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Abstract—Accurately identifying time-invariant operational re-
lationships among different components is critical to autonomic
management of complex manufactural systems. In this paper,
we collect time series of sensor readings from manufactur-
ing systems, and propose a solution leveraging Sparse Group
LASSO to discover structured pairwise nonlinear relationships
and quantify them by mathematical formulas. We consider
both real-life operational patterns and underlying physical
reactions inside the manufactural systems, which leads to a
learning formulation for combined periodic and aperiodic sys-
tem behaviors. An accelerated gradient descent algorithm is
developed to efficiently solve the related optimization problem.
We estimate sample correlations between proximal time points
to improve the accuracy of the discovered relationships and the
nonlinear quantitative formulas. The method is evaluated using
both synthetic and real-world datasets, which shows superior
performance over the state of the art in discovering nonlinear
relationships in manufactural systems.

1. Introduction

In the modern industry, decreasing hardware cost and
increasing demand for autonomic system management make
many complex manufactural systems, such as nuclear power
plants, use a large network of monitoring sensors distributed
across different parts of the system [1]. The continuous read-
ings of sensors generate a huge amount of time series data
every day, which contain rich information of the system, such
as operational status and healthiness. Analyzing such data is
challenging. On one hand, due to high system complexity,
those time series contain heterogeneous dependencies among
millions of parts across the system and are mixed with noise
and operational patterns, which requires greater model com-
plexity. On the other hand, autonomic management demands
the identified models being highly interpretable as explicit
linear or nonlinear formulas to guide system operators to
diagnose issues and improve performance.

Recent work shows that identifying time-invariant rela-
tionships from sensor readings is effective to help system
management tasks such as anomaly detection [2], [3], [4], and
capacity planning [5]. The relationships between the sensors
that measure physical parameters of the system reflect both
operational patterns and physical reactions of a manufactural
system. Such relationships usually hold persistently over
time when the system is stable and healthy, and will be
largely broken when system components fail. For example,

[5] considers a linear invariant relationship between each two
time series. Relationships between pairwise local components
were expressed by explicit linear formulas, which can be
assembled to profile a global status of the system. However,
such a model suffers from low coverage as it can only
discover linear interactions, and neglects many obviously
nonlinear interactions between components, such as power
and voltage (with fixed resistance), gas pressure and tube
diameter, etc. Some state-of-the-art methods are able to learn
nonlinear dependencies from data, such as sparse group
additive models [6], [7], sparse nonlinear regressions [8],
[9] and nonlinear additive ARX models [10]. However, their
resultant models are not easy to be interpreted as nonlinear
formulas in manufactural systems and thus cannot directly
help autonomic management tasks.

Figure 1: Types of relationships in manufactural systems.
Figure 1 shows different types of physical relationships

in common manufactural systems after surveying sensor se-
mantics of more than 10 different types of such systems
and examining over 300 widely used macroscope physical
formulas [11]. Interestingly, although nonlinear relationships
pervasively exist in manufactural systems, 99.67% of them
are in the polynomial family with the highest order no larger
than six. 1 Therefore focusing on the polynomial family will
account for more than 99% of the relationships, and we hence
develop a novel approach to identifying the polynomials.

Our exploration is further inspired by observing the
following three intrinsic characteristics from manufactural
systems. (i) Sparsity in polynomial bases: The underlying
physical laws determine that the relationship models sparsely
rely on only a few polynomial terms, or the so-called bases.
(ii) Sparsity in delays: Physical events take time to propagate.

1. The observation of polynomial relationships holds for manufactural
systems. Other systems such as web systems do have many more non-
polynomial relationships.



(iii) Periodic and aperiodic: The normal system operation
usually contains repeated workload patterns, which adds
periodic relationships on top of polynomials.

In this paper, we incorporate all of the above observa-
tions into the discovery of structured relationships and their
quantitative formulas from complex manufactural systems.
Similar to existing invariant models [5], we build regression
models to regress one time series on another for each pair
of the time series. Given the relationship is a combination
of periodical and polynomial models, our strategy is to first
deflate the periodical element from the relationship model
using Discrete Fourier Transform (DFT) [12], [13], and then
focus on constructing an effective explicit formula for the
residual polynomial component, which is our major contri-
bution of this paper. More particularly, to learn a polynomial
relationship for each pair of time series, we kernelize the
two time series by considering both their interactions and
the autoregressive self interactions within each time series,
and generate base polynomials for use at proximal time
points. We learn the relationship by selecting relevant bases
and delays and estimating their combination coefficients.
The coefficients naturally form a matrix with each column
representing a base and each row representing a lagged time
point. Based on observations (i) and (ii), we organize the
parameters into different groups according to rows as well
columns, and then apply a Group LASSO with overlapping
groups for joint selection of bases and delays.

In the parameter matrix, each row group overlaps with
each column group by one element. We can decompose
the matrix into two matrices, each of which containing
either row or column groups and no overlapped groups.
After decomposition we can separately regularize the row
groups and column groups, which greatly reduces the prob-
lem complexity. We then design a sophisticated optimiza-
tion algorithm following the framework of Fast Iterative
Shrinkage-Thresholding Algorithm (FISTA) [14] to solve
the problem, and prove the convergence of the algorithm.
We further improve the model by estimating the correlation
structure among proximal time points in time series using the
Generalized Estimating Equation (GEE) [15], which usually
improves the accuracy of the discovered relationships and
their quantified formulas.

The proposed approach is evaluated using both synthetic
datasets and real-world datasets from several manufactural
systems. Experimental results demonstrate that it achieves
high accuracy in discovering relationships and is feasible to
be used for real-life system monitoring and diagnoses.

2. The Learning Formulation

Given two time series x, and y ∈ RT where T repre-
sents the maximal number of time points considered from
a physical system that contain polynomial dependencies and
periodic patterns, the relationship between x and y can be
formulated as:

y = Fperiodic (x) + Fpolynomial (x) (1)

We first employ a fast DFT algorithm [13] to extract periodic
component Fperiodic(·) from Eq.(1), which decomposes the

signal into different sinusoidal signals of different frequen-
cies and phases in the frequency domain. After decomposi-
tion, the aperiodic components have very high amplitudes in
the lower frequency band whereas the periodic components
are shown as peaks in the higher frequency band of the
frequency domain. By subtracting the periodic components
discovered by DFT from the relationship, we only need to
model the polynomail part between x and y: Fpolynomial(·).
In the following sections, we propose a Sparse Group LASSO
with overlapping structures to estimate Fpolynomial(·).

2.1. Problem Formulation

We first create polynomial bases for the observed time
series, and then formulate a regularized optimization problem
to construct a model as a function of these polynomial bases.

2.1.1. Kernelization of Signals. For two time series x, y ∈
RT where x is the independent signal and y is the re-
sponse signal, we learn a regression model y = f(x).
We first extend x to d different power bases as k(x;i) =
[xi, x

2
i , · · · , xdi ] where i indexes the observation time point.

We then model the interactions between x and the re-
sponse signal y by first setting a mapping k(x,y;i) =

[yi, · · · , ydi , yixi, yix2i , · · · , ydi x
d−1
i , ydi x

d
i ], and then forming

an autoregressive model as a function of the following matrix
where each power basis (column) consists of the current and
τ previous records of the repeated measurements

K(x,y;t) =

[
k>(x;t) k>(x;t−1) · · · k>(x;t−τ)

0 k>(x,y;t−1) · · · k>(x,y;t−τ)

]>
.

This is a (τ + 1) × d(d + 2) kernel matrix, and k(x,y;t)

inside K(x,y;t) is set to 0 because yt is the current target
to be predicted. Given T total repeated measurements for
each signal, the index t of K(x,y;t) starts from τ +1 in order
to have enough observations in the first training example.
If K(x,y;t) is considered as feature matrix, then the model
yt = tr

(
K>(x,y;t)W

)
where W = [w0,w1, · · · ,wτ ]> gives

a linear model with τ delays.

2.1.2. The Objective Function. We now formulate an op-
timization problem based on the two observations (i) and
(ii), which show that the sensor relationships should sparsely
rely on certain bases and delays. To select among all the
features in the kernel matrix, we separately select among
basis polynomials (columns) and select among the lagged
effects from proximal time points (rows). In other words,
each row of K(x,y;t) is a structured group (the different bases
at the same time point) and each column is a structured group
(the same basis at all the τ lagged time points). We design a
latent sparse regularizer as shown in Figure 2 which produces
sparsity within the row groups as well as column groups.
Figure 2 shows a W where five elements are selected from
one basis column and two delay rows.

Therefore, besides the least square loss for the model,
we form the optimization problem as Sparse Group LASSO
with overlapping structures as:

min
P,Q

` (W) + (1− α)λ1

G∑
g=1

Ωg(W) + αλ2‖W‖1 (2)



Figure 2: Parameter Matrix with Group Formation

where ` (W) =
∑T

t=1 ‖yt − tr(K>(x,y;t)W)‖22, α, λ1, and
λ2 are tuning parameters, and Ωg(·) refers to the structured-
sparsity-inducing penalty. The regularizer Ωg(·) plays a ma-
jor role for encouraging the closely related inputs (e.g., con-
secutive time points) to be selected together as relevant to the
output by setting the corresponding regression coefficients to
non-zero values. Commonly, this regularizer uses the `1,2
matrix norm applied to W (as ‖W‖1,2 =

∑
i ‖Wi,·‖2) as

well as to W> where Wi,· represents the i-th row of W.
The optimization of Eq.(2) is challenging because W

has overlapping elements in all the base and delay groups.
Traditional block-wised gradient descent methods generally
do not allow the overlapping among the groups [16]. The
general proximal gradient method has to solve an optimiza-
tion sub-problem at each step of updates, which is costly
to get the optimal solution [17]. Moreover, this generalized
sparse group LASSO (SGLASSO) usually requires an index
matrix to indicate the group membership, which quadratically
increases the usage of memory space and can be a challenge
to large-scale problems.

2.1.3. The Revised Regularizer. In our problem, the param-
eters naturally form a matrix, where row groups only overlap
with column groups or vice versa but never within rows or
columns themselves. We can hence decompose W into a
summation of two component matrices as W = P + Q,
and select only row groups in P and column groups in Q
as shown in Figure 2. Then, both rows and columns are
selected in W after summation, as shown in Figure 2. This
decomposition slightly changes our objective function, but
it degenerates the regularization condition of the original
problem to two easier sparse group LASSO penalties that
do not have overlapping groups. In this regularizer, we apply
the `1,2 norm to P row-wisely, so the optimal P will contain
rows with all zero entries and hopefully only a few rows with
non-zero entries. Similarly, the `1,2 norm is applied to Q>

(i.e., to Q column-wisely) to encourage the selection among
columns of Q.

Overall, we revise the regularization condition in Eq.(2)
and solve the following optimization problem for the optimal
model parameter matrix W, which is computed as P + Q:

min
P,Q

` (W) + α (λ1‖P‖1 + λ2‖Q‖1)

+(1− α)
(
λ1‖P‖1,2 + λ2‖Q>‖1,2

)
(3)

s.t. W = P + Q

where W in the least squares loss will simply be replaced
by P + Q, and α, λ1, and λ2 are tuning parameters in the
model. α is playing a role of balancing the weight between
`1,2-norm and `1-norm.

Although the regularization part of Eq.(2) is decomposed
to two sparse group LASSO penalties, the least squares loss

is intact. Moreover, P and Q are estimated jointly, and they
both contribute to the optimal solution of W. Therefore, we
cannot just apply existing sparse group LASSO solvers to
solve Eq.(3). In the following section, we develop an accel-
erated gradient descent method based on the FISTA [14],
which efficiently solves the optimization problem Eq.(3).

2.2. Optimization Algorithm

The FISTA algorithm [14] can be viewed as an exten-
sion of the classical gradient descent algorithm with global
convergence and its convergence rate has been proven to be
super-linear. It uses the proximal operator to deal with non-
smooth regularizers in optimization problems.

2.2.1. Reformulation of FISTA. To solve the optimization
problem Eq.(3), we follow the FISTA framework that pro-
vides an accelerated gradient framework to minimize the
proximal approach of the objective function. Problem (3)
contains a smooth loss function and non-smooth regularizers,
which meets the formulation requirement of the FISTA.

We denote the objective function of Eq.(3) by f(P,Q),
and use `(P,Q) to denote its continuously differentiable part
that is the least squares loss, and R(P,Q) to denote its
nonsmooth part that constitutes the regularizers. We hence
have f(P,Q) = `(P,Q) +R(P,Q).

We develop the following iterative procedure to find the
optimal values of P and Q. Let ∇P`(P,Q), ∇Q`(P,Q)
be the partial derivative of `(P,Q) with respect to P and
Q, respectively. For any given point (P̃, Q̃), the following
QL,P̃,Q̃(P,Q) is a well-defined proximal map for the non-
smooth R as

QL,P̃,Q̃(P,Q) = `(P̃, Q̃) +R(P,Q) + 〈∇P`(P̃, Q̃),P− P̃〉

+
L

2
‖P− P̃‖2F + 〈∇Q`(P̃, Q̃),Q− Q̃〉+

L

2
‖Q− Q̃‖2F

where 〈·, ·〉 denotes the inner product. If `(P,Q) has a Lip-
schitz continuous gradient with a Lipschitz modulus L, then
according to Lemma 2.1 in [14], the inequality f(P,Q) ≤
QL,P̃,Q̃(P,Q). holds, which indicates that QL,P̃,Q̃(P,Q) is
an upper bound on the objective function f(P,Q).

2.2.2. Updates at Each Step. To minimize QL,P̃,Q̃(P,Q),
we now describe the iterative procedure to update the iterates
at each step in our algorithm. Starting from an initial point
(P0,Q0), we iteratively search for the optimal solution.
Denote the iterates at the K-th iteration by PK and QK. At
each iteration K, we first use the iterates (PK−1,QK−1) and
(PK−2,QK−2) to compute (at the first iteration, (P̃1, Q̃1) =
(P0,Q0))

P̃K = PK−1 +

(
tK−1 − 1

tK

)
(PK−1 −PK−2),

Q̃K = QK−1 +

(
tK−1 − 1

tK

)
(QK−1 −QK−2),

(4)

where tK is a scalar and updated at each iteration as:

tK+1 =
1 +

√
1 + 4t2K
2

. (5)



Since there is no interacting term between P and Q
in QL,P̃,Q̃(P,Q), the problem can be decomposed into
two separate subproblems in terms of P and Q, respec-
tively. Then, an optimal solution (PK,QK) near the point
(P̃K, Q̃K) can be solved by the following two proximal
operators:

min
P

1

2

∥∥∥∥P− (P̃K − 1

L
∇P`K

)∥∥∥∥2
F

+
λ1
L

(α‖P‖1 + (1− α)‖P‖1,2) , (6)

min
Q

1

2

∥∥∥∥Q− (Q̃K − 1

L
∇Q`K

)∥∥∥∥2
F

+
λ1
L

(α‖Q‖1 + (1− α)‖Q‖1,2) ,

where ∇P`K and ∇Q`K are respectively the partial deriva-
tives of ` computed at (P̃K, Q̃K), and L acts as a learning
step size. The two subproblems share the same structure and
thus can be solved following the same procedure. Hence, we
only show how to solve Eq.(6) for the best P.

Eq.(6) has a closed-form solution [18] where each row

of PK, PK(i,) is PK(i,) = max

(
0, 1− (1−α)λ1

L‖S(K)

(i,)
‖2

)
S
(K)
(i,) , with

S(K) = max
(

0, P̃
(K) − αλ1

)
and P̃

(K)
= P̃K − 1

L∇P`K.

The gradient vector ∇P`K can be computed as

∇P`K = reshape
(
D(x)

(
y −D>(x)vect

(
P̃K + Q̃K

)))
(7)

where D(x) =
[
vect

(
K(x;1)

)
, · · · , vect

(
K(x;T )

)]
and

reshape(·) refers to an operator of reshaping a vector into
a matrix of the size related to the context. Following this
way, we can update P and Q at each step.

2.2.3. Estimation of Lipschitz Constant. In the above dis-
cussion, the Lipschitz modulus L needs to be computed at
each step. However, the calculation of L can be computa-
tional expensive. We therefore follow the similar argument
in [19] to find a proper approximation L̃. Algorithm 1
summarizes the steps for finding optimal P and Q.

Algorithm 1 Search for optimal P and Q

Input: X, y, λ1, λ2, α
Output: P, Q
1. K = 1, compute L̃ and initialize t1 = 1, P0 = P̃1 = 0 and
Q0 = Q̃1 = 0;
2. Solve Eq.(6) to obtain PK and QK.
3. Compute tK+1 by Eq.(5).
4. Compute P̃K+1 and Q̃K+1 by Eq.(4).
5. K = K+ 1.
Repeat 2 ∼ 5 until convergence.

2.3. Convergence Analysis

We show that Algorithm 1 converges to the optimal
solution of Eq.(3) with a convergence rate of O(1/K2).

Theorem 1. Let PK and QK be the pair of the matrix
generated by Algorithm 1. Then for any K ≥ 1

f(PK,QK)−f(P̂, Q̂) ≤
2L̃
(
||P0 − P̂||2F + ||Q0 − Q̂||2F

)
(K + 1)2

where (P̂, Q̂) is a globally optimal solution of Eq.(3).

The theorem can be proved following the similar steps
discussed in our early work [20].

2.4. Estimation of Correlation Structure

The model in Eq.(3) assumes that the training examples
are i.i.d.. However, obviously, the consecutive time points are
not mutually independent and the kernelized signals contain
overlapping records over time. In this case, the Generalized
Estimating Equation (GEE) is an ideal solution as it provides
a mechanism to estimate sample correlation simultaneously
while constructing regression models. However, if we were
to adopt the GEE to estimate the covariance matrix which
is of a very large size (e.g., 30,000 time points needs a
30, 000, 000 matrix), it would create potential momery issues.
Since the physical sensors are assumed to have relationships
in τ neighborhood time points, we can estimate a τ × τ co-
variance matrix to each τ -sized chunk of kernel as D(x;p) =[
vect

(
K(x,p×τ)

)
, · · · , vect

(
K(x,min(T,(p+1)×τ))

)]
and the

response signal as yp = y[p×τ,··· ,min(T,(p+1)×τ)], where p
is the index of the chunk, instead of estimating on the whole
time points. Hence, the gradient update used in Eq.(7) is
replaced by the following formula:

∇P`K = reshape
(

vcat
bT/τc
p=0

(
D(x;p) (Rp(ρ))

−1
sp

))
where sp = yp − D>(x;p)vect

(
P̃K + Q̃K

)
, vcat

bT/τc
p=0 (·)

denotes an operator that vertically concatenates matrices, and
R(ρ) refers to a covariance matrix that can be estimated from
the current Pearson residuals. We develop an expectation-
maximization (EM) algorithm to alternatively estimate R(ρ)
and optimize Eq.(3).

3. Experimental Results

We first generated synthetic data to evaluate the fitness
accuracy of the learned regression model. We then evalu-
ated the quantified models constructed by our approach by
comparing the selected bases and delays with the ground-
truth formulas. The periodic components of the formulas
were firstly estimated by our approach and subtracted from
the synthesized signals. We compared our approach against
the following methods in terms of the learning performance
on the polynomial components of formulas: 1) Non-lin-
ear Regression: the close-form solution by a linear (the
first-order Taylor expansion) approximation to the non-linear
components. This is used as a baseline. 2) LASSO: we used
a similar design of the kernel bases in the loss function but
only used the `1-norm regularizer. 3) Longi-LASSO [20]:
one of our earlier work that estimated the most influential
time points and features. We treated the different power terms
as different features.



We also tested our method on the real-world datasets
collected from two manufactural systems in terms of the
model stability and its application to anomaly detection.

3.1. Synthetic Data

We generated a synthetic dataset consisting of 10,000
pairs where each signal had 40,000 time points. We first
produced a seed signal x as follows, which was then used to
create other signals that had a relationship with x:

xt = ε1 × sin(0.001t) ∀ t = [1, . . . , 40000] (8)

where ε1 followed the standard Gaussian distribution N(0, 1).
Then, we simulated the noisy sensor readings in real man-
ufactural systems to generate the related signals y from the
seed signal. Each y was computed from an explicit formula
that combined the selected elements in Figure 3, where
fsin(x) = sin(10πx+ 10) and fcos = cos(16πx− 3).

fsin(xt) fsin(xt−1) fsin(xt−2) fsin(xt−3)

fcos(xt) fcos(xt−1) fcos(xt−2) fcos(xt−3)

xt xt−1 xt−2 xt−3
. . . . . . . . . . . .

x4t x4t−1 x4t−2 x4t−3

0 yt−1 yt−2 yt−3

0 yt−1xt−1 yt−2xt−2 yt−3xt−3
. . . . . . . . . . . .

0 yt−1x
4
t−1 yt−2x

4
t−2 yt−3x

4
t−3




Figure 3: An example of the selected rows and columns that
were used in a formula to create the related signal y.

In order to simulate relationships from physical reactions
in the synthetic data, for every pair we randomly chose 2
rows and 1 column, and selected 5 functions from the chosen
rows and column to construct a formula. We denoted these 5
selected bases by f1, . . . , f5. The signal y was computed
as yt =

∑5
i=1 βifi + ε2, where βi followed an Uniform

distribution as U(0, 1) and ε2 followed N(0, 0.1).
Following the aforementioned process, we generated

9,000 time series that had specific nonlinear relationships
with x. We then also created 1,000 random time series which
were used as non-related signals to x.

3.1.1. Accuracy of Fitness. The coefficient of determina-
tion R2 was used to measure the fitness accuracy. The R2

statistic ranges from 0 to 1 with higher values indicating
better performance. We used the first 2/3 time points of each
signal as training data and the remaining signals for test. All
methods in comparison were examined using the same paired
data in the synthetic dataset. The number of bases and delays
were set as d = 4, τ = 3. The hyper-parameters, λ1 and λ2,
were equally chosen from 0.001 to 0.0002 with a step size
of 0.0002 and α was set to 0.6. Particularly, the nonlinear
regression method had no parameter to tune.

Table 1 shows the average test R2 of the different meth-
ods for the related and unrelated pairs. It indicates that the

unrelated pairs usually had a R2 closed to 0, which means
that no relationships were found in those pairs. For related
pairs, our method achieved the highest fitness over the others.
We believe that the group-structured selection of both bases
and delays did help improve regression performance.

TABLE 1: Accuracy of Fitness and Formula Expression
(Standard deviations are shown in (·).)

Methods Related Unrelated Selected Correct
Nonlinear 0.38 0.0011 - -

LASSO 0.82 0.0012 6.96(0.73) 3.87(0.26)
Longi-LASSO 0.84 0.0009 10.1(0.23) 4.76(0.01)

Our Method 0.89 0.0010 7.02(0.12) 4.76(0.01)

3.1.2. Accuracy of Formula Expression. In addition to
fitness accuracy, we validated the quantitative formula con-
structed by the methods by evaluating the total number of
selected bases and the number of correct selections in the
related pairs. Table 1 shows the averages and the standard
deviations of the numbers of selections when different λ
values were used in the LASSO-based methods. The nonlin-
ear regression models had no function of feature selection.
From this table we can see both longitudinal LASSO and
the proposed method selected similar number of correct
elements. However, in order to achieve that, longitudinal
LASSO selected about 40% more elements, making its model
rely on more unrelated elements than our method. LASSO
and our method selected similar numbers of elements, but
our method selected more correct elements. Moreover, our
method was less sensitive to the choices of parameters as
the standard deviations were very small when λs varied
substantially. These results domonstrate that the proposed
method can recover the synthesized formulas with a better
accuracy than the compared methods.

3.2. Case Study with Real-World Data

In this section, we tested the proposed method using
two real-world time series datasets collected from a large
amount of sensors in two manufactural systems of power
plant. Due to the proprietary nature of the data, we use Power
Plant A to name the first system. The system contained over
5000 sensors, distributed to monitor pressures, temperatures,
voltages of the system for several months, and it included
three system faults and one system reset.

We used the first 2/3 of the time points in the paired
signals in training and the remaining data for test. In training,
we set d = 4, τ = 3, λ1 = λ2 = 0.001, and α = 0.6 for
the proposed method. A pair of signals was identified to be
related if its training R2 > 0.7 and test R2 > 0.5.

Another dataset from Power Plant B contained 6000
sensors/time series, distributed to monitor pressures, tem-
peratures, voltages of the system for 4 months. Each time
series consisted of 175, 680 time points and each point cor-
responded to 1 minute of data reading. Data of the first 2
months contained normal operations and the last 2 months
contained 3 system faults and 1 system reset. We applied our
algorithm only to the first month’s data to train and identify
pairwise relationships, which represented the normal system
status. We then examined the identified pairs on the other



3 months’ data to detect possible anomalies. The anomaly
detection algorithm was designed following a widely used
method in SIAT [5]. Namely, the residuals of the related
pairs at each time point in the test data would be evaluated.
At a time point, a related pair was considered broken if the
residual of that pair exceeded a threshold of 1.1× r0 where
r0 referred to 99.5% confidence rate of the residuals from
the training data. In the test phase, we examined all the pairs
identified in the training phase, and counted the total number
of broken pairs at each time point along time.

Figure 4: Case study of anomaly detection. Trained on Month
1 and Tested on Month 2, 3, 4.

We compared our method with SIAT, a linear regression-
based pairwised anomaly detection method. Our method ob-
tained 23, 231 related pairs, which involved 92% of sensors.
Figure 4 illustrates the number of broken relationships of our
method and SIAT along time. In the figure, there were only
a few broken relationships scattered in the second month and
the first half of the third month, which are normal operational
deviations and indicated a healthy status. Two clusters of
spikes were found in the second half of the third month,
where over 30% of learned relationships were broken in our
method. Similarly, a cluster of spikes existed in the fourth
month. We confirmed this was due to the system operators.
These were pipe failures inside the system and lasted for
several hours. They also propagated to affect other com-
ponents, which resulted in previously learned relationships
being widely broken. Our method detected the failures about
two hours earlier than the operators, because it found a
gradual increase in the number of broken relationships, which
started earlier than the failure. After fixing the third issue, the
operators reset some components, so the previously learned
relationships no longer held. The model started to persistently
break after the third failure.

However, the pairs generated by SIAT involved less than
10% of sensors, which resulted in most of the sensors related
to failures not been modeled. It could not detect the first 2
alerts because very few relationships were broken to reach
the alert level. The consistent broken signals from system
reset in the fourth month were detected by SIAT.

4. Conclusions

In this paper, we have designed a solution to identify
and quantify nonlinear structured relationships in complex
manufactural systems. We formulate the problem as a Sparse

Group LASSO problem with overlapping groups and design
a novel algorithm following the FISTA framework. Sample
correlation structure is also estimated and accounted for in
our model, which improves the discovery of relationships.
The evaluations on the synthetic data and two real-world ex-
amples illustrate the accuracy and usefulness of our method.
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