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Abstract

A mathematical programming formulation is proposed
to eliminate irrelevant and redundant features for col-
laborative computer aided diagnosis which requires to
detect multiple clinically-related malignant structures
from medical images. A probabilistic interpretation is
described to justify our formulations. The proposed for-
mulation is optimized through an effective alternating
optimization algorithm that is easy to implement and
relatively fast to solve. This collaborative prediction
approach has been implemented and validated on the
automatic detection of solid lung nodules by jointly de-
tecting ground glass opacities.

Introduction
Over the last decade, computer-aided diagnosis (CAD) sys-
tems have moved from the sole realm of academic publica-
tions, to robust commercial systems that are used by physi-
cians in their clinical practice (Roehrig 1999; Buchbinder et
al. 2004). In many CAD applications, the goal is to detect
potentially malignant tumors and lesions in medical images.
It is well recognized that the CAD system decreases detec-
tion and recognition errors as a second reader and reduces
mistakes related to misinterpretation (Armato-III, Giger, &
MacMahon 2001; Naidich, Ko, & Stoechek 2004). How-
ever, most CAD systems focus on the diagnosis of a sin-
gle isolated disease using images taken only for the specific
disease. It neglects certain fundamental aspects of physi-
cians diagnosis procedure where physicians examine pri-
mary symptoms and tests of the disease in conjunction with
other related information, such as symptoms of clinically-
related conditions, patient history of other diseases and med-
ical knowledge of highly correlated diseases.

For instance, lung cancer is the leading cause of cancer-
related death in western countries with a better survival
rate for early diagnosis. An automated CAD system can
be built to identify solid nodules or ground glass opacities
(GGOs). A patient who has solid nodules can also have
GGOs, whereas a patient who has GGOs can later develop
calcified GGOs which become solid or partly-solid nod-
ules. Radiologic classification of small adenocarcinoma of

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: lung CT images: left – Nodule; right – GGO.

lung by means of thoracic thin-section CT discriminates be-
tween the GGOs and solid nodules. The solid nodule is de-
fined as an area of increased opacification more than 5mm
in diameter, which completely obscures underlying vascu-
lar markings. Ground-glass opacity (GGO) is defined as an
area of a slight, homogeneous increase in density, which
does not obscure underlying vascular markings (Suzuki et
al. 2006). Figure 1 shows examples of a solid nodule and a
GGO. The two detection systems are often constructed inde-
pendently. Detecting nodules and detecting GGOs are two
closely dependent tasks whereas each also has its own re-
spective characteristics, which makes joint learning benefi-
cial when building a specific model for each task for better
predictive capacity.

Hence, we introduce a novel concept – “collaborative”
computer aided diagnosis – that aims to improve the diagno-
sis of a single malignant structure by learning the detection
process of multiple related abnormal structures from medi-
cal images simultaneously. It takes advantage of the oppor-
tunity to compare and contrast similar medical conditions in
learning to diagnose patients in terms of disease categories.

The collaborative learning problem is often, in machine
learning areas, cast as multi-task learning, collaborative fil-
tering or collaborative prediction problems, depending on
various applications. Multi-task learning is able to capture
the dependencies among tasks when several ”related” learn-
ing problems are available. The key is how to define task
relatedness among tasks. In (Ando & Zhang 2005) a com-
mon hidden structure for all related tasks is assumed. One
natural way to capture the task relatedness is through hier-



archical Bayesian models(Heskes 2000). From the hierar-
chical Bayesian viewpoint, multi-task learning is essentially
trying to learn a good prior over all tasks to capture task de-
pendencies (Caruana 1997; Evegniou & Pontil 2004).

To tackle a CAD task, researchers often deploy a large
amount of experimental features to describe the potential
cancerous structures or abnormal structures. It consequently
and inevitably introduces irrelevant features or redundant
features to the detection or classification problems. Feature
selection has been an indispensable and challenging problem
in this domain. Moreover, researchers often face a situation
where multiple tasks that are related from the physical and
medical perspectives are given with a very limited sample
size for each. Acquisition of medical data is expensive and
time-consuming. For example, in the nodule and GGO de-
tection tasks, often only around 100 patients are available.
Commonly, the same set of features are evaluated for can-
didates of nodules and GGOs. Dimension reduction is re-
quired for the purpose of alleviating overfitting. Selecting
significant features that are relevant to both tasks or highly
relevant to one of the tasks will certainly be desirable and is
our main goal to achieve in this article.

In this paper, we model the across-task relatedness with a
prior as sharing a common subset of features, and propose
a novel algorithmic framework, based on mathematical pro-
gramming, that eliminates features that are irrelevant or re-
dundant for all tasks, and constructs classifiers for each task
by further selecting features from the common set. Although
the framework is general enough to be employed in any ap-
plications where supervised machine learning problems are
involved, our major application domain lies in the area of
computer aided diagnosis with medical images.

Formulations
The proposed approach is suitable to be combined with al-
most any specific existing classification or regression meth-
ods that deal with a single task. We take two exemplary
methods, one for regression, one for classification, as exam-
ples to illustrate how our approach works. Prior to the thor-
ough description of our formulations, we retrospect briefly
on the two exemplary methods. Ridge regression has been a
successful regression approach while 1-norm SVM has been
widely appraised for dealing with the classification problems
where feature selection is needed.

Assume that we have T tasks in total and we have sample
set {(xt

i, y
t
i), i = 1, · · · , `t} for the t-th task where x ∈ Rn.

To simplify the notation, we use Xt to denote the feature
matrix where the i-th row corresponds to the transpose of xt

i,
and yt to denote the label vector where the i-th component
is yt

i . Notice that y can take integer numbers {−1, 1} for
classification or is continuous for regression.

The Ridge regression method for solving the specific task
t can be stated as follows:

minαi ‖yt −Xtαt‖2 + µ‖αt‖2 (1)

where ‖ · ‖ denotes 2-norm of a vector and µ is the regular-
ization parameter that controls the balance between the error
term (the first one) and the penalty term (the second one).

The 1-norm SVM for solving a single classification task t
is stated as follows:

minαi ‖ξt‖1 + µ‖αt‖1
subject to yt ⊗ (Xtαt) ≥ 1− ξt,

ξt ≥ 0,
(2)

where ⊗ denotes the component-wise multiplication be-
tween two matrices (or vectors).

The feature selection problem can be formulated as an in-
teger programming problem, or in other words, a very diffi-
cult combinatorial optimization problem. Denote a matrix B
as an n × n diagonal matrix with its j-th diagonal element
equal to βj ∈ {0, 1}. We call B an indicator matrix indi-
cating whether or not an according feature is used to build
a model. Then for each task, instead of learning a model
y = x>α, we construct a model y = x>Bα where α is
task-specific while the same B will be used across differ-
ent tasks. If βj = 0, the j-th variable is not used in any
model for all tasks regardless of the value of a specific α.
Otherwise if βj = 1, the j-th variable appears in all models
but an appropriate α vector can rule out this feature for a
particular task. Then XBα = X̃c where X̃ only contains
the selected features and c corresponds to nonzero compo-
nents of Bα. Then the feature selection approach for learn-
ing multiple tasks based on ridge regression is formulated as
the following mixed integer program:

minβ minαt

∑T
t=1(‖yt −XtBαt‖2 + µt‖Bαt‖2)

subject to B = diag(β), ‖β‖0 = m,
βj ∈ {0, 1}, j = 1, · · · , n.

(3)
where ‖ · ‖0 denotes the 0-norm (Weston et al. 2003) which
controls the cardinality of β, (notice the 0-norm is not really
a vector norm). This program attempts to choose m impor-
tant features out of n features for all tasks.

Problem (3) is computationally intractable or expensive
since it requires branch-and-bound procedure to optimize in-
teger variables β. Development of mathematically tractable
formulations is required for practical applications. We re-
lax the constraints on integer variables β to allow them to
take real numbers. Then these β variables correspond to cer-
tain scaling factors determining how significantly the corre-
sponding features contribute to the target y. We then enforce
the sparsity of β. Sparsity can be enforced by restricting the
cardinality of β to exactly m as in (3), or by employing the
1-norm regularization condition on β, which is less stringent
than the 0-norm penalty. To derive computationally efficient
and scalable formulations, we relax the problem to impose a
constraint on the 1-norm of β. Then the relaxation of prob-
lem (3) becomes

minβ minαt

∑T
t=1(‖yt −XtBαt‖2 + µt‖Bαt‖2)

subject to B = diag(β), ‖β‖1 ≤ δ,
βj ≥ 0, j = 1, · · · , n.

(4)
where µt and δ are parameters to be tuned and pre-specified
before solving problem (4).

Adding matrix B to the 1-norm SVM (2) and applying
the above relaxation yield a multi-task feature selection ap-



proach for classification which is formulated as follows:

minβ minαi

∑T
t=1(‖ξt‖1 + µt‖Bαt‖1)

subject to yt ⊗ (XtBαt) ≥ 1− ξt,
ξt ≥ 0, t = 1, · · · , T,
B = diag(β), ‖β‖1 ≤ δ,
βj ≥ 0, j = 1, · · · , n.

(5)

Formulations (4) and (5) are non-convex and involve 4th or-
der polynomials in the objective (4) or quadratic forms in
constraints (5). We develop efficient algorithms for solving
these formulations in later sections.

Probabilistic Interpretation
We derive a probabilistic interpretation using multi-task
ridge regression as an example. Note that the probabilis-
tic interpretation could be easily generalized to other loss
functions. Consider the following generative framework:

yt = XtBαt + εt

εt ∼ Norm(0, σtI)

p(βi) ∼ ρβi(1− ρ)1−βi

p(αt|B) = P (Bαt) ∼ Norm(0, σ̂I)
B = diag(β) and βi ∈ {0, 1}

where we use Bernoulli distribution with parameter ρ for
each βi, i = 1, . . . , d. The value of ρ will affect the like-
lihood of including a given feature. For example, setting
ρ = 1 will preserve all features and smaller ρ values will
result in the use of fewer features. The conditional probabil-
ity p(αt|B) basically tells that if the feature i is selected, the
corresponding αti for all tasks follows a zero mean Normal
distribution; otherwise it follows a noninformative distribu-
tion. Furthermore, the noises are assumed independent of
each other between different tasks and also the following in-
dependency conditions hold:

p(β) = Πd
i=1p(βi)

p(α1, . . . , αT |B) = ΠT
i=1p(αi|B).

Then, the posterior conditional distribution of model pa-
rameters (α1, . . . , αT , β) satisfies, in the log form,

log P (α1, . . . , αT , β|X1, y1, . . . , XT , yT )

=
T∑

t=1

(‖yt −XtBαt‖2 + µt‖Bαt‖2) + λ

d∑

i=1

βi + C.

where µt = σ2
t /σ̂2, λ = log(ρ/(1 − ρ))

∑
σ2

t and C is the
normalization constant, and can be ignored.

The above derivation requires βi ∈ {0, 1}. By relaxing
the integer constraint with a nonnegative constraint βi ≥ 0,
maximizing the above posterior distribution of model pa-
rameters will give us an equivalent formulation of (4).

Algorithms
The residual term in the objective of problem (4) is bilinear
with respect to β and αt. The 2-norm of the residual intro-
duces to the optimization problem high order polynomials

and thus the problem is still arduous to solve. We propose
an alternating optimization approach (Bezdek & Hathaway
2003) to solving formulation (4) by repeating steps depicted
in Algorithm 1, which is similar, in spirit, to the principle
of Expectation-Maximization (EM) algorithms. Moreover,
note that ‖β‖1 =

∑
βj due to the nonnegativity of βj .

Algorithm 1
• Fix B to the current solution (initially to the identity ma-

trix I), convert X̃t ← XtB, solve the following problem
for optimal αt,

minαt

∑T
t=1(‖yi − X̃tαt‖2 + µt‖Bαt‖2) (6)

• Fix αt to the solution obtained at the above step, convert
X̂t ← Xt · diag(αt), solve the following problem for
optimal β̂,

minβ≥0

∑T
t=1(‖yi − X̂tβ‖2 + µt‖β ⊗αt‖2)

subject to ‖β‖1 ≤ δ.
(7)

The algorithm can also take a greedy scheme to perform
B ← B ⊗ diag(β̂) after the second step. It assures that
features receiving small scaling factors in early iteration will
continue receiving small weights. This greedy step speeds
up the convergence process but makes the algorithm very
likely terminate at sub-optimal solutions.

The first step of Algorithm 1 solves a simple ridge regres-
sion problem. Note that the problem (6) can be de-coupled
to minimize (‖yi−X̃tαt‖2+µt‖Bαt‖2 for each individual
αt of task t. Thus, the problem (6) actually has a closed-
form solution, which is to solve B

(
XT

t Xt + µtI
)
Bαt =

BXtyt where B is a diagonal matrix with some diago-
nal components possibly equal to 0. So the solution is

α̂i = B†
(
XT

t Xt + µtI
)−1

Xtyt where B† denotes the
pseudo-inverse of B, a diagonal matrix whose non-zero di-
agonal elements equal the inverse of nonzero diagonal com-
ponents of B. An advantage of this algorithm is that the ma-

trix inversion
(
XT

t Xt + µtI
)−1

only needs to be calculated
in the first iteration and can then be reused in later iterations,
thus gaining computational efficiency.

The second step of Algorithm 1 solves a quadratic pro-
gramming problem. Denote Λt = diag(αt). The problem
(7) can be rewritten in the following canonical form of a
quadratic program:

minβ≥0 β>
∑T

t=1

(
Λt(X>

t Xt + µtI)Λt

)
β

− 2
(∑T

t=1 y>t XtΛt

)
β

subject to eT β ≤ δ.

(8)

Problem (8) is a simple quadratic program where e is the
vector of ones of proper dimension, but a quadratic problem
is less scalable than a linear program from the optimization
perspective.



The proposed multi-task feature selection approach seeks
a subset of m (or few) features of X so that the best ridge
regression models for each of the tasks can be attained us-
ing the selected features. The standard formulation (1) mini-
mizes the quadratic loss and is subject to capacity control de-
termined by the 2-norm penalty. Many recent studies (Zhu
et al. 2004; Bi et al. 2003) have shown that the 1-norm
regularization together with the absolute deviation loss is
equally suitable to learning regression or classification mod-
els, and often produces sparse solutions for better approxi-
mation. Our algorithms can easily generalize to other loss
functions and various regularization penalties.

Following the derivation of Algorithm 1 for multi-task
ridge regression, we design an alternating algorithm for the
multi-task 1-norm SVM (5) in Algorithm 2.

Algorithm 2

• Fix B to the current solution, convert X̃t ← XtB, solve
the following problem for optimal αt,

minαt,ξt,vt

∑T
t=1

(
e>ξt + µtβ

>vt

)

subject to yt ⊗ (X̃tαt) ≥ 1− ξt,
ξt ≥ 0, t = 1, · · · , T,

−vt ≤ αt ≤ vt, t = 1, · · · , T.

(9)

• Fix αt to the solution obtained at the above step, convert
X̂t ← Xt · diag(αt), solve the following problem for
optimal β̂,

minβ≥0

∑T
t=1 e>ξt + (

∑T
t=1 µtαt)>β

subject to yt ⊗ (X̂tβ) ≥ 1− ξt,
ξt ≥ 0, t = 1, · · · , T,

e>β ≤ δ.

(10)

Note that both problems (9) and (10) are linear programs,
and can be solved efficiently. Further, problem (9) can be de-
coupled as well to optimize each individual αt separately by
minimizing e>ξt+µtβ

>vt with constraints yt⊗(X̃tαt) ≥
1 − ξt, ξt ≥ 0, −vt ≤ αt ≥ vt. These T subproblems are
small and thus the overall algorithm is scalable.

Experiments
We validate the proposed approach on classification tasks by
comparing it to standard approaches where tasks are solved
independently using the 1-norm SVM, and comparing it to
the pooling method where a single model is constructed
using available data from all tasks. These methods repre-
sent two extreme cases: the former one treats multiple tasks
completely independently assuming no relatedness; the lat-
ter one treats all tasks identically. Our results clearly show
that the multi-task learning approach as proposed is supe-
rior to these extreme cases. We also implemented another
multi-task learning approach (Evegniou & Pontil 2004) that
is derived based on the regularization principle and we com-
pared it to the proposed approach in terms of performance.

Synthetic data
We generated synthetic data to verify the behavior of the
proposed algorithms regarding the selected features and the
accuracy in comparison with single-task 1-norm SVM. The
synthetic data was generated as follows.

Synthetic Data Generation
1. Set number of features d = 10, number of tasks T = 3.

2. Generate x ∈ R10 with each component xi ∼
Uniform[−1, 1], i = 1, . . . , 10.

3. The coefficient vectors of three tasks are specified as:

β1 = [1, 1, 0, 0, 0, 0, 0, 0, 0, 0]
β2 = [1, 1, 1, 0, 0, 0, 0, 0, 0, 0]
β3 = [0, 1, 1, 1, 0, 0, 0, 0, 0, 0]

4. For each task and each data vector, y = sign(β>x).

For each task, we generated training sets of sizes from 20
to 90, each used in a different trial, 150 samples for valida-
tion and 1000 samples for testing, and repeated each trial 20
times. In figure 2, we show a bar plot of the averaged esti-
mated coefficient vectors by our approach and the single-
task 1-norm SVM. Clearly, our approach successfully re-
moved all irrelevant features. Since linear classifiers were
used, re-scaling the classifier by a constant did not have ef-
fect on predictions. Each coefficient vector was normalized
by its norm, then averaged over all runs in all trials, and
shown on figure 2. Although single-task learning also pro-
duced reasonable classifiers for each task, it could not re-
move all irrelevant features using data available for each in-
dividual task in every trial.

Figure 2(right) shows the prediction results. For lucid pre-
sentation, we have averaged the classification errors of the
three tasks over 20 runs and drawn them in figure 2 with er-
ror bars proportional to error standard deviation. It shows
that our approach outperforms the single-task approach and
as expected, the difference of the two approaches becomes
smaller as the sample size of each task becomes larger.

Lung CAD data
The standard paradigm for computer aided diagnosis of
medical images follows a sequence of three stages: identifi-
cation of potentially unhealthy candidate regions of interest
(ROI) from the image volume, computation of descriptive
features for each candidate, and classification of each candi-
date (eg normal or diseased) based on its features.

Data preparation A prototype version of our lung CAD
system (not commercially available) was applied on a pro-
prietary de-identified patient data set. The nodule dataset
consisted of 176 high-resolution CT images (collected from
multiple sites) that were randomly partitioned into two
groups : a training set of 90 volumes and a test set of 86 vol-
umes. The GGO dataset consisted of 60 CT images. Since
there were only a limited number of GGO cases, they were
not partitioned beforehand to have a test set. The original
goal was to use the additional GGO cases to improve the
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Figure 2: Performance on synthetic data, left: coefficient vectors by our approach; middle: coefficient vectors by single-task
1-norm SVM; right: accuracy comparison with various training sizes.

Nodule train Nodule test GGO
# patients 90 86 60
# cand. 11056 13985 10265
# cancer 81 48 53

# positives 131 81 87
# FP/vol 121 161 169
# feature 86 86 86

Table 1: Specifications of lung CAD data sets.

nodule detection performance. In total, 129 nodules and 53
GGOs were identified and labeled by radiologists. Among
the marked nodules, 81 appeared in the training set and 48
in the test set. The training set was then used to optimize the
classification parameters, and construct the final classifier
which was tested on the independent test set of 86 volumes.

The candidate identification algorithm was independently
applied to the training, test nodule sets and the GGO set,
achieving 98.8% detection rate on the training set at 121
FPs per volume, 93.6% detection rate on the test set at 161
FPs per volume and 90.6% detection rate on the GGO set
at 169 FPs per volume, resulting in totally 11056, 13985
and 10265 candidates in the respective nodule training, nod-
ule test and GGO sets. There can exist multiple candidates
pointing to one nodule or one GGO, so 131, 81 and 87 can-
didates were labeled as positive in the training set, test set
and GGO set, respectively. A total of 86 numerical image
features were designed to depict both nodules and GGOs.
The feature set contained some low-level image features,
such as size, shape, intensity, template matching features,
and some high-level features, such as multi-scale statisti-
cal features depicting sophisticated higher-order properties
of nodules and GGOs. The specifications of all the related
data sets are summarized in Table for clarity.
Experimental setting and performance The first set of
experiments were conducted as follows. We randomly sam-
pled 50% (45 volumes) of the nodule patient data from the
training set, 50% (30 volumes) of the GGO patient data.
These samples were used in the training phase. Notice that
the random sampling can only take place at the patient level

rather than the candidate level since otherwise information
from a single patient may appear in both training and test
sets, making the testing not independent. The nodule clas-
sifiers obtained by our approach and three other approaches
were tested on the unseen test set of 86 patient cases.

We compared Algorithm 2 to the single task 1-norm
SVM, the pooling method with 1-norm SVM, and the reg-
ularized MTL (Evegniou & Pontil 2004). In the first trial,
we tuned the model parameters such as µ1, µ2, δ in Algo-
rithm 2 and the regularized parameters in (Evegniou & Pon-
til 2004) according to a 3-fold cross validation performance,
and µ1 = 0.2 for GGOs, µ2 = 1 for nodules were the best
choice for single task learning. Then we fixed them for other
trials, and used the same µs in the proposed multi-task learn-
ing formulation (5) for a fair comparison since the multi-task
learning had the same parameter settings as a start, and then
tuned δ (=10) to improve performance. Note that the pro-
posed Algorithm 2 may produce better performance if we
tuned µ according to its own cross validation performance.

Figure 3(left) shows ROC curves averaged over the 15 tri-
als together with test error bars as the standard deviation of
detection rates of the 15 trials. Clearly, Algorithm 2 gener-
ates a curve that dominates the ROC curves corresponding to
other approaches. It also had a relatively small model vari-
ance by referencing the error bars. The classifier test error
variance of the regularized MTL varied significantly with
variations of samples as shown in Figure 3.

We also report the performance comparisons with area-
under-the-ROC-curve (AUC) measure since AUC is inde-
pendent of the selected decision criterion and prior probabil-
ities. We randomly sampled p% of training nodule set and
the GGO set where p = 10, 25, 50, 75, 100. Obviously,
when more and more data for a specific task is available,
the resulting model achieves better performance, and accu-
rate models can be learned with less help from other related
tasks. We averaged the AUC numbers over 15 trials for each
sample size choice p. Figure 3(right) illustrates the averaged
AUC values and associated error bars. Our method presents
relatively small model variance in comparison with the reg-
ularized MTL as shown in the error bars.

A recent paper (Argyriou, Evgeniou, & Pontil 2007) pro-
poses a method to learn sparse feature representation from
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Figure 3: Left: ROC plot on 50% of nodule and GGO training patient volumes; right: the AUC plot versus sample size.

multiple tasks. It does not directly enforce sparsity on orig-
inal feature set if orthonormal transformation is applied to
features since the orthonormal matrix U is not in general
sparse. We implemented this method using U = I for com-
parison. Our method provides more sparse solutions Bαt.

Conclusions
We have discussed the challenges of collaborative com-
puter aided diagnosis which motivated the investigation
of a mathematical-programming based multi-task learning
framework. By applying an indicator vector β to the feature
sets across different tasks and regularizing on the 1-norm of
β, similar feature patterns across different tasks are encour-
aged and features that are irrelevant to any of the tasks are
eliminated. Efficient algorithms have been devised to solve
our formulations. Experimental results on detecting solid
nodules from CT images show that the proposed approach
outperforms the regularized multi-task learning approach
and traditional single-task-learning and pooling methods.
Due to limited available medical data, more extensive eval-
uation of our system on three or more related CAD tasks
remains for further research.
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