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Abstract

We propose a tensor-based approach to analyze multi-
dimensional data describing sample subjects. It simultane-
ously discovers patterns in features and reveals past tempo-
ral points that have impact on current outcomes. The model
coefficient, a k-mode tensor, is decomposed into a summa-
tion of k tensors of the same dimension. To accomplish fea-
ture selection, we introduce the tensor ‘latent LF,1 norm’ as
a grouped penalty in our formulation. Furthermore, the pro-
posed model takes into account within-subject correlations by
developing a tensor-based quadratic inference function. We
provide an asymptotic analysis of our model when the sample
size approaches to infinity. To solve the corresponding opti-
mization problem, we develop a linearized block coordinate
descent algorithm and prove its convergence for a fixed sam-
ple size. Computational results on synthetic datasets and real-
file fMRI and EEG problems demonstrate the superior perfor-
mance of the proposed approach over existing techniques.

Introduction

In this paper we introduce a tensor-based quadratic infer-
ence function (TensorQIF) machine learning model that can
be used to analyze longitudinal data and select features ef-
ficiently. Longitudinal data consists of repeated sample ob-
servations during a given time period. They appear in a va-
riety of areas, from finance (Arnold, Liu, and Abe 2007;
Sela and Simonoff 2012) to scientific research (Arnold, Liu,
and Abe 2007; Lozano et al. 2009; Wang, Zhou, and Qu
2012), health-care and medicine (Bi et al. 2013; Fowler and
Christakis 2008; Stappenbeck and Fromme 2010).

One notable feature of longitudinal data is repeated-
measurement within each subject. Thus observed responses
are generally dependent and longitudinal correlation among
different outcomes must be considered to obtain correct pre-
dictions. There are several extended generalized linear mod-
els that can be applied to time-dependent data under differ-
ent assumptions. Diggle et al. have provided a comprehen-
sive overview of various models. For fitting marginal model,
generalized estimating equation - GEE (Liang and Zeger
1986) and quadratic inference function - QIF (Qu and Li
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2006) are common statistical approaches. They are generally
more accurate than those of classic regression analysis that
assumes independently and identically distributed (i.i.d.).

In GEE model, the correlation structure of outcomes is
presumed and the so-called ‘working’ correlation matrix, R,
is specified. However, in practice, the true correlation is of-
ten unknown. The GEE model with misspecified working
correlation matrix will no longer result optimal estimation of
coefficients (Crowder 1995). In addition, the inverse of the
matrix R is essential that may cause poor estimation when
R has high dimension (Qu and Lindsay 2003). To overcome
these disadvantages, Qu, Lindsay, and Li suggest the QIF
model for which R−1 is approximated by a linear combina-
tion of several basis matrices. This method ensures that the
estimator always exists and does not require any estimation
for nuisance parameters associated with correlations. On the
feature selection criteria, penalized GEE (Fu 2003) and pe-
nalized QIF (Bai, Fung, and Zhu 2009) are proposed.

In this work, we study the lagged effect of covariates on
outcomes. In many studies, it is necessary and insightful
to model simultaneously the correlation among outcomes
and the lagged effects of covariates, which is the so-called
Granger causality (Granger 1980). For example, Shen et al.
point out evidences of brain diseases may appear in the func-
tional magnetic resonance imaging (fMRI) of an early diag-
nosis before clear symptoms are identified. Recent graph-
ical Granger models such as (Arnold, Liu, and Abe 2007;
Lozano et al. 2009) ignore the temporal correlations. Xu,
Sun, and Bi have modeled such correlation through the GEE
method. But their model only applies to datasets with one
spatial dimension. Our goal is to develop a new penalized
QIF method in tensor setting to model the temporal predic-
tion. Nowadays, tensor regressions have shown to be power-
ful in learning complex feature structures from multidimen-
sional data. Many tensor techniques have been developed
and applied to a broad range of applications (Hoff 2015;
Zhou, Li, and Zhu 2013). However when focusing on fea-
ture selections (e.g., sparse tensor decomposition), most of
existing methods either assume i.i.d. samples, or assume cor-
related samples but do not model temporal additive effects.

We propose a new learning formulation that constructs
tensor-based predictive model as a function of covariates,
not only from the current observation but also from multi-
ple previous consecutive observations. Simultaneously the
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Figure 1: Case for K = 3: a 3-way tensor is decomposed
into a summation of three 3-way tensors so that each com-
ponent tensor is sparse along a particular direction.

model determines the temporal contingency and the most
influential features along each dimension of the tensor data.
Given a data sample is characterized by a tensor, the co-
efficients in our additive model also form a K-way ten-
sor. To select features, we decompose the K-way coeffi-
cient tensor into a summation of K sparse K-way tensors
as shown in Figure 1. These tensors each present sparsity
along one direction and impose different block-wise least
absolute shrinkage and selection operators (LASSO) to the
components. We use linearized block coordinate descent
algorithm via a proximal map (Beck and Teboulle 2009;
Xu and Yin 2017) to efficiently solve the optimization prob-
lem. This approach then leads to K sub-problems that share
the same structure. We validate the effectiveness of the pro-
posed method in simulations and in the analysis of real-life
fMRI and EEG datasets.

The rest of this paper is organized as follows. We first
briefly review the GEE and QIFs methods, and then intro-
duce our proposed formulation: TensorQIF in the Method
section, followed by an Asymptotic Analysis section. An op-
timization algorithm for solving the formulation is depicted
in the Algorithm section where we also prove convergence
and the recovery of feature support. Experimental results are
included and discussed in the Empirical Evaluation section,
followed by a Conclusion section.

Method

Notations

We represent a K-way tensor as A ∈ R
d1×d2×...dK which

contains N =
∏K

k=1 dk elements. The inner product of two
tensors A and B is given by 〈A,B〉 = vect(A)�vect(B).
Here vect(·) denotes the column-major vectorization of a
tensor. The Frobenius norm of a tensor A is defined by
~A~F =

√〈A,A〉. The j-th sub-tensor of a tensor A along
the mode-k can be obtained by fixing the k-th index as j,
i.e. A(j)

(k) = A(i1, i2, ..., ik ≡ j, ik+1, ...iK). Note that A(j)
(k)

is a (K − 1)-way tensor. The mode-k fiber of A is a dk
dimensional vector which is obtained by fixing all index

of A except the k-th one. The mode-k unfolding of A is
a matrix A(k) ∈ R

dk×N/dk formed by concatenating all
the N/dk mode-k fibers along its columns. The operator
[A1,A2, ...,Am] creates a (K + 1)-way tensor by concate-
nating m numbers of K-way tensors A1,A2, ...,Am of the
same dimension.

Generalized Linear Models of a Tensor

Because our model is concerned with tensor regression and
classification, we first introduce a basic tensor formulation in
which the objective function is written down into two parts:
a loss function l and a regularizer. Let (Xi, yi)1≤i≤m be a
data set, where Xi ∈ R

d1×d2×...×dK is a covariate tensor
and yi ∈ R (resp. {±1}) for regression (resp. classification)
is the corresponding outcome. We consider a linear model
below:

min
W

m∑
i=1

l(yi, 〈Xi,W〉) + λ~W~(·), (1)

where λ ≥ 0 is the regularization parameter, and ~ · ~(·)
is a certain tensor norm. Elements in the tensor W are the
model coefficients to be fitted. In the study of low-rank
tensor decompositions, overlapped/latent tensor trace norm
(Wimalawarne, Tomioka, and Sugiyama 2016) or Schatten
norm (Tomioka and Suzuki 2013) are widely applied in (1).
Although these latent tensor norms facilitate the search for
a low-rank tensor solution, they cannot enforce sparsity and
thus unable to select the most relevant ones among features.

In this paper, we focus on sparsity and feature selection by
imposing a regularization condition that forces to zero out
an entire slice of the coefficient tensor. In other words, our
model selects nonzero slices in each direction of the tensor
W . We hence introduce the latent LF,1 norm defined by

~W~l-LF,1
:= inf∑K

k=1Wk=W
∑K

k=1

(
λk

∑dk

j=1 ~(Wk)
(j)
(k)~F

)
(2)

where λks’ are nonnegative constants. One can easily verify
that Eq.(2) satisfies all required norm properties.

There are various of settings for the loss function l de-
pending on the specific learning tasks. When the dataset is
assumed to be i.i.d, the squared loss

l(yi, 〈Xi,W〉) = (yi − 〈Xi,W〉)2;
for regression or the logistic loss

l(yi, 〈Xi,W〉) = log(1 + exp(−yi〈Xi,W〉)).
for classification are two simple models usually applied. A
more general family - generalized linear model (GLM) - has
been used according to an exponential distribution assump-
tion on the dependent variable. This family includes both the
squared loss and logistic loss. To deal with correlated sam-
ples, GLM has been further extended from point estimation
to variance estimation, which leads to more complicated for-
mula, such as GEE or QIF. Between these two, QIF is more
effective as discussed early on. In this paper, we will use
the QIF setting to analyze additive effects in longitudinal
datasets. The complete formula of l in our model will be
given in the next section.
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The Proposed QIF Formulation

Let X (i)
t ∈ R

d1×d2×...×dK−1 be a (K − 1)-way tensor
which represents the covariate tensor measured for the sub-
ject i at time t. We denote y

(i)
t the outcome of the sub-

ject i at time t. We assume that y(i)t depends not only on
the current record X (i)

t but also on the previous τ records:
X (i)

t−1,X (i)
t−2, ...,X (i)

t−τ . Hence we may view a sample at a par-
ticular time t as a pair (X(i;t), y

(i)
t ), where X(i;t) is a K-way

tensor concatenating all considered records:

X(i;t) := [X (i)
t ,X (i)

t−1,X (i)
t−2, ...,X (i)

t−τ ].

Suppose there are T total times of measurement for each
subject i. In order to have enough previouse observations,
the index t of X(i;t) should start from τ+1 and there are n :=
T − τ training examples for each subject. In the graphical
Granger model, the relation between X(i;t) and y

(i)
t is given

by
y
(i)
t = 〈X(i;t),W〉 (3)

for some tensor coefficient W ∈ R
d1×d2×...×dK−1×dK ,

where dK = τ . We denote N :=
∏K

k=1 dk the number of el-
ements in W . However, training examples in (3) are assumed
to be i.i.d., which does not fit the intrinsic property of our
dataset. In our case, the consecutive examples share over-
lapping records (e.g. X(i;t) and X(i;t+1) share τ − 1 records:
X (i)

t ,X (i)
t−1, ...,X (i)

t−τ+1) and outcomes y
(i)
t , y(i−1)

t are cor-
related. Hence in this paper, we adapt QIF model which to-
gether with GEE are members of GLM.

There are two essential ingredients in GLM: a link func-
tion and a variance function. The link function describes the
relation between a linear predictor η and the mean (expec-
tation) of an outcome y. The variance function tells how the
variance of an outcome y depends on its mean. In our for-
mulation, these can be expressed by

μ
(i)
t := E[y

(i)
t ] = h−1(η

(i)
t ), var(y(i)t ) = V (μ

(i)
t ), (4)

where h is a link function determined according to a pre-
sumed distribution on yt from the exponential family, V is a
variance function, and

η
(i)
t = 〈X(i;t),W〉 (5)

is the linear predictor. Let y(i) := (y
(i)
τ+1, ..., y

(i)
τ+n)

T be an
n-dimensional column vector. In GEE models, the covari-
ance matrix Σ(i) for y(i) is modeled by

Σ(i) :=
(
A(i)

)1/2

R(α)
(
A(i)

)1/2

. (6)

Here R(α) is the ‘working’ correlation matrix, and A(i) is
an n×n diagonal matrix with V (μ

(i)
τ+j) as the j-th diagonal

element. The matrix Σ(i) will be equal to cov(y(i)) if R(α)
is the true correlation structure for y(i) (Liang and Zeger
1986). The model coefficients are then obtained by solving
the score equation from the quasi-likelihood analysis. In our
setting, it turns out to be∑m

i=1

(
D(i)

)T (
A(i)

)−1/2
R−1(α)

(
A(i)

)−1/2
s(i) = 0. (7)

Here s(i) = y(i) − μ(i)), and μ(i) = (μ
(i)
τ+1, ..., μ

(i)
τ+n)

�
which depends on W (see (4) and (5)). The n × N matrix
D(i) is given by D(i) = ∂μ(i)/∂w where w = vect(W)
and

(
D(i)

)
ab

= ∂(μ(i))a/∂(w)b.
In a more advanced QIF method, the working correlation

no longer needs to be pre-specified as in GEE, which can be
very inaccurate. Rather, it directly models R−1(α) as

R−1(α) =

d∑
j=1

ajMj (8)

where Mj’s are known n×n matrices characterizing various
basic correlation structures and aj’s are unknown parame-
ters. For example, an AR-1 correlation can be expressed as
R−1(α) = a1M1 + a2M2, where M1 is an identity, and
M2 satisfies (M2)i,j = 1 if |i − j| = 1, (M2)i,j = 0 if
|i − j| �= 1. Instead of solving aj’s associated with (7), we
formulate our optimization problem via the so-called ‘ex-
tended score’ by substituting (8) for R−1(α) in (7):

gm(W) :=
1

m

m∑
i=1

g(i)(W) (9)

:=
1

m

m∑
i=1

⎛
⎜⎜⎜⎝

(
D(i)

)� (
A(i)

)−1/2
M1

(
A(i)

)−1/2
s(i)

...(
D(i)

)� (
A(i)

)−1/2
Md

(
A(i)

)−1/2
s(i)

⎞
⎟⎟⎟⎠

We may view each g(i)(W) as a random vector g(X , s,W)
evaluated at the data {s(i),X(i) = (X(i;τ+1), ...,X(i;τ+n))}.

The vector gm(W) in (9) is an (N · d)-dimensional col-
umn vector. In fact, substituting (8) into (7) yields a linear
combination of the row blocks of gm(W). Since gm(W)
has a larger dimension than W , we cannot estimate W by
simply solving gm(W) = 0. Adapting the idea of (Qu and
Li 2006) and (Qu, Lindsay, and Li 2000), we obtain W by
minimizing the weighted length of gm(W):

min
W

Qm(W) := mgm(W)�C−1
m (W)gm(W), (10)

where

Cm(W) =
1

m

m∑
i=1

g(i)(W)g(i)(W)� (11)

which estimates the covariance matrix of gm. The use of Cm

leads to an efficient model (Hansen 1982) because the cal-
culation of Cm, a direct estimate of the covariance, allows
us to omit the step of estimating aj’s.

In our tensorQIF model, the loss function l(W) =
Qm(W) and the regularization term is given by (2). More
precisely, we solve the following optimization problem:

min
W1,W2,...,WK

Qm(W)+
K∑

k=1

⎛
⎝λk

dk∑
j=1

~(Wk)
(j)
(k)~F

⎞
⎠ (12)

where each Wk ∈ R
d1×d2×...×dK and the final coefficient

tensor

W =
K∑

k=1

Wk. (13)
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Asymptotic Analysis

In this section we establish the asymptotic normality for our
TensorQIF model as m approaches to infinity. Below the
convergence notations A

p→ B represents ‘A converges to
B in probability,’ i.e. P (|A − B| > ε) → 0 for any ε >

0; F d→ G denotes ‘F converges to G in distribution, i.e.
the distribution function of F converges to the distribution
function of G.’ We first rescale the objective function in (12):

Q̃m(W) +

K∑
k=1

⎛
⎝λk

m

dk∑
j=1

~(Wk)
(j)
(k)~F

⎞
⎠ . (14)

where Q̃m = g�mC−1
m gm. We require the following regular-

ity conditions on the random vector g:

1. There exists a unique W∗ that satisfies the mean zero
model assumption, i.e. E[g(W∗)] = 0.

2. The data {X(i), s
(i)}′s are i.i.d. and the parameter space

Ω := Ω1 × Ω2 × ...× ΩK is compact.

3. W∗ has a unique decomposition W∗ =
∑K

k=1 W∗
k such

that for each k, W∗
k is an interior point of Ωk.

4. Let w = vect(W). For all W ∈ Ω, ‖g(W)g(W)�‖F ≤
d1(X , s), ~∇wg(W)~F ≤ d2(X , s) for some d1, d2 such
that E[d1(X , s)] and E[d2(X , s)] are finite.

Under these regularity conditions, we have

Theorem 1. Let λk’s be fixed constants and let∑K
k=1 Ŵk;m := Ŵm be the estimator obtained by minimiz-

ing (14) subject to (13). Then as m → ∞, we have

Ŵm
p→ W∗, (15)

√
m · vect

(
Ŵm −W∗

)
d→ N (0, (J�0 C

−1
0 J0)

−1). (16)

where C0 = C∗(W∗) and J0 = J∗(W∗).

The proof of the theorem is based on a uniform conver-
gence result for stochastic functions (Newey and McFadden
1994). A complete proof is given in the supplemental mate-
rial.

Algorithm

In this section, we provide an algorithm to solve the op-
timization problem (12) followed by a convergence result.
Since the sample size m is fixed throughout this section, we
drop the subscript m in (12) and write Qm as Q. We first
give notations that will be used in our algorithm.

• Φ = (W1, . . . ,WK); W(Φ) =
∑K

k=1 Wk.

• F (Φ) = Q(W(Φ)) +R(Φ).

• Φ(r) = (W(r)
1 , . . . ,W(r)

K ); W(r) = W(Φ(r)).

Optimization Algorithm

We develop a linearized block coordinate descent algorithm
in the following iterative procedure to find optimal Φ̂ in (12).

Denote the iterates at the r-th iteration by Φ(r). At the point
Φ = (W1, · · · ,WK), let

R(Φ) :=
K∑

k=1

⎛
⎝λk

dk∑
j=1

~(Wk)
(j)
(k)~F

⎞
⎠ . (17)

Assume ∇WQ(W) is Lipschitz continuous with Lipschitz
modulus LQ. The following PL(Φ, Φ̃) is a linearized proxi-
mal map for the non-smooth regularizer R:

PL(Φ, Φ̃) :=Q(W̃) +R(Φ) +
KL

2

K∑
k=1

~Wk − W̃k~2
F

+ 〈
K∑

k=1

(
Wk − W̃k

)
,∇WQ(W̃)〉 (18)

where L ≥ LQ is a fixed constant. Note that

L

2
~W − W̃~2

F ≤ KL

2

K∑
k=1

~Wk − W̃k~2
F . (19)

The inequality (19) and the Lipschitz continuity of Q(W)
indicate that for all L ≥ LQ,

F (Φ) ≤ PL(Φ, Φ̃) for all Φ and Φ̃. (20)

At the r-th iteration, we update Φ(r+1) by solving the fol-
lowing optimization problem

minΦ
∑K

k=1

[
〈∇WQ(r),Wk −W(r)

k 〉+ KL
2 ~Wk −W(r)

k ~2
F

]
+R(Φ)

(21)

where ∇WQ(r) = ∇WQ(W(r)). Since R(Φ) given in (17)
is separable among Wk’s, we can decompose the problem
(21) into the following K separate subproblems:

min
Wk

{
〈∇WQ(r),Wk −W(r)

k 〉+ KL

2
~Wk −W(r)

k ~2
F

+λk

dk∑
j=1

~(Wk)
(j)
(k)~F

⎫⎬
⎭ , k ∈ {1, . . . ,K}. (22)

Since the subproblems share the same structure, we may fix
k and solve (22) to find the best Wk, which is equivalent to

min
Wk

1

2

�
�
�
�
Wk −

(
W(r)

k − 1

KL
∇WQ(r)

)�
�
�
�

2

F

+
λk

KL

dk∑
j=1

~(Wk)
(j)
(k)~F . (23)

The problem (23) has a closed-form solution W(r+1)
k where

each of its sub-tensor is

(W(r+1)
k )

(j)
(k) = max

(
0, 1− λk

KL~(P(r))
(j)

(k)
~F

)
(P(r))

(j)
(k), (24)

and P(r) := W(r)
k − 1

KL∇WQ(r). In fact, from optimality
conditions, W(r+1)

k satisfies

∇WQ(r) +KL
(
W(r+1)

k −W(r)
k

)
+ λkAk(W(r)

k ) = 0 (25)
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Algorithm 1 Search for optimal Φ̂
Input: X , y, L, λk

Output: Φ̂ = (Ŵ1, · · · , ŴK)

1. r = 0: compute L̃ and initialize W(0)
k for 1 ≤ k ≤ K.

2. Obtain Φ(r+1) = (W(r+1)
1 , · · · ,W(r+1)

K ) by solving
(23) for each fixed 1 ≤ k ≤ K.
3. r = r + 1.
Repeat 2 and 3 until convergence.

for all r ≥ 1 and 1 ≤ k ≤ K. Here Ak(W) is a subgradient

of
dk∑
j=1

~(W)
(j)
(k)~F . The calculation of the Lipschitz modu-

lus LQ can be computationally expensive. We therefore fol-
low a similar argument in (Xu, Sun, and Bi 2015) to find a
proper approximation L̃ ≥ LQ and use L̃ as L in all of our
computations. Algorithm 1 summarizes the steps for finding
the optimal Ŵk.

Convergence Analysis

In this section, we prove that the sequence {Φ(r)}r≥0 gener-
ated by Algorithm 1 will converge to a global optimal solu-
tion Φ̂ with a rate of O(1/r) if the initial point Φ(0) is located
in a convex neighborhood of Φ̂. Loader and Pilla indicate
that the function Q(W) is not globally convex in general.
Hence the standard convergence arguments such as (Beck
and Teboulle 2009) cannot be applied directly. Furthermore,
with the latent approach (13), we have to carefully split or
combine inequalities at certain points. All of these make the
proof of the convergence nontrivial.

Let Φ̂ = (Ŵ1, . . . , ŴK) be a global minimizer of F (Φ)

and Ω = Ω1 × . . .ΩK is a neighborhood of Φ̂ such that
Π(Ω) := {W(Φ) : Φ ∈ Ω} is convex and Q(W) is a convex
function in Π(Φ). Assume Φ(0) satisfies

D(Φ(0)) :=
∑K

k=1 ~W(′)
k − Ŵk~2

F < 1
K

[
dist(∂Π(Ω), Ŵ)

]2
. (26)

Then we have the following convergence result

Theorem 2. Let Φ(n) be the tuple of tensors generated by
Algorithm 1 at the n-th iteration. Then for any n ≥ 1,

F (Φ(n))− F (Φ̂) ≤ KL
∑K

k=1 ~W(0)
k − Ŵk~2

F

2n
. (27)

To prove the theorem, we first show that if Φ(r) satisfies
(26) at the r-th iteration, then Φ(r+1) also satisfies (26). This
ensures that the entire sequence {W(Φ(n))}n≥0 generated
by Algorithm 1 lies in Π(Ω) where Q is convex. Thus the
convex inequality is always valid and Theorem 2 is estab-
lished. Details are provided in the supplemental material.

Group Support: Values of λk’s and L

In this section we focus on the linear model in which

η
(i)
t = 〈X(i;t),

K∑
k=1

Wk〉, y
(i)
t = 〈X (i)

t ,
K∑

k=1

W∗
k 〉+ s

(i)
t

for some true tensor coefficient W∗, where τ ≤ t ≤ T . Let
D := ∇WQ(W∗). Motivated by the algorithm, we consider
the following optimization problem for a fixed k:

min
Wk

1

2
~Wk −W∗

k +D~2
F +

λk

KL

dk∑
j=1

~(Wk)
(j)
(k)~F . (28)

Our goal is to estimate the group support for W∗
k , i.e. obtain

the subset S∗k ⊂ {1, 2, ..., dk} such that (W∗
k )

(j)
(k) �= 0 if and

only if j ∈ S∗k . The KKT conditions for solutions of (28)
yield

Theorem 3. Assume λk

2 ≥ max1≤j≤dk
~D(j)

(k)~F . Then

(28) has a solution Ŵk such that

{j : (Ŵk)
(j)
(k) �= 0} := Ŝk ⊂ Sk. (29)

Furthermore, Ŝk = S∗k if λk < KL
2 minj∈S ~(W∗

k )
(j)
(k)~F .

Theorem 3 is proved in the supplemental material.

Empirical Evaluation

In this section we present the results of both synthetic and
real-life fMRI/EEG examples. We test the efficiency and ef-
fectiveness of the proposed method TensorQIF comparing
to existing methods. The datasets containing continuous re-
sponses are examined by the following methods: TensorQIF,
Linear Regression (LR), Least Absolute Shrinkage and Se-
lection Operator (LASSO), QIF (Qu, Lindsay, and Li 2000),
PQIF (Bai, Fung, and Zhu 2009), GEE (Liang and Zeger
1986), PGEE, and Graphical Granger Modeling (Lozano
et al. 2009). For GEE and PGEE, the presumed correla-
tion is set as the 1st-order autoregressive structure (AR(1)).
Namely, corr(y(i)t , y

(i)
t′ ) = α|t−t′| for some 0 < α < 1.

The coefficient of determination, R2, is employed to evalu-
ate the performance of these predicting models. An R2 of 1
indicates perfect fitness while an R2 of 0 indicates that the
model does not fit the data.

Synthetic Data

We constructed synthetic datasets containing 150 subjects
with 20 time points per subject. The data X(i)

t at each time t
is a matrix with various sizes in {5× 5, 10× 10, 15× 15}.
We generate X

(i)
t ’s from the normal distribution N(0, 22)

and τ = 4. In this setting, the coefficient W is then a 3-way
tensor, i.e. K = 3. Let W = W1 +W2 +W3 be the decom-
position. We generate W1,W2 and W3 such that each Wk

simulates the latent pattern along mode-k: W1 has patterns
(i.e. non-zero values) in the 1st and the 3rd feature along
mode-1; W2 has patterns in the 2nd and the 3rd feature along
mode-2; W3 selects lagged patterns at the 1st, 3rd, and 5th
lagged time points. All nonzero entries of Wk’s are from the
uniform distribution U(0, 32). We further add the residual
s(i) and sin(t) to the mean model in order to generate the
outcome variable y(i) for each subject i. The residual s(i) ’s
are generated from multivariate normal distribution with an
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Table 1: Comparison of R2 values achieved by our method and the other methods on the synthetic datasets with different tensor
sizes and on the real-life fMRI dataset.

d1 × d2 × (τ + 1) LR LASSO QIF PQIF GEE PGEE Granger TensorQIF
5× 5× 5 0.097 0.167 0.234 0.245 0.097 0.149 0.684 0.986

10× 10× 5 0.053 0.149 0.188 0.316 0.056 0.137 0.581 0.983
15× 15× 5 0.025 0.137 0.158 0.173 0.079 0.117 0.435 0.976

fMRI 0.007 0.027 0.032 0.033 - - 0.075 0.259

Figure 2: (Left) The model coefficients obtained by Ten-
sorQIF on synthetic data. (Right) Feature groups (slices) se-
lected by TensorQIF for predicting MMSE scores.

AR(1) correlation structure at α = 0.6. Then the outcome
y
(i)
t is computed as

y
(i)
t = 〈X(i;t), (W1 +W2 +W3)〉+ s

(i)
t + sin(t).

In our experiments, λ’s are tuned as λ1 = λ2 = λ3 = 0.3
based on cross validation within training. We randomly se-
lect 80% of the subjects for training and the rest for testing.

Table 1 provides the R2 comparison results between Ten-
sorQIF and the other seven methods for three different sizes
synthetic datasets. The proposed method TensorQIF outper-
forms the traditional regression methods in all comparison
scenarios in terms of predicting accuracy. LR and LASSO
have poor results that might due to the number of records
are relatively small comparing to total features in data ten-
sor. For the marginal models, QIF-based methods performs
better than the baseline methods because they can efficiently
estimate the coefficients even though the correlation matrix
is misspecified while GEE-based methods performs poorer
because they misspecify the correlation matrix. The Graph-
ical Granger Modeling shows relatively high performance
because it models the effects from lagged time points. How-
ever, it’s performance suffers from the high correlations
within the subjects.

In Figure 2 (Left) we plot the mode-1 unfolded matrices
resolved from TensorQIF on the dataset of the size 10×10×
5. Red (blue) color indicates that the corresponding features
are positive (negative) predictors of the response variable.
Features with white color are not selected. We see all sub-
tensors (matrices) of W1,W2 and W3 capture the designed
structure of the synthetic data. This explains the reason of
achieving around 0.98 R2 by the proposed method. Figure

Figure 3: The model coefficients resolved from the Granger
model (Lozano et al. 2009) on synthetic data.

3 illustrates the result from the Granger model. It’s tensor
coefficients are reshaped to align the matrices in Figure 2. It
clearly showed the wrong selections on the first lagged time
point which was due to the correlations within subjects.

fMRI Data

Functional magnetic resonance imaging (fMRI) is a func-
tional neuroimaging procedure using MRI technology that
measures brain activity by detecting associated changes in
blood flow. The fMRI data used in the experiment were col-
lected by the Alzheimer’s Disease Neuroimaging Initiative
(ADNI)1. We cleaned up the fMRI data by filtering out the
incomplete or low quality observations. After data cleaning,
the data includes 147 subjects diagnosed with mild cognitive
impairment (MCI) from the year of 2009 to 2016. We use the
participants’ first fMRI scan as baseline and the other fMRI
scans in 6th, 12th, 18th, and 24th months of the study. Here
are 67 brain areas and 4 properties (CV,SA,TA,TS) of the
brain cortex2 in our model. These properties are CV: Corti-
cal Volume; SA: Surface Area; TA: Thickness Average; TS:
Thickness Standard Deviation. This record naturally form a
3-way tensor with one dimension for brain areas, one for
property, and one along the temporal line. Our TensorQIF
keeps such tensor form without squashing dataset into a
vector which may cause losing the proximity. The outcome
used in this experiment is the mini-mental state examina-
tion (MMSE) score quantified by a 30-point questionnaire,
which is used extensively in clinical and research settings
to measure cognitive impairment. At each time point, the
MMSE score would be evaluated from participants’ answers
of the questionnaire.

We use 20% of subjects for testing. The lag variable is set
toτ = 2. The λ1, λ2, and λ3 were tuned in a two-fold cross
validation. In other words, the training records were further
split into half: one used to build a model with a chosen pa-
rameter value from a range of 1 to 20 with a step size of 0.1;
and the other used to test the resultant model. We chose the

1http://adni.loni.usc.edu/
2http://adni.bitbucket.io/reference/ucsffresfr.html
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parameter values that gave the best two-fold cross validation
performance. As shown in Table 1, our method performs the
best predictions.

Moreover, our approach is able to select patterns along
three dimensions: among the features, among the brain ar-
eas, and among the different lagged months. The λ’s were
chosen as λ1 = 6, λ2 = 20, and λ3 = 24. In Figure 2
(Right), the structural damage of AD starting 6 months ago
plays a major role in the development of the AD. Larger
means and standard derivations of the thickness imply a
higher risk of the AD. The proposed model selects 14 out
of 68 brain areas that affect the MMSE score. According to
the selections of the brain areas, the data at Cuneus area and
Transverse Temporal area in both sides, and the data at right
Inferior Parietal area, and so on might be important to pre-
dict the cognitive impairment.

EEG Data

Human memory function can be assayed in real-time by
electroencephalographic (EEG) recording. However, the
clinical utility of this method depends on the reliable de-
termination of functionally and diagnostically relevant fea-
tures. The proposed method approaches capable of modeling
non-stationary signal have been explored as a way to synthe-
size large arrays of EEG data because the EEG record could
be more precisely characterized by a 3-way tensor represent-
ing processing stages, spatial locations, and frequency bands
as individual dimensions.

Schizophrenia (SZ, n = 40) patients and healthy con-
trol (HC, n = 20) participants completed an EEG Sternberg
task. EEG was analyzed to extract 5 frequency components
(delta, theta, alpha, beta, gamma) at 4 processing stages
(baseline, encoding, retention, retrieval) and 12 scalp sites
representing central midline, and bi-lateral frontal and tem-
poral regions. The proposed and comparing methods were
applied to the resulting 240 features (forming a 5 × 4 × 12
tensor) to classify correct (-1) vs. incorrect (+1) responses on
a trial-by-trial basis. In this approach, the proposed method
guided the respective selection of spectral frequency, tem-
poral (processing stages), and spatial (electrode sites) di-
mensions most related to trial performance. The correlations
among processing stages were also estimated by the pro-

Figure 4: Rows, columns and slices selected by TensorQIF
for SZ (the top panel) and HC (the bottom panel). The figure
is also provided in the supplemental material.

posed method. Separate models were constructed for SZ and
HC samples for comparison of common and disparate fea-
ture patterns across the dimensions.

For each of the SZ and HC datasets, 1/5 of the records
were randomly chosen from every subject to form the test
data and the rest of the records were used in training.
The hyperparameters λ1, λ2, and λ3 in our approach and
GEE/PGEE (one parameter) were tuned in a two-fold cross
validation within the training data. We chose the parameter
values that gave the best two-fold cross validation perfor-
mance, which were λ1 = 7.5, λ2 = 5.5, λ3 = 7.4 for SZ
and λ1 = 3.3, λ2 = 2.1, λ3 = 3.1 for HN.

As shown in Figure 4, in both groups, task performance
is most dependent on encoding and retrieval stage activity,
with higher encoding uniformly and lower retrieval activ-
ity generally associated with better task performance across
electrode sites. This pattern appears most prominently in
central alpha activity (Figure 4; blue border). This indicates
the same findings as in (Xu, Sun, and Bi 2015). Groups dif-
fered in two main ways: (1) centroparietal theta, beta, and
gamma during encoding and retention predicted higher ac-
curacy in HC (Figure 4; red border), and (2) delta activity
across stages and electrodes (Figure 4; green border) pre-
dicted lower accuracy in SZ. Here the experimental results
give much clearer details of the working electrode sites and
spectral frequencies comparing to the results in (Johannesen
et al. 2016). The proposed method outperform GEE and
SVM solutions according to AUC values (HC: 55.5%; SZ:
58.8% versus the best AUC 53% from the other methods).
This is because the proposed method enabled interpretation
and summary across all dimensions, which is not possible
for classifiers based on single vectors.

Conclusion

We have proposed a new learning formulation called Ten-
sorQIF to analyze longitudinal data. It takes data matri-
ces or tensors as inputs and make predictions. The pro-
posed method can simultaneously determine the temporal
contingency and the influential features from the observa-
tions of different modes without breaking into multiple mod-
els. The tensor coefficient is computed by the summation
of K component tensors so that each reflects the selection
among a particular mode. Asymptotic analysis shows the
proposed formulation finds true coefficient when the sample
size approaches to infinity. Moreover, the related optimiza-
tion problem can be efficiently solved by a linearized block
coordinate descent algorithm which has a sublinear conver-
gence rate. Empirical studies on both synthetic and real-life
problems demonstrate the superior performance of the pro-
posed method.
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