behaviors and properties of these regularizers in
an effective way. Convergence analysis is thoroughly discussed.

To depict the differences between our approach and previous methods, Table 1 sum-
maries various regularizers used in the joint regularization based and model decomposition
based MTFL methods. There are some fundamental connections among these methods.
As studied in the present work, multiplicative MTFL models can be connected with the
early blockwise joint regularization models. We also attempt to empirically compare the
model behaviors between the multiplicative and additive MTFL methods, and particularly
compare the applicability of the four different choices of regularization listed in Table 1 for
multiplicative MTFL .
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Table 1: The regularization terms used in various MTFL methods.
Model Methods Norms

Joint reg-
ularization
models

A

Evgeniou and Pontil (2004) `1,2
Turlach et al. (2005) `1,∞

Lee et al. (2010) both `1,1 and `1,2
Zhang et al. (2010) `1,p, 1 < p ≤ ∞
Gong et al. (2012) capped `1,1

Decomposed
models

A = P + Q
Jalali et al. (2010) `1,1 on P, `1,∞ on Q

Gong et al. (2012) `1,2 on P, `1,2 on QT

A = diag(c) ·B

The proposed framework (`k)k on c, (`p)p on B
Bi et al. (2008) k=2, p=2

Lozano and Swirszcz (2012) k=1, p=1
The new formulation 1 k=1, p=2
The new formulation 2 k=2, p=1

The rest of the paper is organized as follows. Section 2 defines the mathematical nota-
tion and introduces the proposed models in detail. Section 3 discusses several important
theoretical properties of the proposed models including equivalence analysis. Section 4
provides the statistical justification of the multiplicative MTFL models. In Section 5, we
develop an efficient algorithm to solve the optimization problems in the proposed models
with a convergence analysis. Section 6 shows the empirical results, in which simulations
have been designed to examine the various feature sharing patterns for which a specific
choice of regularizer may be preferred. Extensive experiments with a variety of classifica-
tion and regression benchmark data sets are also described in Section 6. In Section 7, we
conclude this work.

2. The Proposed Multiplicative MTFL

Given T tasks in total, for each task t, t ∈ {1, · · · , T}, we have sample set (Xt ∈ R`t×d,yt ∈
R`t). The data set of Xt has `t examples, where the i-th row corresponds to the i-th example
xti of task t, i ∈ {1, · · · , `t}, and each column represents a feature and there are totally d
features. The vector yt contains yti , the label of the i-th example of task t. We consider
functions of the linear form yt = α>t xti where αt ∈ Rd, which corresponds to computing
Xtαt on the training data as the estimate of yt. We define the parameter matrix or weight
matrix A = [α1, · · · ,αT ] and denote the rows of A by αj , j ∈ {1, · · · , d}.

The joint regularization based MTFL method with the `1,p regularizer minimizes

T∑
t=1

L(αt,Xt,yt) + λ
d∑
j=1

||αj ||p, (1)

for the best αt:t=1,··· ,T , where L(αt,Xt,yt) is the loss function of task t which computes
the discrepancy between the observed yt and the model output Xtαt, and λ is a tuning
parameter to balance between the loss and the regularizer. Although any suitable loss
function can be used in the formulation (1), convex loss functions are the common choices
such as the least squares loss

∑`t
i=1(yti −α>t xti)

2 for regression problems or the logistic loss
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∑`t
i=1 log(1+e−y

t
i(α
>
t xt

i)) for classification problems. These loss functions are strictly convex
with respect to the model parameters αt. The `p norm is computed for each row of the
matrix A corresponding to a feature (rather than a task) so to enforce sparsity on the
features.

A family of multiplicative MTFL methods can be derived by rewriting αt = diag(c)βt
where diag(c) is a diagonal matrix with its diagonal elements composing a vector c. The c
vector is used across all tasks, indicating if a feature is useful for any of the tasks, and the
vector βt is only for task t. Let j index the entries in these vectors. We have αtj = cjβ

t
j .

Typically c comprises binary entries that are equal to 0 or 1, but the integer constraint is
often relaxed to require just non-negativity (c ≥ 0). We minimize a regularized loss function
as follows for the best c and βt:t=1,··· ,T :

min
βt,c≥0

T∑
t=1

L(c,βt,Xt,yt) + γ1

T∑
t=1
||βt||

p
p + γ2||c||kk, (2)

where L(c,βt,Xt,yt) is the same loss function used in Eq.(1) but with αt replaced by the
new vector of (cjβ

t
j)j=1,··· ,d, ||βt||

p
p =

∑d
j=1 |βtj |p and ||c||kk =

∑d
j=1(cj)

k, which are the
`p-norm of βt to the power of p and the `k-norm of c to the power of k if p and k are
positive integers. The tuning parameters γ1, γ2 are used to balance the empirical loss and
regularizers. At optimality, if cj = 0, the j-th variable is removed for all tasks, and the
corresponding row vector αj = 0; otherwise the j-th variable is selected for use in at least
one of the α’s. Then, a specific βt can rule out the j-th variable from task t if βtj = 0.

If both p = k = 2, Problem (2) becomes the formulation used in Bi et al. (2008). Since
the `2-norm regularization is applied on both βt and c, this model does not impose strong
sparsity on the model parameters. According to our empirical study, this model may be
suitable for the scenarios where only a few features can be excluded from all of the tasks,
and the different models (tasks) share a lot features between each other. There could exist
features that, although irrelevant to most of the tasks, cannot be completely excluded only
due to few tasks.

If p = k = 1, Problem (2) becomes the formulation used in Lozano and Swirszcz
(2012), where the `1-norm regularization is applied on βt and c and thus it induces very
strong sparsity both on task-specific parameters and the across-task component to select
the features. Compared to the model in Bi et al. (2008), this model is more suitable for
learning from the tasks with persistently sparse models. For example, many features are
irrelevant to any of the tasks, and only a few of the features selected by c are used by an
individual task, indicating the sparse pattern in sharing the selected features among tasks.

Besides the above two existing models, any other choices of p and k will derive into
new formulations for MTFL. Note that the two existing methods discussed in Bi et al.
(2008); Lozano and Swirszcz (2012) use p = k in their formulations, which renders βtj and
cj the same amount of shrinkage. To explore other feature sharing patterns among tasks,
we propose two new formulations where p 6= k.

Formulation 1:
If p = 2 but k = 1 in Problem (2), then we obtain the following optimization problem

min
βt,c≥0

T∑
t=1

L(c,βt,Xt,yt) + γ1

T∑
t=1
||βt||22 + γ2||c||1. (3)
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When there exists a large subset of features irrelevant to any of the tasks, it requires
a sparsity-inducing norm on c. However, within the relevant features selected by c, the
majority of these features are shared between tasks. In other words, the features used in
each task are not sparse relative to the features selected by c, which requires a non-sparsity-
inducing norm on β. Hence, we use `1 norm on c and `2 norm on each β in our formulation
(2).

Formulation 2:
If p = 1 but k = 2 in Problem (2), we obtain the following optimization problem

min
βt,c≥0

T∑
t=1

L(c,βt,Xt,yt) + γ1

T∑
t=1
||βt||1 + γ2||c||22. (4)

When the union of the features relevant to any given tasks includes many or even all features,
the `2 norm penalty on c may be preferred. However, only a limited number of features are
shared between tasks, i.e., the features used by individual tasks are sparse with respect to
the features selected as useful across tasks by c. We can impose the `1 norm penalty on β.

Clearly, many other choices of p and k values can be used, such as those corresponding
to higher order polynomials (e.g.,

∑d
j=1 c

3
j ). Our theoretical results in the next few sections

apply to all positive value choices of p and k unless otherwise specified. In our empirical
studies, however, we have implemented algorithms for the two existing models and the
two new models for comparison. Some other choices of regularizers may require significant
re-programming of our algorithms and we will leave them for more thorough individual
examinations in the future.

3. Theoretical Analysis

We first extend the formulation (1) to allow more choices of regularizers. We introduce a

new notation that is an operator applied to a vector, such as αj . The operator ||αj ||p/qp =
q

√∑T
t=1 |αtj |p, p, q ≥ 0, which corresponds to the `p norm if p = q and both are positive

integers. A joint regularized MTFL approach can solve the following optimization problem
with pre-specified values of p, q and λ, for the best parameters αt:t=1,··· ,T :

min
αt

T∑
t=1

L(αt,Xt,yt) + λ
d∑
j=1

√
||αj ||p/qp . (5)

Our main results of this paper include (i) a theorem that establishes the equivalence between
the models derived from solving Problem (2) and Problem (5) for properly chosen values of
λ, q, k, γ1 and γ2; (ii) a theorem that delineates the conditions for (2) to impose a convex
(or concave) regularizer on the model parameter matrix A; and (iii) an analytical solution
of Problem (2) for c which shows how the sparsity of the across-task component is relative
to the sparsity of task-specific components.

Theorem 1 (Main Result 1) Let α̂t be the optimal solution to Problem (5) and (β̂t, ĉ)

be the optimal solution to Problem (2). Then α̂t = diag(ĉ)β̂t when λ = 2

√
γ

2− p
kq

1 γ
p
kq

2 and

q = k+p
2k (or equivalently, k = p

2q−1).
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Proof Theorem 1 can be proved by establishing the following two lemmas and two the-
orems. The two lemmas provide the basis for the proofs of the two theorems and then
from the first theorem, we conclude that the solution α̂t of Problem (5) also minimizes the
following optimization problem:

min
αt,σ≥0

∑T
t=1 L(αt,Xt,yt) + µ1

∑d
j=1 σ

−1
j ||αj ||p/qp + µ2

∑d
j=1 σj , (6)

and the optimal solution of Problem (6) also minimizes Problem (5) when proper values
of λ, µ1 and µ2 are chosen. The second theorem connects Problem (6) to the proposed
formulation (2). We show that the optimal σ̂j is equal to (ĉj)

k, and then the optimal α̂ can

be computed as diag(ĉ)β̂t from the optimal β̂t.

Note that when p = 2 and q = 1, the intermediate problem (6) uses a similar regularizer

to that in Micchelli et al. (2013) where |α
j |2
σj

+σj is used to approximate |αj | in the `1-norm

regularizer. Problem (6) extends the discussion in Micchelli et al. (2013) to include more
general regularizers according to p and q.

Lemma 2 For any given αt:t=1,··· ,T , Problem (6) can be optimized with respect to σ by the
following analytical solution

σj = µ
1
2
1 µ
− 1

2
2

√
||αj ||p/qp . (7)

Proof By the Cauchy-Schwarz inequality, we can derive a lower bound for the sum of the
two regularizers in Problem (6) as follows:

µ1

d∑
j=1

σ−1
j ||α

j ||p/qp + µ2

d∑
j=1

σj ≥ 2
√
µ1µ2

d∑
j=1

√
||αj ||p/qp , (8)

where the equality holds if and only if σj = µ
1
2
1 µ
− 1

2
2

√
||αj ||p/qp .

Using the method of proof by contradiction, suppose that σ∗ optimizes Problem (6)

with a given set of αt:t=1,··· ,T , but σ∗j 6= µ
1
2
1 µ
− 1

2
2

√
||αj ||p/qp . Thus, σ∗ does not make

the regularization term reach its lower bound. Then, we can choose another σ̃ where

σ̃j = µ
1
2
1 µ
− 1

2
2

√
||αj ||p/qp , so σ̃ delivers the lower bound in Eq.(8). Because the lower bound

(the right hand side of Eq.(8)) only depends on α, it is a constant for fixed αt:t=1,··· ,T .
Hence, since the loss function is also fixed for given αt:t=1,··· ,T , σ̃ reaches a lower objective
value of Problem (6) than that of σ∗, which contradicts to the optimality of σ∗. Therefore,
the optimal σ always takes the form of Eq.(7).

Remark 3 Based on the proof of Lemma 2, we also know that the objective function of (5)
is the lower bound of the objective function of (6) for any given αt (including the optimal
α̂t) when λ = 2

√
µ1µ2, and the lower bound can be attained if and only if σ is set according

to the formula (7). Hence, we can also conclude that if (α̂t, σ̂) is the optimal solution of

Problem (6), then σ̂j = µ
1
2
1 µ
− 1

2
2

√
||α̂j ||p/qp .
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Lemma 4 Let αtj = cjβ
t
j for all t and j. Replacing βt by αt in Problem (2) yields the

following optimization problem

min
αt,c≥0

T∑
t=1

L(αt,Xt,yt) + γ1
∑d

j=1 c
−p
j ||αj ||pp + γ2

∑d
j=1(cj)

k. (9)

For any given αt:t=1,··· ,T , Problem (9) can be optimized with respect to c by the following
analytical solution

cj = (γ1γ
−1
2

T∑
t=1

(αtj)
p)

1
p+k . (10)

Proof This lemma can be proved following a similar argument in the proof of Lemma
2. By the Cauchy-Schwarz inequality, the sum of the two regularizers in (9) satisfies the
following inequality

γ1

d∑
j=1

c−pj ||α
j ||pp + γ2

d∑
j=1

ckj ≥ 2γ
k

p+k

1 γ
p

p+k

2

d∑
j=1

(||αj ||pp)
k

p+k , (11)

and the equality holds if and only if γ1c
−p
j ||αj ||pp = γ2c

k
j (and note that all parameters γ1,

γ2, ||α̂j ||pp and c are non-negative), which yields the following formula

cj = (γ1γ
−1
2

T∑
t=1

(αtj)
p)

1
p+k .

Through proof by contradiction, we know that the optimal c has to take the above formula.

Based on Lemma 2, we will prove that Problem (5) is equivalent to Problem (6) in the
sense that an optimal solution of Problem (5) is also an optimal solution of Problem (6)
and vice versa when λ, µ1, and µ2 satisfy certain conditions.

Theorem 5 The solution sets of Problem (5) and Problem (6) are identical when λ =
2
√
µ1µ2.

Proof First, if Â = [α̂t:t=1,··· ,T ] minimizes Problem (5), we show that the pair (Â, σ̂)

minimizes Problem (6) where σ̂j = µ
1
2
1 µ
− 1

2
2

√
||α̂j ||p/qp .

By Remark 3, the objective function of (5) is the lower bound of the objective function

of (6) for any given A (including the optimal solution Â). When σ̂j = µ
1
2
1 µ
− 1

2
2

√
||α̂j ||p/qp ,

Problem (6) reaches the lower bound. In this case, Problem (5) at Â and Problem (6) at
(Â, σ̂) have the same objective value. Now, suppose that the pair (Â, σ̂) does not minimize
Problem (6), there exists another pair (Ã, σ̃) 6= (Â, σ̂) that achieves a lower objective value

than that of (Â, σ̂). By Lemma 2, we have that σ̃j = µ
1
2
1 µ
− 1

2
2

√
||α̃j ||p/qp , and then Problem

(6), at Ã, reaches the lower bound which is formulated as the objective of Problem (5)

9
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when λ = 2
√
µ1µ2. In other words, the objective values of (6) and (5) are identical at Ã.

Hence, Ã achieves a lower objective value than that of Â for Problem (5), contradicting to
the optimality of Â.

Second, if (Â, σ̂) minimizes Problem (6), we show that Â minimizes Problem (5).

Suppose that Â does not minimize Problem (5), which means that there exists α̃j

(6= α̂j for some j) that achieves a lower objective value than that of α̂j . We set σ̃j =

µ
1
2
1 µ
− 1

2
2

√
||α̃j ||p/qp . Then (Ã, σ̃) is an optimal solution of Problem (6) as proved in the first

paragraph, and will bring the objective function of Problem (6) to a lower value than that
of (Â, σ̂), contradicting to the optimality of (Â, σ̂).

Therefore, Problems (5) and (6) have identical solution sets when λ = 2
√
µ1µ2.

In order to link Problem (6) to our formulation (2), we let σj = (cj)
k, k ∈ R, k 6= 0 and

αtj = cjβ
t
j for all t and j, and derive an equivalent objective function of Problem (6) based

on Lemmas 2 and 4.

Theorem 6 The optimal solution (Â, σ̂) of Problem (6) is equivalent to the optimal so-

lution (B̂, ĉ) of Problem (2) where α̂tj = ĉj β̂
t
j and σ̂j = (ĉj)

k when γ1 = µ
kq

2kq−p

1 µ
kq−p
2kq−p

2 ,
γ2 = µ2, and k = p

2q−1 .

Proof First, if α̂tj and σ̂j optimize Problem (6), we show that ĉj = k
√
σ̂j and β̂tj = α̂tj/ĉj

optimize Problem (2).

By a change of variables (replacing α̂t and σ̂ by β̂t and ĉ in Problem (6)), we know
that β̂t and ĉ minimize the following objective function

J(β̂tj , ĉj) =
T∑
t=1

L(ĉ, β̂t,Xt,yt) + µ1

d∑
j=1

||β̂j ||p/qp ĉ
(p−kq)/q
j + µ2

d∑
j=1

(ĉj)
k. (12)

By Lemma 2 and Remark 3, the optimal σ̂j = µ
1
2
1 µ
− 1

2
2

√
||α̂j ||p/qp . Because ĉj = k

√
σ̂j , we

derive that

ĉj =
(
µ1µ

−1
2 ||β̂

j ||p/qp

) q
2kq−p

.

Substituting the formula of ĉj into Eq.(12) yields the same objective function of Problem

(2) after replacing µ1 and µ2 by γ1 and γ2 with the equations γ1 = µ
kq

2kq−p

1 µ
kq−p
2kq−p

2 , γ2 = µ2.

Therefore, β̂t and ĉ optimize Problem (2) because otherwise, if any other solution (β, c)
can further reduce the objective value of Problem (2), then the corresponding α and σ will
bring the objective function of Problem (6) to a lower value than α̂ and σ̂.

Next, if β̂tj and ĉj optimize Problem (2), we show that α̂tj = ĉj β̂
t
j and σ̂j = (ĉj)

k optimize
Problem (6).

Substituting α̂tj , σ̂j for β̂tj , ĉj in Problem (2) yields an objective function

J(α̂tj , σ̂j) =
T∑
t=1

L(α̂t,Xt,yt) + γ1

d∑
j=1

||α̂j ||ppσ̂
−(p/k)
j + γ2

d∑
j=1

σ̂j . (13)

10
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We hence know that α̂tj and σ̂j minimize Eq.(13). Similar to the proof of Lemma 4, we can
show that the optimal σ̂ takes the form of

σ̂j = (γ1γ
−1
2 )

k
k+p (||α̂j ||pp)

k
k+p .

Substituting the formula into Eq.(13) and setting γ1 = µ
kq

2kq−p

1 µ
kq−p
2kq−p

2 and γ2 = µ2 transfer
Eq.(13) to the objective function of Problem (6). Thus, α̂tj and σ̂j optimize Problem (6).

Now, based on the above two lemmas and two theorems, we can derive that when

λ = 2

√
γ

2− p
kq

1 γ
p
kq

2 and q = k+p
2k , the optimal solutions to Problems (2) and (5) are equivalent.

Solving Problem (2) will yield an optimal solution α̂ to Problem (5) and vice versa.
By the equivalence analysis, the proposed framework corresponds to a family of joint

regularization methods as defined by Eq.(5). Assuming a convex loss function is used, this
family includes some convex formulations when convex regularizers are applied to A in
(5) and some other non-convex formulations when non-matrix-norm based regularizers are
applied to A. Particularly, when q = p/2, the regularization term on αj in (5) becomes
the standard `p-norm. Correspondingly, when k = p/(p − 1) which is commonly not an
integer except p = 2, our formulation (2) amounts to imposing a `1,p-norm on A. When
both k and p take positive integers (except p = k = 2), Problem (2) is equivalent to using
a non-matrix-norm regularizer in (5). Combinations of different p and k values will render
the models different algorithmic behaviors.

Theorem 7 (Main Result 2) For any positive k and p, if kp ≥ k+p, then the formulation
(2) imposes a convex regularizer on the model parameter matrix A; or otherwise, it imposes
a concave regularizer on A.

Proof According to Theorem 1, the formulation (2) is equivalent to the formulation (5)
that imposes the following regularizer on A:

λ
d∑
j=1

√
||αj ||p/qp = λ

d∑
j=1

(||αj ||p)
p
2q = λ

d∑
j=1

(||αj ||p)
kp
k+q . (14)

where q = k+p
2k and λ = 2

√
γ

2− p
kq

1 γ
p
kq

2 .
A function xa is a convex function in terms of x > 0 if a ≥ 1; or otherwise, it is concave.

Hence, if kp ≥ k + p, Eq.(14) is a composite function of two functions: a convex function

x
kp
k+p and another convex function which is the `p vector norm of αj . Thus, the overall

regularizer is convex. Otherwise, if kp < k + p, the regularizer becomes a concave function
in terms of α’s.

Remark 8 For a particular choice of p = 2 and k = 2, Problem (2) is formulated as

min
βt,c≥0

T∑
t=1

L(c,βt,Xt,yt) + γ1

T∑
t=1
||βt||22 + γ2||c||22, (15)

11
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which is used in Bi et al. (2008). This problem is equivalent to the following joint regular-
ization method as used in Obozinski and Taskar (2006); Argyriou et al. (2007).

min
αt

T∑
t=1

L(αt,Xt,yt) + λ
d∑
j=1

√√√√ T∑
t=1

(αtj)
2, (16)

when λ = 2
√
γ1γ2. Problem (16) uses the so called `1,2-norm to regularize the matrix A.

Remark 9 For a particular choice of p = 1 and k = 1, Problem (2) is formulated as

min
βt,c≥0

T∑
t=1

L(c,βt,Xt,yt) + γ1

T∑
t=1
||βt||1 + γ2||c||1, (17)

which is used in Lozano and Swirszcz (2012). This problem is equivalent to the following
joint regularization method

min
αt

T∑
t=1

L(αt,Xt,yt) + λ

d∑
j=1

√√√√ T∑
t=1

|αtj |, (18)

when λ = 2
√
γ1γ2. Problem (17) imposes stronger sparsity on β and c (and correspondingly

on α) than (15), which intends to shrink more model parameters to zero. Problem (18) uses
a concave non-matrix-norm regularizer.

Remark 10 For a particular choice of p = 2 and k = 1, which corresponds to the new
formulation (3). This problem is equivalent to the following joint regularization method

min
αt

T∑
t=1

L(αt,Xt,yt) + λ

d∑
j=1

3

√√√√ T∑
t=1

(αtj)
2, (19)

when λ = 2γ
1
3
1 γ

2
3
2 . Problem (19) uses a concave non-matrix-norm regularizer as well but the

concavity is weaker than Problem (18) in the sense that the polynomial order is 2
3 rather

than 1
2 .

The proposed formulation (3) imposes stronger sparsity induction on the across-task
component than on the task-specific component. Thus, it has stronger shrinkage effects
to exclude many features for all the tasks. If the jth feature is considered as unrelated to
most of the tasks, the model of p = k = 2 may shrink cj to a small value but not zero,
the new model (3) might shrink cj to zero instead. Therefore this model would be more
favorable to jointly learning from tasks where a large portion of noisy features exist that
may be irrelevant or redundant to all of the tasks. Compared to the method in Lozano and
Swirszcz (2012) where p = k = 1, the new formulation (3) may allow more selected features
to be shared across different tasks.

12
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Remark 11 For a particular choice of p = 1 and k = 2, which corresponds to the new
formulation (4). This problem is equivalent to the following joint regularization method

min
αt

T∑
t=1

L(αt,Xt,yt) + λ
d∑
j=1

3

√√√√( T∑
t=1

|αtj |

)2

, (20)

when λ = 2γ
2
3
1 γ

1
3
2 . Problem (20) uses another concave non-matrix-norm regularizer that has

the similar polynomial order of 2
3 to Problem (19). In comparison with (19), the cross-task

quadratic terms (e.g., |α1
j ||α2

j |, |α2
j ||α3

j |) are allowed inside the cube root in this formulation.

The new formulation (4) imposes stronger sparsity induction on task-specific component
than on the across-task vector. This model can be favorable in the cases where few tasks
share a limited number of selected features. As shown in our empirical results, for instance,
when every two or three tasks share a limited subset of selected features but no common
features are used by more than three tasks, this model performs the best among the four
multiplicative MTFL formulations. In comparison to the model in Lozano and Swirszcz
(2012), this model allows more of the features that are only relevant to a few tasks to be
selected. In comparison with the model in Bi et al. (2008), this model can help to remove
a lot of irrelevant or redundant features for individual tasks from the selected features.

We further derive another main result that characterizes the optimal across-task vector
as a formula of the optimal task-specific vectors. This connection can be easily developed
from the above equivalence analysis, and can help us understand the relationship and in-
teraction between the two components.

Theorem 12 (Main Result 3) Let β̂t, t = 1, · · · , T, be the optimal solutions of Problem

(2), Let B̂ = [β̂1, · · · , β̂T ] and β̂
j

denote the j-th row of the matrix B̂. Then,

ĉj = (γ1/γ2)
1
k

k

√√√√ T∑
t=1

(β̂tj)
p, (21)

for all j = 1, · · · , d, is optimal to Problem (2).

Proof This analytical formula can be directly derived from Theorem 5 and Theorem
6. When we set σ̂j = (ĉj)

k and α̂tj = ĉj β̂
t
j in the proof of Theorem 6, we obtain ĉj =(

µ1µ
−1
2 ||β̂

j ||p/qp

) q
2kq−p

. In the same proof, we also show that µ1 = γ
2kq−p

kq

1 γ
p−kq
kq

2 and µ2 = γ2.

Substituting these formulas into the formula of c yields ĉj = (γ1/γ2)
1
k ||β̂j ||

p
2kq−p . More-

over, to establish the equivalence between (2) and (5), we require q = k+p
2k , which leads to

k = 2kq − p. Hence, ||β̂j ||
p

2kq−p = k

√∑T
t=1(β̂tj)

p. We then obtain the formula (21).

Remark 13 For particular choices of p and k, the relation between the optimal c and β
can be computed according to Theorem 12. Table 2 summarizes the relation formula for the
common choices when p ∈ {1, 2} and k ∈ {1, 2}.
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Table 2: The shrinkage effect of c with respect to β for four common choices of p and k.
p k c

2 2 ĉj =
√
γ1γ
−1
2

√∑T
t=1(β̂tj)

2

1 1 ĉj = γ1γ
−1
2

∑T
t=1 |β̂tj |

2 1 ĉj = γ1γ
−1
2

∑T
t=1(β̂tj)

2

1 2 ĉj =
√
γ1γ
−1
2

√∑T
t=1 |β̂tj |

4. Probabilistic Interpretation

In this section we show that the proposed multiplicative formalism is related to the maximum
a posteriori (MAP) solution of a probabilistic model. Let p(A|∆) be the prior distribution
of the weight matrix A = [α1, . . . ,αT ] = [α1>, . . . ,αd>]> ∈ Rd×T , where ∆ denote the
parameter of the prior. Then the a posteriori distribution of A can be calculated via Bayes
rule as

p(A|X,y,∆) ∝ p(A|∆)
T∏
t=1

p(yt|Xt,αt). (22)

Denote z ∼ GN (µ, ρ, p) the univariate generalized normal distribution, with the density
function

p(z) =
1

2ρΓ(1 + 1/p)
exp

(
−|z − µ|

p

ρp

)
, (23)

in which ρ > 0, p > 0, and Γ(·) is the Gamma function (Goodman and Kotz, 1973). Now
let each element of A, αtj , follow a generalized normal prior, αtj ∼ GN (0, δj , p). Then with
the independent and identically distributed assumption, the prior takes the form (also refer
to Zhang et al. (2010) for a similar treatment)

p(A|∆) ∝
d∏
j=1

T∏
t=1

1

δj
exp

(
−
|αtj |p

δpj

)
=

d∏
j=1

1

δTj
exp

(
− ‖α

j‖pp
δpj

)
, (24)

where ‖ · ‖p denotes the vector p-norm. With an appropriately chosen likelihood function
p(yt|Xt,αt) ∝ exp(−L(αt,Xt,yt)), finding the MAP solution is equivalent to solving the
following problem:

min
A,∆

J =

T∑
t=1

L(αt,Xt,yt) +

d∑
j=1

(‖αj‖pp
δpj

+ T ln δj

)
. (25)

Setting the derivative of J with respect to δj to zero, we obtain:

δj =
( p
T

)1/p
‖αj‖p. (26)
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Bringing this back to (25), we have the following equivalent problem:

min
A

J =
∑T

t=1
L(αt,Xt,yt) + T

∑d

j=1
ln ‖αj‖p. (27)

Now let us look at the multiplicative nature of αtj with different p ∈ [1,∞).
When p = 1, we have:

d∑
j=1

ln ‖αj‖1 =
d∑
j=1

ln

(
T∑
t=1

|αtj |

)

=
d∑
j=1

ln

(
T∑
t=1

|cjβtj |

)

=

d∑
j=1

(
ln |cj |+ ln

T∑
t=1

|βtj |

)

≤
d∑
j=1

|cj |+
d∑
j=1

T∑
t=1

|βtj | − 2d,

where the inequality is because of the fact that ln z ≤ z − 1 for any z > 0. Therefore we
can optimize an upper bound of J in (27),

min
A

J1 =
T∑
t=1

L(αt,Xt,yt) + T
d∑
j=1

|cj |+ T
d∑
j=1

T∑
t=1

|βtj | − 2dT, (28)

which is equivalent to the multiplicative formulation (2) where {p, k} = {1, 1}. This proves
the following theorem:

Theorem 14 When {p, k} = {1, 1}, optimizing the multiplicative formulation (2) is equiv-
alent to maximizing a lower bound of the MAP solution under probabilistic model (22) with
p = 1 in the prior definition.

In the general case, we have:

d∑
j=1

ln ‖αj‖p =
1

p

d∑
j=1

ln

(
T∑
t=1

|cjβtj |p
)

=
1

p

d∑
j=1

ln

(
(ckj )

p
k ·

T∑
t=1

|βtj |p
)

=
1

k

d∑
j=1

ln |cj |k +
1

p

d∑
j=1

ln

T∑
t=1

|βtj |p

≤ 1

k

d∑
j=1

|cj |k +
1

p

T∑
t=1

‖βt‖pp − d(
1

k
+

1

p
).
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These inequalities lead to an upper bound of J in (27). By minimizing the upper bound,
the problem is formulated as:

min
A

Jp,k =
T∑
t=1

L(αt,Xt,yt) +
T

k
‖c‖kk +

T

p

T∑
t=1

‖βt‖pp, (29)

which is equivalent to the general multiplicative formulation in (2). Therefore we have
proved the following theorem:

Theorem 15 Optimizing the multiplicative formulation (2), in the form of (29), is equiv-
alent to maximizing a lower bound of the MAP solution under probabilistic model (22) with
p ∈ (1,∞) in the prior definition.

5. Optimization Algorithm

Alternating optimization algorithms have been used in both of the early methods (Bi et al.,
2008; Lozano and Swirszcz, 2012) to solve Problem (2) which alternate between solving two
subproblems: solve for βt with fixed c; solve for c with fixed βt. The convergence property
of such an alternating algorithm has been analyzed in Bi et al. (2008); Lozano and Swirszcz
(2012) that it converges to a local minimizer. In these early methods, both of the two
subproblems have to be solved using iterative algorithms such as gradient descent, linear or
quadratic program solvers.

Besides the algorithm that solves for c and βt alternatively and can be applied to our
formulations, we design an alternating optimization algorithm that utilizes the closed-form
solution for c we have derived in Lemma 4 and the property that both Problems (2) and (5)
are equivalent to the intermediate Problem (6) (or Problem (9)). In the algorithm to solve
Problem (2), we start from an initial choice of c. At iteration s, we start from cs, and solve
for βst with the fixed cs. We then compute the value of αs

t = diag(cs)βst , which is used to
update cs to cs+1 according to Eq.(10) in Lemma 4. The overall procedure is summarized
in Algorithm 1. As a central idea in designing this algorithm, at each iteration we update
β to reduce the loss function, and update c to reduce the regularizer while maintaining the
same loss function value. Note that if the value of α is fixed, the loss will remain the same.

To analyze the convergence property of Algorithm 1, we utilize the fact that Problem
(2) and Problem (9) are equivalent. For notational convenience, we denote the objective
function of Problem (2) by g(B, c) that takes inputs βt and c. We denote the objective
function of Problem (9) by f(A, c). Both objective functions comprise the sum of three
parts. For instance, f can be written as follows:

f(A, c) = f0(A, c) + fA(A) + fc(c), (31)

where f0(A, c) = γ1
∑d

j=1(c−pj
∑T

t=1(αtj)
p) is the part that involves both α and c, fA(A) =∑

t L(αt,Xt,yt) is the part relying only on α, and fc(c) = µ2
∑d

j=1(cj)
k is the part for c

only. Let z be the vector consisting of all variables in Problem (9). Similar to what has been
defined in Tseng (2001), we define that the point z is a stationary point of f if z ∈ dom f
where dom f is the feasible region of f , and

lim
λ→0

[f(z + λb)− f(z)]/λ ≥ 0, ∀b such that (z + λb) ∈ dom f. (32)
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Algorithm 1 The blockwise coordinate descent algorithm for multiplicative MTFL

Input: Xt, yt, t = 1, · · · , T , as well as γ1, γ2, p and k
Initialize: cj = 1, ∀j = 1, · · · , d, and s = 1
repeat

Compute X̃t = Xtdiag(cs), ∀ t = 1, · · · , T
for t = 1, · · · , T do

Solve the following problem for βst

min
βt

L(βt, X̃t,yt) + γ1||βt||pp (30)

end for
Compute αs

t = diag(cs)βst
Set s = s+ 1
Compute cs+1 using αs

t according to Eq.(10)
until maxt,j(|(αtj)s − (αtj)

s−1|) < ε (or other proper termination rules)
Output: αt, c and βt, t = 1, · · · , T

where b denotes any feasible direction, (which corresponds to 5f(z) = 0 if f is differen-
tiable, or 0 ∈ ∂f(z) if f is non-differentiable where ∂f(z) is the subgradient of f at z). In
our case, f is not differentiable at α = 0 or c = 0 when p is set to an odd number. We also
define that a point z is a coordinate-wise minimum point of f if z ∈ dom f , and ∀bk ∈ Rdk
that makes (0, · · · ,bk, · · · , 0) a feasible direction, there exists a small ε > 0, such that for
all positive λ ≤ ε,

f(z + λ(0, · · · ,bk, · · · , 0)) ≥ f(z), (33)

where k indexes the blocks of variables in our algorithm, which include α1, · · · ,αT and c,
so k = {1, · · · , T + 1}, and the (T + 1)-th block is for c, dk is the number of variables in
the kth coordinate block and in our case dk = d. The vector (0, · · · ,bk, · · · , 0) is a vector
in Rd×(T+1) and used to only vary z in the k-th block.

We first prove that for the sequence of points generated by Algorithm 1, the objec-
tive function f is monotonically non-increasing. Then we prove the sequence of points is
bounded, because of which, the sequence will have accumulation points. We prove that each
accumulation point is a coordinate-wise minimum point. Then according to Tseng (2001),
if f is regular at an accumulation point z∗, this z∗ is a stationary point.

Lemma 16 Let the sequence of iterates generated by Algorithm 1 be zs = {As, cs}s=1,2,···
and the function f is defined by (31), then f(As+1, cs+1) ≤ f(As, cs).

Proof First, note that for each {As, cs}, we accordingly have {Bs, cs} where αs
t =

diag(cs)βst , ∀t, and we have f(As, cs) = g(Bs, cs). Because we start with c so at each
iteration c gets updated first (the order dose not matter actually). At iteration s + 1, we
compute cs+1 based on As according to Eq.(10). According to Lemma 4, cs+1 will reach the
lower bound of f when A is fixed to As. Hence f(As, cs+1) ≤ f(As, cs). Moreover, when c is
updated, there is an implicit new value of B̃

s
that is just computed as (β̃tj)

s = (αtj)
s/(cj)

s+1,
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∀j and t. Then, g(B̃
s
, cs+1) = f(As, cs+1). Next in Algorithm 1, we obtain Bs+1 by solv-

ing Problem (30), i.e., by optimizing g with respect B when c is fixed to cs+1. Hence,
g(Bs+1, cs+1) ≤ g(B̃

s
, cs+1). Then A will be updated by As+1 = diag(cs+1)Bs+1, which

leads to f(As+1, cs+1) = g(Bs+1, cs+1). Overall, we have

f(As+1, cs+1) = g(Bs+1, cs+1) ≤ g(B̃
s
, cs+1) = f(As, cs+1) ≤ f(As, cs).

This proves that f(As+1, cs+1) ≤ f(As, cs).

Based on the proof of Lemma 16, we can also show that g(Bs+1, cs+1) ≤ g(Bs, cs) for
the sequence of {Bs, cs}s=1,2,··· that is also created by Algorithm 1.

Lemma 17 The sequence of iterates generated by Algorithm 1, zs = {As, cs}s=1,2,···, (or
equivalently, {Bs, cs}s=1,2,···) is bounded.

Proof According to Lemma 16, we know that f(As+1, cs+1) ≤ f(As, cs), and g(Bs+1, cs+1) ≤
g(Bs, cs), ∀s = 1, 2, · · · . Hence, g(Bs, cs) ≤ g(B1, c1), ∀s = 1, 2, · · · . Let g(B1, c1) = C.
Then, g(Bs, cs) is upper bounded by C.

In our algorithm, we assume that the loss function in g can be either the least squares loss
or the logistic regression loss of all the tasks. Hence, the loss terms are non-negative (actually
most other loss functions, such as the hinge loss, are also non-negative). The two regulariz-
ers, one on βt and the other on c, are both non-negative. Thus, we have that ||βst ||

p
p ≤ C/γ1

and ||cs||kk ≤ C/γ2, ∀s = 1, 2, · · · . This shows that the sequence of {Bs, cs}s=1,2,··· is

bounded. Because αs
t = diag(cs)βst , ||αs

t ||
p
p =

∑d
j=1 |(αtj)s|p =

∑d
j=1 |(csj(βtj)s|p ≤ ||cs||

2p
2p +

||βst ||
2p
2p ≤ C̃ where C̃ is a constant computed from C, γ1 and γ2. Thus, the sequence of

zs = {As, cs}s=1,2,··· is also bounded.

Theorem 18 The sequence zs = {As, cs}s=1,2,··· generated by Algorithm 1 has at least one
accumulation point. For any accumulation point z∗ = {A∗, c∗}, z∗ is a coordinate-wise
minimum point of f .

Proof According to Lemma 17, the sequence zs is bounded, so there exists at least one
accumulation point z∗ and a subsequence of {zs}s=1,2,··· that converges to z∗. Without loss
of generality and for notational convenience, let us just assume that {zs}s=1,2,··· converges
to z∗. Because z∗ is an accumulation point, if it is the iterate at the current iteration s, then
in the next iteration s + 1, the same iterate z∗ will be obtained. Hence, β∗t is the optimal
solution of Problem (30) when c is set to c∗ (and all other βk 6=t = β∗k). Correspondingly, c∗

is the optimal solution of Problem (2) when B is set to B∗. Hence, for any feasible direction
(0, · · · ,bt, · · · , 0), ∀t = 1, 2, · · · , T + 1, we have

f(z∗ + λ(0, · · · ,bt, · · · , 0)) ≥ f(z∗), (34)

for small λ values. Hence, z∗ is a coordinate-wise minimum point of f .
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Theorem 19 If both p and k are positive, and k ≥ 1, the accumulation point z∗ is a
stationary point of f .

Proof Due to Lemma 4, we know that the optimal solution of Problem (9) can only occur
when c and αt satisfy Eq.(10), so any other points can be excluded from discussion. Hence,

we define a new level set Z0 = {z|f(z) ≤ C} ∩ {z|cj = (γ1γ
−1
2

∑T
t=1(αtj)

p)
1

p+k ,∀αtj}. We

now prove that f is continuous on this set Z0 and the gradient of f exists when p is even
(differentiable case), and examine 0 ∈ ∂f at z∗ for non-differentiable cases.

Given the definition of f , f is continuous with respect to αtj , ∀j and t. Because f0 is a
division term that has a divisor based on cj , we have the division-by-0 issue, so f is in general
not continuous with respect to cj at 0 (but continuous and differentiable at other values).

However, using L’Hospital’s rule (i.e., lim
φ→0

f1(φ)
f2(φ ) = lim

φ→0

f ′1(φ)
f ′2(φ

), we show that f is continuous

with respect to cj at cj = 0 in the set Z0. When cj = 0, ||αj ||pp =
∑T

t=1(αtj)
p = 0 due to

Eq.(10). Let φ = ||αj ||pp. Since the function f0 is a ratio of two items both approaching 0
as functions of φ, we can apply L’Hospital’s rule as follows

lim
φ→0

||αj ||pp
(cj)p

= lim
φ→0

φ

(γ1γ
−1
2 φ)

p
p+k

= lim
φ→0

1

p
p+k (γ1γ

−1
2 )

p
p+kφ

− k
p+k

= lim
φ→0

(p+ k)φ
k

p+k

p(γ1γ
−1
2 )

p
p+k

= 0.

We then compute the partial derivative of f0 with respect to cj , which is ∂f0
∂cj

=
−p||αj ||pp
(cj)p+1 for

cj 6= 0. Now when cj approaches 0, we can prove continuity using L’Hospital’s rule:

∂f0

∂cj
|cj→0 = lim

φ→0

−p||αj ||pp
(cj)p+1

= lim
φ→0

−pφ

(γ1γ
−1
2 φ)

p+1
p+k

= lim
φ→0

−p(p+ k)φ
k−1
p+k

(p+ 1)(γ1γ
−1
2 )

(p+1)
p+k

= 0,

when k > 1. When k = 1, the limit is a finite number −p(p + k)/((p + 1)(γ1γ
−1
2 )

(p+1)
p+k ).

Note that when an odd p is taken, ||αt||pp =
∑
|αtj |p is not differentiable at 0. However,

the above limit exists no matter f is differentiable or not because we take φ as the varying
parameter. With the above conditions, we use the results in Tseng (2001) that when each
subproblem has a unique minimum, which is the case in our algorithm because Subproblem
(30) is strictly convex (for our chosen loss functions) and we have already proved the unique
analytical solution of c, z∗ is a stationary point of f .

We briefly discuss the computation cost of Algorithm 1. Subproblem (30) is essentially
for single task learning, which can be solved by many existing efficient algorithms, such as
gradient-based optimization methods. The second subproblem has a closed-form solution for
c, which requires only a minimal level of computation. The computation cost of Algorithm
1 only linearly increases with the number of tasks. Due to the nature of Algorithm 1, it can
be easily parallelizable and distributed to multiple processors when optimizing individual
βt. More efficient algorithms may be designed for specific choices of p in the future.
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6. Experiments

We empirically evaluated the performance of the multiplicative MTFL algorithms on both
synthetic data sets and a variety of real-world data sets, where we solved either classifica-
tion (using the logistic regression loss) or regression (using the least squares loss) problems.
In the experiments, we implemented and compared Algorithm 1 for four parameter set-
tings: (p, k) = (2, 2), (1, 1), (2, 1), and (1, 2), corresponding to four multiplicative MTFL
(MMTFL) methods as listed in Table 2. Although when the values of (p, k) were (2,2) and
(1,1), the two models corresponded respectively to the same methods in Bi et al. (2008)
and Lozano and Swirszcz (2012), they were solved differently from prior methods using
our Algorithm 1 with higher computational efficiency. When (p, k) = (2, 1) and (1, 2), the
resultant models corresponded to the two new formulations.

In our experiments, the multiplicative MTFL methods were also compared with the
additive MTFL methods that decompose the model parameters into an addition of two
components, such as the Dirty model (DMTL) (Jalali et al., 2010) and the robust MTFL
(rMTFL) (Gong et al., 2012). Single task learning (STL) approaches were also implemented
as baselines and compared with all of the MTFL algorithms in the experiments. We list
the various methods used for comparison in our experiments as follows:

• STL lasso : Learning each task independently with ||αt||1 as the regularizer.

• STL ridge : Learning each task independently with ||αt||22 as the regularizer.

• DMTL (Jalali et al., 2010) : The dirty model with regularizers ||P||1,1 and ||Q||1,∞,
where A = P + Q.

• rMTFL (Gong et al., 2012) : Robust multitask feature learning with the regularizers
||P||1,2 and ||QT ||1,2, where A = P + Q.

• MMTFL{2, 2} (Bi et al., 2008) : Multiplicative multitask feature learning with regu-
larizers ||B||2F and ||c||22, where A = diag(c)B.

• MMTFL{1, 1} (Lozano and Swirszcz, 2012) : Multiplicative multitask feature learning
with regularizers ||B||1,1 and ||c||1, where A = diag(c)B.

• MMTFL{2, 1}(New formulation 1) : Multiplicative multitask feature learning with
regularizers ||B||2F and ||c||1, where A = diag(c)B.

• MMTFL{1, 2}(New formulation 2) : Multiplicative multitask feature learning with
regularizers ||B||1,1 and ||c||22, where A = diag(c)B.

In all experiments, unless otherwise noted, the original data set was partitioned to have
25%, 33% or 50% of the data in a training set and the rest used for testing. For each
specified partition ratio (corresponding to a trial), we randomly partitioned the data 15
times and reported the average performance. The same tuning process was used to tune
the hyperparameters (e.g.,γ1 and γ2) of every method in the comparison. In every trial, an
internal three-fold cross validation (CV) was performed within the training data of the first
partition to select a proper hyperparameter value for each of the methods from the choices of
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2k with k = −10,−9, · · · , 7. In the subsequent partitions of each trial, the hyperparameters
were fixed to the values that yielded the best performance in the CV.

The regression performance was measured by the coefficient of determination, denoted
by R2, which measures the explained variance of the data by the fitted model. In particular,

we used the following formula to report performance R2 = 1 −
∑n

i=1(yi−fi)2∑n
i=1(yi−ȳ)2

where ȳ is the

mean of the observed values of y and fi is the prediction of the observed yi. The reported
values in our experiments were the averaged R2 over all tasks. The R2 value ranges from 0 to
1, and a higher value indicates better regression performance. The classification performance
was measured by the F1 score, which is the harmonic mean of precision and recall. The
numbers we reported in each trial was the F1 score averaged over all tasks. Similarly, the F1
score also ranges from 0 to 1 and higher values represent better classification performance.

6.1 Simulation Studies

We created three categories of data sets, all of which were designed for regression experi-
ments to evaluate the behaviors of the different methods. The data sets in each category
were created with a pre-specified feature sharing structure. The first two categories were
designed to validate the scenarios that we hypothesized for our two new formulations to
work. We performed sensitivity analyses using these two categories of data sets, i.e., study-
ing how performance was altered when the number of tasks or the number of features varied.
Because we also empirically compared with a few additive decomposition based methods, it
would be interesting to see how multiplicative MTFL behaved in a scenario that was actu-
ally in favor of additive MTFL. Hence, in the third category, the feature sharing structure
was generated following the assumption that the robust MTFL method used (Gong et al.,
2012).

In all experiments, we created input examples Xt for each task t using a number of
features randomly drawn from the standard multivariate Gaussian distribution N (0,1), and
pre-defined A = [α1, · · · ,αT ] across all tasks. The responses for each task was computed
by yt = Xtαt + εt where εt ∼ N (0, 0.5) was the noise introduced to the model. If an entry
of A was set to non-zero, its value was randomly sampled from a uniform distribution in
the interval [0.5, 1.5]. As a side note, we transposed A in Figure 1 for better illustration.

6.1.1 Synthetic Datasets

Category 1 (C1). In the C1 experiments, 40% of the rows in the matrix A were set to 0.
Since each row corresponded to a feature across the tasks, the zero rows made the features
irrelevant to all tasks. All remaining features received non-zero values in A so that they
were used in every task’s model although with different combination weights. Hence, the
individual models were sparse with respect to all synthesized features, but not sparse with
respect to the selected features. The pre-defined A is demonstrated in Figure 1a(top), where
we transpose A to have columns representing features and a darker spot indicates that the
particular element of A had a larger absolute value. Note that this synthetic data follows
the assumption that has motivated the early block-wise joint regularized methods that
used matrix-norm-based regularizers. Those methods were developed with an assumption
that a subset of features was shared by all tasks. However, we observed that the level of
shrinkage needed would be different for c and β, which corresponded to non-matrix-norm-
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(a) Synthetic data C1 (b) Synthetic data C2 (c) Synthetic data C3

Figure 1: The true parameter matrix versus the parameter matrices constructed by the var-
ious methods on synthetic data. The figure shows the results when 200 examples
and 100 features were created for 20 tasks each. Darker color indicates larger
values in magnitude.

based regularizers. We hypothesized that the proposed new formulation (3) would produce
better regression performance than existing models on this data category.

To examine how the number of tasks influenced the performance of different methods,
we varied the number of tasks from 1, 5, 10, 50, and 100 to 1000. For each task, we created
200 examples, each represented by 100 features. We also tested the different methods when
increasing the number of features. In this set of experiments, we used 20 tasks and each task
contained 1000 examples. Each example was represented by a number of features ranging
from 200 to 1000 with a step size of 200.

Category 2 (C2). In the C2 experiments, 10% of the rows in A were set to non-zero
and these features were shared by all tasks. We then arranged the tasks to follow six
different sparse structures (the staircases) as shown in Figure 1b(top), where we once again
transpose A. Each of the remaining features except the 10% common features was used
by a comparatively small proportion of the tasks. Consecutive tasks were grouped such
that the neighboring groups of tasks shared 7% of the features besides the 10% common
features, whereas the non-neighboring groups of tasks did not share any features. Therefore,
no feature could be excluded from all tasks, but a majority of individual features (90%) was
only useful for few tasks (i.e., the useful features for one task were sparse). In this case,
the non-sparsity-inducing norm was suitable for regularizing c and sparsity-inducing norm
was more suitable for regularizing β. We hypothesized that the new formulation (4) would
produce better regression performance than the other models on this data set.

We created 20, 50, 100, 500 and 1000 tasks, respectively, to test the algorithms’ sensi-
tivity to the number of tasks. The numbers of tasks were chosen to make sure enough tasks
in each of the six groups. The number of tasks in each group ranged from 3 to 170. We
generated 200 examples and 100 features for each task. We also created another set of C2
data sets with the number of features changing from 200 to 1000 with a step size of 200 for
20 tasks and 1000 examples for each task.

Category 3 (D3). This category was synthesized following the model of the additive de-
composition methods. It only contained one data set where 200 examples, each represented
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Table 3: Comparison of the test R2 values obtained by the different MTFL methods on
synthetic data sets using different partition ratios for training data (where standard
deviation 0 means that it is less than 0.01).

Dataset STL lasso STL ridge DMTL rMTFL MMTFL(2,2) MMTFL(1,1) MMTFL(2,1) MMTFL(1,2)
25% 0.32±0.02 0.45±0.01 0.60±0.02 0.58±0.02 0.64±0.02 0.54±0.03 0.73±0.02 0.42±0.04

C1 33% 0.54±0.03 0.62±0.02 0.73±0.01 0.61±0.02 0.79±0.02 0.76±0.01 0.86±0.01 0.65±0.03
50% 0.70±0.02 0.86±0.01 0.75±0.01 0.66±0.01 0.86±0.01 0.88±0.01 0.90±0.01 0.84±0.01
25% 0.42±0.03 0.33±0.01 0.36±0.01 0.46±0.01 0.45±0.01 0.35±0.05 0.46±0.02 0.49±0.02

C2 33% 0.77±0.02 0.63±0.01 0.42±0.02 0.63±0.03 0.69±0.02 0.75±0.01 0.67±0.03 0.83±0.02
50% 0.95±0.01 0.89±0.01 0.81±0.01 0.83±0.01 0.91±0 0.95±0 0.92±0.01 0.97±0
25% 0.28±0.03 0.43±0.03 0.50±0.04 0.55±0.03 0.54±0.03 0.31±0.02 0.43±0.02 0.34±0.02

C3 33% 0.47±0.01 0.56±0.02 0.60±0.02 0.65±0.02 0.64±0.02 0.45±0.04 0.60±0.04 0.47±0.03
50% 0.77±0.01 0.78±0.01 0.76±0.02 0.83±0.01 0.81±0.02 0.75±0.01 0.79±0.02 0.76±0.01

by 100 features, were generated for each of 20 tasks. The parameter matrix A = P + Q
where 80 rows in P and 16 columns in Q were set to 0. The component P was used to
indicate the subset of relevant features across all tasks, and the component Q was used to
tell that there were outlier tasks that did not share features with other tasks. Given this
simulation process, this data set would be in favor of the rMTFL model proposed in Gong
et al. (2012). The designed model parameter matrix was shown in Figure 1c(top).

6.1.2 Performance on synthetic data sets

We first compared the regression performance of the different methods on the three cate-
gories of data sets. Table 3 shows the averaged R2 values together with standard deviations
for each method and each trial setting. The best results are shown in bold fonts. The results
in Table 3 were obtained on synthetic data sets that had 20 tasks with 200 examples and
100 features for each task. We reported the test R2 obtained on each data set when 25%,
33% and 50% of the data were used in training. From Table 3, we observe that the pro-
posed formulation (3)(MMTFL(2,1)) consistently outperformed other models on C1 data
sets, whereas the proposed model (4)(MMTFL(1,2)) consistently outperformed on C2 data
sets. The results confirmed our hypotheses that the two proposed models could be more
suitable for learning the type of sharing structures in C1 and C2. As anticipated, rMTFL
model constantly outperformed other models on the C3 data set. Among the multiplicative
MTFL methods, MMTFL(2,2) achieved similar performance to that of rMTFL (off only by
0.01 ∼ 0.02 for average R2).

In order to elucidate the different shrinkage effects of the different decomposition strate-
gies and regularizers, we compared the true parameter matrix with the constructed pa-
rameter matrices by the six MTFL methods used in our experiments in Figure 1. From
the results on the C1 and C2 data sets, we observe that only MMTFL(2,1), MMTFL(1,2)
and MMTFL(1,1) produced reasonably sparse structures. The two additive decomposition
methods could not yield a sufficient level of sparsity in the models. Although the unused
features did receive smaller weights in general, they were not completely excluded. To eval-
uate the accuracy of feature selection, we quantitatively measured the discrepancy between
the estimated models and the true model by computing the mean squared error (MSE)
trace((A − Aest)

>(A − Aest)) where Aest was the matrix estimated by a method. We
compared MSE values of individual mothods.

On the C1 data, MMTFL(2,1) learned better combination weights (darker areas) for
the relevant features than MMTFL(1,1). MMTFL(1,1) appeared to be unnecessarily too
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(a) On C1 data (b) On C2 data

Figure 2: The regression performance of different models on synthetic data C1 and C2 when
the number of tasks is varied.

sparse because the useful features received much smaller weights than needed (lighter than
the true model). The smallest MSE was achieved by MMTFL(2,1) with a value of 0.1, and
the second best model, MMTFL(1,1), had MSE = 0.2 whereas the rMTFL model had the
largest MSE = 0.25.

On the C2 data, MMTFL(1,2) learned a model that was most comparable to the true
model. Both MMTFL(1,2) and MMTFL(1,1) eliminated well the irrelevant features. How-
ever, if we compared the two rows corresponding to these two models in Figure 1, we could
see that MMTFL(1,1) broke the staircases in several places (e.g., towards the lower right
and the up left corners) by excluding more features than necessary. Note that the feature
sharing patterns (particularly in synthetic data C2) may not be revealed by the recent
methods on clustered multitask learning that cluster tasks into groups (Kang et al., 2011;
Jacob et al., 2008; Zhou et al., 2011) because no cluster structure is present in Figure 1b.
Rather, the sharing pattern in Figure 1b is actually in between the consecutive groups of
tasks. MMTFL(1,2) had the smallest MSE = 0.05, which was smaller than that of the
second best model MMTFL(1,1) by 0.025. DMTL received the largest MSE = 0.19.

Figure 1c shows the results on the C3 data set. MMTFL(2,1), MMTFL(1,2), and
MMTFL(1,1) imposed excessive sparsity on the parameter matrix, which removed some
useful features. The other three models, DMTL, rMTFL and MMTFL(2,2), produced
similar parameter matrices, but rMTFL was originally designed to detect outlier tasks and
thus was more favorable for this data set. The rMTFL model obtained the smallest MSE
(0.03), and MMTFL(2,2) had a similar performance (MSE=0.04), which was the same as
that of DMTL. On this data set, MMTFL(1,1) got the largest MSE (0.09). These results
bring out an interesting observation that for the MTL scenarios that have outlier tasks
but relevant tasks share the same set of features, MMTFL(2,2) (which corresponds to the
very early joint regularized method using the `1,2 matrix norm) is most suitable among the
multiplicative MTFL methods.

Figure 2 compares the performance of different methods when we vary the number of
tasks in the C1 and C2 categories. On each data set, we used 33% of the data in training
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(a) On C1 data (b) On C2 data

Figure 3: The regression performance of different models on synthetic data C1 and C2 when
the number of features is varied.

with 15 trials, and reported here the average R2 values and standard deviation bars. From
Figure 2, MMTFL(2,1) constantly performed the best among all methods on the C1 data
sets (but not in the single task learning) whereas MMTFL(1,2) outperformed the other
models on the C2 data sets. We also observed that on C2 data, MMTFL(1,1) obtained very
similar performance to that of MMTFL(1,2) after the number of tasks reached 50. On this
data category, almost all methods reached a stable level of accuracy after the number of tasks
reached 50 except DMTL. DMTL continued to gain knowledge from more relevant tasks
until it reached 500 tasks but it produced the lowest R2 values among all methods. Overall,
the results indicate that with the fixed dimension and sample size, when the number of tasks
reaches a certain level, the transferable knowledge learned from the tasks can be saturated
for a specific feature sharing structure. On C1 data, we observe that the performance was
not always monotonically improved or non-degraded (for all methods) when more tasks
were included, which may indicate that when an unnecessarily large number of tasks was
used, it could add more uncertainty to the learning process.

Figure 3 compares the performance of different methods when we vary the number
of features in the C1 and C2 categories. Obviously, when the problem dimension was
higher, the learning problem became more difficult (especially when the number of tasks and
sample size remained the same). All methods dropped their performance substantially with
increasing numbers of features although MMTFL(2,1) and MMTFL(1,2) still outperformed
other methods, respectively, on the C1 and C2 data sets. This figure also shows that
MMTFL(1,1) performed well on the C2 data sets but much worse on the C1 data sets.
DMTL produced good performance, close to that of MMTFL(2,1), on the C1 data sets.

6.2 Experiments with Benchmark Data

Extensive empirical studies were conducted on benchmark data sets where we tested the
proposed multiplicative MTFL algorithms on ten real-world data sets. Among these data
sets, three were for regression experiments and all others were for classification experiments.
Characteristics of these data sets are summarized in the next section.
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6.2.1 Benchmark Datasets

Sarcos (Argyriou et al., 2007): Sarcos data were collected for a robotics problem of learning
the inverse dynamics of a 7 degrees-of-freedom SARCOS anthropomorphic robot arm. Each
observation has 21 features corresponding to 7 joint positions and their velocities and accel-
erations. We needed to map from the 21-dimensional input space to 7 joint torques, which
corresponded to 7 tasks. For each task, we randomly selected 2000 cases for training and the
remaining 5291 cases for test. Readers can consult with http://www.gaussianprocess.org/
gpml/data/ for more details.

CollegeDrinking (Bi et al., 2013): The college drinking data were collected in order
to identify alcohol use patterns of college students and the risk factors associated with
the binge drinking. The data set contained daily responses from 100 college students to
a survey questionnaire measuring various daily measures, such as drinking expectation,
negative affects, and level of stress, every day in a 30 day period. The goal was to predict
the amount of nighttime drinks based on 51 daily measures for each student, corresponding
to 100 regression tasks. Because there were only 30 records for each person, we used 66%,
75% and 80% of the records to form the training set, and the rest for test.

QSAR (Ma et al., 2015): The quantitative structure-activity relationship (QSAR) meth-
ods are commonly used to predict biological activities of chemical compounds in the field
of drug discovery. The data sets we used were collected from three different types of drug
activities, including binding to cannabinoid receptor 1 (CB1), inhibition of dipeptidyl pepti-
dase 4 (DPP4) and time dependent 3A4 inhibitions (TDI). For each activity, there were 200
molecule examples represented by 2618 features. Three regression models were constructed
to simultaneously predict the targets −log(IC50)) of the CB1, DPP4 and TDI effectiveness
based on the molecular features.

C.M.S.C. (Lucas et al., 2013): The Climate Model Simulation Crashes (C.M.S.C.) data
set contained records of simulated crashes encountered during climate model uncertainty
quantification ensembles. The data set comprised 3 tasks. There were 180 examples for
each task. Each example was represented by an 18-dimensional feature vector. Each task is
formed by a binary classification problem, which was to predict simulation outcomes (either
fail or succeed) from the input parameter values for a climate model.

Landmine (Xue et al., 2007): The original Landmine data contained 29 data sets where
sets 1-15 corresponded to the geographical regions that were highly foliated and sets 16-29
corresponded to the regions with bare earth or desert. Each data set could be used to
build a binary classifier. We used the data sets 1-10 and 16-25 to form 20 tasks where
each example was represented by 9 features extracted from radar images. The number of
examples varied between individual tasks ranging from 445 to 690.

Alphadigits (Maurer et al., 2013): This data set was composed of binary 20 × 16 images
of the 10 digits and capital letters. We used all the images of digits to form 10 binary
classification tasks. For each digit, there were 39 images in this data set. We labeled the
images of a single digit as positive examples, and randomly selected other 39 images from
other digits and labeled them as negative examples. All the pixels were concatenated to
form a 320-dimensional feature vector for each image.

Underwatermine (Liu et al., 2009b): This data set was originally used in the underwa-
ter mine classification problem that aimed to detect mines from non-mines based on the
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synthetic-aperture sonar images. The data set consisted of 8 tasks with sample sizes ranging
from 756 to 3562 for each task, and each task was a binary classification problem. Each
example was represented by 13 features.

Animal recognition (Kang et al., 2011): This data set consisted of images from 20
animal classes. Each image was originally represented by 2000 features extracted using
the bag of word descriptors from the Scale-invariant Feature Transform (SIFT), and then
the dimensionality was reduced to 202 by a principal component analysis, retaining 95%
of the data variance. For each animal class, there were 100 images. We formed 20 binary
classification tasks where for each task, 100 positive examples were from a specific animal
class and 100 negative examples were randomly sampled from other classes.

HWMA base and HWMA peak (Qazi et al., 2007; Bi and Wang, 2015): The heart
wall motion abnormality (HWMA) detection data set was used to analyze and predict
if a heart had abnormal motion based on the image features extracted from stress test
echocardiographs of 220 patients. The images were taken at the base dose and also peak
dose of stress contrast. The wall of left ventricle was medically segmented into 16 segments,
and 25 features were extracted from each segment. Every segment of every heart case was
annotated by radiologists in terms of normal or abnormal motions. Thus, there were 16
binary classification tasks, each corresponding to one of the 16 heart segments, and each
task comprised 220 examples.

6.2.2 Performance on real world data sets

Three real-world data sets, the Sarcos, CollegeDrinking and QSAR, were used in regression
experiments. The performance of the different methods is summarized in Table 4 depicting
the R2 values averaged over the 15 re-partitions in each trial. MMTFL(2,1) achieved the
best R2 values on the Sarcos data set (in all of the 3 trials) and the CollegeDrinking
data set (in 2 of the 3 trials). The Sarcos data appeared to be in favor of denser models
given MMTFL(2,2) also performed reasonably well on this data set. MMTFL(1,2) models
achieved the best performance on the QSAR data set consistently across all the 3 trial
settings. On this data set, it was obvious that MMTFL(1,2) was more suitable, which
indicated that most of the 2618 features were useful for some tasks, but the tasks shared
few features between each other. The difference between the proposed models and the
additively decomposed models ranged from 1 % to 10%, and most importantly, the trend
was consistent for the proposed models to outperform on these data sets.

The other seven real-world data sets were used in classification experiments. Table 5
summarizes the results where the F1 scores were averaged across the 15 random splits in each
trial together with standard derivations. MMTFL(2,1) models achieved consistently the
best performance on the C.S.M.C. and Landmine data sets in comparison with other models.
In particular, we observed both MMTFL(1,1) and the MMTFL(2,1) models produced the
best F1 scores in the trial with 33% training split whereas MMTFL(2,1) outperformed all
other models in the trial with other partition ratios. These two data sets may prefer across-
task sparse models, indicating that many irrelevant features may exist in the data. For the
remaining five data sets used in classification experiments, MMTFL(1,2) models showed
generally better performance than all other models. The difference between the best model
and other MMTFL models could reach 4% to 8%.
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Figure 4: The models constructed by MTFL methods for individual digits using the pixels
in hand written digit images. The models can be re-organized back into images.
The pixel in the above images ranges from 0 to 1. The lighter, the closer to 1 for
lucid illustration.

In particular, for the Alphadigits data set, we used the raw pixels of the hand written
digits as the features to build models. Each task aimed to learn a linear model in the original
pixel dimensions to distinguish a digit from other nine digits. Thus, each model, or equiva-
lently the weight vector of the linear model, could be re-shaped back into an image. Figure
4 compares the constructed models for each digit by each of the six MTFL methods. In the
top of Figure 4, we illustrate some sample images. In the middle, we show the results by the
four MMTFL methods whereas at the bottom we include the constructed additively decom-
posed models. Clearly, the additively decomposed models were much noisier and selected
many undesirable features. Among the multiplicative MTFL methods, MMTFL(1,1) mod-
els were too sparse to trace out the digits. Overall, MMTFL(1,2) models were the closest
to the shapes of the different digits. If we compare MMTFL(2,1) and (1,2), MMTFL(2,1)
excluded too many features from all digits. It indicated that most of the pixels were useful
for predicting a digit but not many pixels were shared by multiple digits.
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7. Conclusion

In this paper, we have studied a general framework of multiplicative multitask feature learn-
ing. By decomposing the model parameter of each task into a product of two components:
the across-task feature indicator and task-specific parameters, and applying different regu-
larizers to the two components, we can select features for individual tasks and also search
for the shared features among tasks. We have examined the theoretical properties of this
framework when different regularizers are applied and found that this family of methods
creates models equivalent to those of the joint regularized multitask learning methods but
with a more general form of regularization. Further, we show that this family consists of
some convex and some non-convex formulations and specify the conditions to obtain con-
vexity. An analytical formula is derived for the across-task component as related to the
task-specific component, which sheds light on the different shrinkage effects in the various
regularizers. An efficient algorithm is derived to solve the entire family of methods and also
tested in our experiments for some chosen parameter values. Empirical results on synthetic
data clearly show that there may not be a particular choice of regularizers that is univer-
sally better than other choices. We empirically show a few feature sharing patterns that
are in favor of the two newly-proposed choices of regularizers. The extensive experimental
results on real-world benchmark data sets also confirm the observation and demonstrate
the advantages of the proposed two formulations over several existing methods.
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