
VIGAN: Missing View Imputation with Generative Adversarial Networks

Chao Shang, Aaron Palmer, Jiangwen Sun, Ko-Shin Chen, Jin Lu, Jinbo Bi
Department of Computer Science and Engineering

University of Connecticut
Storrs, CT, USA

{chao.shang, aaron.palmer, jiangwen.sun, ko-shin.chen, jin.lu, jinbo.bi}@uconn.edu

Abstract—In an era when big data are becoming the norm,
there is less concern with the quantity but more with the quality
and completeness of the data. In many disciplines, data are
collected from heterogeneous sources, resulting in multi-view
or multi-modal datasets. The missing data problem has been
challenging to address in multi-view data analysis. Especially,
when certain samples miss an entire view of data, it creates the
missing view problem. Classic multiple imputations or matrix
completion methods are hardly effective here when no infor-
mation can be based on in the specific view to impute data for
such samples. The commonly-used simple method of removing
samples with a missing view can dramatically reduce sample
size, thus diminishing the statistical power of a subsequent
analysis. In this paper, we propose a novel approach for view
imputation via generative adversarial networks (GANs), which
we name by VIGAN. This approach first treats each view as
a separate domain and identifies domain-to-domain mappings
via a GAN using randomly-sampled data from each view, and
then employs a multi-modal denoising autoencoder (DAE) to
reconstruct the missing view from the GAN outputs based on
paired data across the views. Then, by optimizing the GAN
and DAE jointly, our model enables the knowledge integration
for domain mappings and view correspondences to effectively
recover the missing view. Empirical results on benchmark
datasets validate the VIGAN approach by comparing against
the state of the art. The evaluation of VIGAN in a genetic study
of substance use disorders further proves the effectiveness and
usability of this approach in life science.
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I. INTRODUCTION

In many scientific domains, data can come from a multi-
tude of diverse sources. A patient can be monitored simul-
taneously by multiple sensors in a home care system. In a
genetic study, patients are assessed by their genotypes and
their clinical symptoms. A web page can be represented by
words on the page or by all the hyper-links pointing to it
from other pages. Similarly, an image can be represented by
the visual features extracted from it or by the text describing
it. Each aspect of the data may offer a unique perspective
to tackle the target problem. It brings up an important set
of machine learning problems associated with the efficient
utilization, modeling and integration of the heterogeneous
data. In the era of big data, large quantities of such het-
erogeneous data have been accumulated in many domains.
The proliferation of such data has facilitated knowledge

discovery but also imposed great challenges on ensuring
the quality or completeness of the data. The commonly-
encountered missing data problem is what we cope with
in this paper.

There are distinct mechanisms to collect data from multi-
ple aspects or sources. In multi-view data analysis, samples
are characterized or viewed in multiple ways, thus creating
multiple sets of input variables for the same sample. For
instance, a genetic study of a complex disease may produce
two data matrices respectively for genotypes and clinical
symptoms, and the records in the two matrices are paired
for each patient. In a dataset with three or more views,
there exists a one-to-one mapping across the records of
every view. In practice, it is however more common that
data collected from different sources are for different sam-
ples, which leads to multi-modal data analysis. To study
Alzheimer’s disease, a US initiative collected neuroimages
(a modality) for a sample of patients and brain signals such
as electroencephalograms (another modality) for a different
sample of patients, resulting in unpaired data. The integra-
tion of these datasets in a unified analysis requires different
mathematical modeling from the multi-view data analysis
because there is no longer a one-to-one mapping across
the different modalities. This problem is also frequently
referred to domain mapping or domain adaptation in various
scenarios. The method that we propose herein can handle
both the multi-view and multi-modal missing data problem.

Although the missing data problem is ubiquitous in large-
scale datasets, most existing statistical or machine learning
methods do not handle it and thus require the missing data to
be imputed before the statistical methods can be applied [1,
2]. With the complex structure of heterogeneous data comes
high complexity of missing data patterns. In the multi-view
or multi-modal datasets, data can be missing at random in a
single view (or modality) or in multiple views. Even though
a few recent multi-view analytics [3] can directly model
incomplete data without imputation, they often assume that
there exists at least one complete view, which is however
often not the case. In multi-view data, certain subjects in a
sample can miss an entire view of variables, resulting in the
missing view problem as shown in Figure 1. In a general
case, one could even consider that a multi-modal dataset just
misses the entire view of data in a modality for the sample



subjects that are characterized by another modality.

Figure 1: The missing view problem extremely limits the
cross-view collaborative learning.

To date, the widely-used data imputation methods focus
on imputing or predicting the missing entries within a single
view [4, 5, 6]. Often times, data from multiple views are
concatenated to form a single view data imputation problem.
The classic single view imputation methods, such as multiple
imputation methods, or matrix completion methods, are
hardly scalable to big data. Lately, there has been research
on imputation in true multi-view settings [7, 8, 9, 10, 11]
where the missing values in a view can be imputed based on
information from another complete view. These prior works
assume that all views are available, and only some variables
in each view are missing. This assumption has limited these
methods because in practice it is common to miss an entire
view of data for certain samples. This missing view problem
brings up a significant challenge when conducting any multi-
view analysis, especially when used in the context of very
large and heterogeneous datasets like those in healthcare.

Recent deep learning methods [12, 13, 14] for learning
a shared representation for multiple views of data have the
potential to address the missing view problem. One of the
most important advantages of these deep neural networks is
their scalability and computational efficiency. Autoencoders
[15] and denoising autoencoders (DAE) [11] have been
used to denoise or complete data, especially for images.
Generative adversarial networks (GANs) [16] can create
images or observations from random data sampled from a
distribution, and hence can be potentially used to impute
data. The latest GANs [17, 18, 19, 20, 21] for domain
mappings can learn the relationship between two modalities
using unpaired data. However, all of these methods have not
been thoroughly studied to impute missing views of data.

We propose a composite approach of GAN and autoen-
coder to address the missing view problem. Our method
can impute an entire missing view by a multi-stage training
procedure where in Stage one a multi-modal autoencoder
[14] is trained on paired data to embed and reconstruct
the input views. Stage two consists of training a cycle-

consistent GAN [17] with unpaired data allowing a cross-
domain relationship to be inferred. Stage three re-optimizes
both the pre-trained multi-modal autoencoder and the pre-
trained cycle-consistent GAN so that we integrate the cross-
domain relationship learned from unpaired data and the view
correspondences learned from paired data. Intuitively, the
cycle-consistent GAN model learns to translate data between
two views, and the translated data can be viewed as an initial
estimate of the missing values, or a noisy version of the
actual data. Then the last stage uses the autoencoder to refine
the estimate by denoising the GAN outputs.

There are several contributions in our approach:
1) We propose an approach for the missing view problem

in multi-view datasets.
2) The proposed method can employ both paired multi-

view data and unpaired multi-modal data simultane-
ously, and make use of all resources with missing data.

3) Our approach is the first to combine domain mapping
with cross-view imputation of missing data.

4) Our approach is highly scalable, and can be extended
to solve more than two views of missing data problem.

Empirical evaluation of the proposed approach on both
synthetic and real world datasets demonstrate its superior
performance on data imputation and its computational ef-
ficiency. The rest of the paper will proceed as follows. In
Section 2 we discuss related works. Section 3 is dedicated
to the description of our method followed by a summary
of experimental results in Section 4. We then conclude in
Section 5 with a discussion of future works.

II. RELATED WORKS

A. Matrix Completion

Matrix completion methods focus on imputing the missing
entries of a partially observed matrix under certain condi-
tions. Specifically, the low-rank condition is the most widely
used assumption, which is equivalent to assuming that each
column of the matrix can be represented by a linear combi-
nation of a small number of basis vectors. Numerous matrix
completion approaches have been proposed to complete a
low-rank matrix, either based on convex optimization by
minimizing the nuclear norm, such as the Singular Value
Thresholding (SVT) [4] and SoftImpute [22] methods, or
alternatively in a non-convex optimization perspective by
matrix factorization [23]. These methods are often inef-
fective when applied to the missing view problem. First,
when concatenating features of different views in a multi-
view dataset into a single data matrix, the missing entries
are no longer randomly distributed, but rather appear in
blocks, which violates the randomness assumption for most
of the matrix completion methods. In this case, classical
matrix completion methods no longer guarantee the recovery
of missing data. Moreover, matrix completion methods are
often computationally expensive and can become prohibitive



for large datasets. For instance, those iteratively computing
the singular value decomposition of an entire data matrix
have a complexity of O(N3) in terms of the matrix size N .

B. Autoencoder and RBM

Recently the autoencoder has shown to play a more
fundamental role in the unsupervised learning setting for
learning a latent data representation in deep architectures
[15]. Vincent et al introduced the denoising autoencoder in
[11] as an extension of the classical autoencoder to use as
a building block for deep networks.

Researchers have extended the standard autoencoders into
multi-modal autoencoders [14]. Ngiam et al [14] use a
deep autoencoder to learn relationships between high-level
features of audio and video signals. In their model they train
a bi-modal deep autoencoder using modified but noisy audio
and video datasets. Because many of their training samples
only show in one of the modalities, the shared feature
representations learned from paired examples in the hidden
layers can capture correlations across different modalities,
allowing for potential reconstruction of a missing view. In
practice, a multi-modal autoencoder is trained by simply
zeroing out values in a view, estimating the removed values
based on the counterpart in the other view, and comparing
the network outputs and the removed values. Wang et al
[12] enforce the feature representation of multi-view data
to have high correlation between views. Another work [24]
proposes to impute missing data in a modality by creating
an autoencoder model out of stacked restricted Boltzmann
machines. Unfortunately, all these methods train models
from paired data. During the training process, any data that
have no complete views are removed, consequently leaving
only a small percentage of data for training.

C. Generative Adversarial Networks

The method called generative adversarial networks
(GANs) was proposed by Goodfellow et al [16], and
achieved impressive results in a wide variety of problems.
Briefly, the GAN model consists of a generator that takes a
known distribution, usually some kind of normal or uniform
distributions, and tries to map it to a data distribution. The
generated samples are then compared by a discriminator
against real samples from the true data distribution. The
generator and discriminator play a minimax game where the
generator tries to fool the discriminator, and the discrimina-
tor tries to distinguish between fake and true samples. Given
the nature of GANs, they have great potential to be used for
data imputation as further discussed in the next subsection
of unsupervised domain mapping.

D. Unsupervised Domain Mapping

Unsupervised domain mapping constructs and identifies
a mapping between two modalities from unpaired data.
There are several recent papers that perform similar tasks.

DiscoGAN [18] created by Kim et al is able to discover
cross-domain relations using an autoencoder model where
the embedding corresponds to another domain. A generator
learns to map from one domain to another whereas a separate
generator maps it back to the original domain. Each domain
has a discriminator to discern whether the generated images
come from the true domain. There is also a reconstruction
loss to ensure a bijective mapping. Zhu et al use a cycle-
consistent adversarial network, called CycleGAN [17], to
train unpaired image-to-image translations in a very similar
way. Their architecture is defined slightly smaller because
there is no coupling involved but rather a generated image is
passed back over the original network. The pix2pix method
[21] is similar to the CycleGAN but trained only on paired
data to learn a mapping from input to output images. Another
method by Yi et al, callled DualGAN, uses uncoupled
generators to perform image-to-image translation [19].

Liu and Tuzel coupled two GANs together in their Co-
GAN model [20] for domain mapping with unpaired images
in two domains. It is assumed that the two domains are
similar in nature, which then motivates the use of the tied
weights. Taigman et al introduce a domain transfer network
in [25] which is able to learn a generative function that
maps from one domain to another. This model differs from
the others in that the consistency they enforce is not only
on the reconstruction but also on the embedding itself, and
the resultant model is not bijective.

III. METHOD

We now describe our imputation method for the missing
view problem using generative adversarial networks which
we call VIGAN. Our method combines two initialization
steps to learn cross-domain relations from unpaired data in a
CycleGAN and between-view correspondences from paired
data in a DAE. Then our VIGAN method focuses on the
joint optimization of both DAE and CycleGAN in the last
stage. The denoising autoencoder is used to learn shared and
private latent spaces for each view to better reconstruct the
missing views, which amounts to denoise the GAN outputs.

A. Notations

We assume that the dataset D consists of three parts:
the complete pairs {(x(i), y(i))}Ni=1, the x-only examples
{x(i)}Mx

i=N+1, and the y-only examples {y(i)}My

i=N+1. We use
the following notations.

• G1 : X → Y and G2 : Y → X are mappings
between variable spaces X and Y .

• DY and DX are discriminators of G1 and G2 respec-
tively.

• A : X × Y → X × Y is an autoencoder function.
• We define two projections PX(x, y) = x and
PY (x, y) = y which either take the x part or the y
part of the pair (x, y).

• Ex∼pdata(x)[f(x)] =
1

Mx

∑Mx

i=1 f(x
(i))



Figure 2: The VIGAN architecture consisting of the two
main components: a CycleGAN with generators G1 and G2

and discriminators DX and DY and a multi-modal denoising
autoencoder DAE.

• E(x,y)∼pdata((x,y))[f(x, y)] =
1
N

∑N
i=1 f(x

(i), y(i))

B. The Proposed Formulation

In this section we describe the VIGAN formulation which
is also illustrated in Figure 2. Both paired and unpaired data
are employed to learn mappings or correspondences between
domains X and Y . The denoising autoencoder is used to
learn a shared representation from pairs {(x, y)} and is pre-
trained. The cycle-consistent GAN is used to learn from
unpaired examples {x}, {y} randomly drawn from the data
to obtain maps between the domains. Although this mapping
computes a y value for an x example (and vice versa), it
is learned by focusing on domain translation, e.g. how to
translate from audio to video, rather than finding the specific
y for that x example. Hence, the GAN output can be treated
as a rough estimate of the missing y for an x example. To
jointly optimize both the DAE and CycleGAN, in the last
stage, we minimize an overall loss function which we derive
in the following subsections.
The loss of multi-modal denoising autoencoder

The architecture of a multi-modal DAE consists of three
pieces, as shown in Figure 3. The layers specific to a
view will extract features from that view that will then be
embedded in a shared representation as shown in the dark
area in the middle of Figure 3. The shared representation is
constructed by the layers that connect to both views. The
last piece requires the network to reconstruct each of the
views or modalities. The training mechanism aims to ensure
that the inner representation catches the essential structure
of the multi-view data. The reconstruction function for each
view and the inner representation are jointly optimized.

Given the mappings G1 : X → Y and G2 : Y → X , we
may view pairs (x,G1(x)) and (G2(y), y) as two corrupted
versions of the original pair (x, y) in the data set. A
denoising autoencoder, A : X × Y → X × Y , is then

Figure 3: The multi-modal denoising autoencoder: the input
pair (X̃, Ỹ ) is (x;G1(x)) or (G2(y); y) as corrupted (nois-
ing) versions of the original pair (X;Y ).

trained to reconstruct (x, y) from (x,G1(x)) or (G2(y), y).
We express the objective function as the squared loss:

LAE(A,G1, G2) =

E(x,y)∼pdata((x,y))[‖A(x,G1(x))− (x, y)‖22]
+ E(x,y)∼pdata((x,y))[‖A(G2(y), y)− (x, y)‖22]. (1)

The adversarial loss
We then apply the adversarial loss introduced in [16] to
the composite functions PY ◦ A(x,G1(x)) : X → Y and
PX ◦ A(G2(y), y) : Y → X . This loss affects the training
of both the autoencoder (AE) and the GAN so we name it
LAEGAN, and it has two terms as follows:

LY
AEGAN(A,G1, DY ) = Ey∼pdata(y)[log(DY (y))]

+ Ex∼pdata(x)[log(1−DY (PY ◦A(x,G1(x))))], (2)

and

LX
AEGAN(A,G2, DX) = Ex∼pdata(x)[log(DX(x))]

+ Ey∼pdata(y)[log(1−DX(PX ◦A(G2(y), y)))]. (3)

The first loss Eq.(2) aims to measure the difference
between the observed y value and the output of the
composite function PY ◦ A(x,G1(x)) whereas the second
loss Eq.(3) measures the difference between the true x value
and the output of PX ◦ A(G2(y), y). The discriminators
are designed to distinguish the fake data from the true
observations. For instance, the DY network is used to
discriminate between the data created by PY ◦A(x,G1(x))
and the observed y. Hence, following the traditional GAN
mechanism, we solve a minimax problem to optimize the



parameters in A, G1 and DY , i.e., minA,G1
maxDY

LY
AEGAN.

In alternating steps, we also solve minA,G2
maxDX

LX
AEGAN

to optimize the parameters in the A, G2 and DX networks.
Note that the above loss functions are used in the last stage
of our method when optimizing both the DAE and GAN,
which differs from the second stage of initializing the GAN
where the standard GAN loss function LGAN is used as
discussed in CycleGAN [17].

The cycle consistency loss
Using a standard GAN, the network can map the same set
of input images to any random permutation of images in
the target domain. In other words, any mapping constructed
by the network may induce an output distribution that
matches the target distribution. Hence, the adversarial loss
alone cannot guarantee that the constructed mapping can
map an input to a desired output. To reduce the space of
possible mapping functions, CycleGAN uses the so-called
cycle consistency loss function expressed in terms of the
`1-norm penalty [17]:

LCYC(G1, G2) =Ex∼pdata(x)[‖G2 ◦G1(x)− x‖1]
+ Ey∼pdata(y)[‖G1 ◦G2(y)− y‖1] (4)

The rationale here is that by simultaneously minimizing
the above loss and the GAN loss, the GAN network is
able to map an input image back to itself by pushing
through G1 and G2. This kind of cycle-consistent loss has
been found to be important for a network to well perform
as documented in CycleGAN [17], DualGAN [19], and
DiscoGAN [18]. By enforcing this additional loss, a GAN
likely maps an x example to its corresponding y example
in another view.

The overall loss of VIGAN
After discussing the formulation used in the multi-modal
DAE and CycleGAN, we are now ready to describe the
overall objective function of VIGAN. In the third stage
of training, we formulate a loss function by taking into
consideration all of the above losses as follows:

L(A,G1, G2, DX , DY ) =

λAELAE(A,G1, G2) + λCYCLCYC(G1, G2)

+ LX
AEGAN(A,G2, DX) + LY

AEGAN(A,G1, DY ) (5)

where λAE and λCYC are two hyper-parameters used to bal-
ance the different terms in the objective. We then solve the
following minimax problem for the best parameter settings
of the autoencoder A, generators G1, G2, and discriminators
DX and DY :

min
A,G1,G2

max
DX ,DY

L(A,G1, G2, DX , DY ). (6)

The overall loss in Eq.(5) uses both paired and unpaired
data. In practice, even if all data are paired, the loss LCYC

is only concerned with the self-mapping. i.e., x → x or
y → y, and the loss LAEGAN uses randomly-sampled x or
y values, so both do not use the correspondence in pairs.
Hence, Eq.(6) can still learn a GAN from unpaired data
generated by random sampling from x or y examples. If all
data are unpaired, the loss LAE will degenerate to 0, and the
VIGAN can be regarded as an enhanced CycleGAN where
the two generators G1 and G2 are expanded to both interact
with a DAE which aims to denoise the G1 and G2 outputs
for better estimation of the missing values (or more precisely
the missing views).

C. Implementation

1) Training procedure: As described above, we employ
a multi-stage training regimen to train the complete model.
The VIGAN model first pre-trains the DAE where inputs
are observed (true) paired samples from two views, which
is different from the data used in the final step for the
purpose of denoising the GAN. At this stage, the DAE is
used as a regular multi-modal autoencoder to identify the
correspondence between different views. We train the multi-
modal DAE for a pre-specified number of iterations. We then
build the CycleGAN using unpaired data to learn domain
mapping functions from view X to view Y and vice versa.

At last, the pre-trained DAE is re-optimized to denoise
the outputs of GAN outputs by joint optimization with both
paired and unpaired data. The DAE is now trained with the
noisy versions of (x, y) as inputs, that are either (x,G1(x))
or (G2(y), y), so the noise is added to only one component
of the pair. The target output of the DAE is the true pair
(x, y). Because only one side of the pair is corrupted with
certain noise (created by the GAN) in the DAE input, we aim
to recover the correspondence by employing the observed
counterpart in the pair. The difference from a regular DAE is
that rather than corrupting the input with a noise of known
distribution, we treat the residual of the GAN estimate as
the noise. This process is illustrated in Figure 4 and the
pseudo-code for the training is summarized in Algorithm 1.
There can be different training strategies. In our experiments,
paired examples are used in the last step to refine the
estimation of the missing views.

2) Network architecture: The network architecture
may vary depending on whether we use numeric data or
image data. For example, we use regular fully connected
layers when imputing numeric vectors, whereas we
use convolutional layers when imputing images. These are
described in more detail in the following respective sections.

Network structure for numeric data: Our GANs
for numeric data contain several fully connected layers.
A fully connected (FC) layer is one where a neuron in a
layer is connected to every neuron in its preceding layer.
Furthermore, these fully connected layers are sandwiched
between the ReLU activation layers, which perform an



Algorithm 1 VIGAN training procedure

Require:
Image set X , image set Y , n1 unpaired x images xiu, i =
1, · · · , n1 and n2 unpaired y images yju, j = 1, · · · , n2,
m paired images (xkp, y

k
p) ∈ X × Y , k = 1, · · · ,m;

The GAN generators for x and y have parameters uX
and uY , respectively; the discriminators have parameters
vX and vY ; the DAE has parameters w; L(A) refers
to the regular DAE loss; L(G1, G2, DX , DY ) refers to
the regular CycleGAN loss; and L(A,G1, G2, DX , DY )
denotes the VIGAN loss.
Initialize w as follows:
//Paired data
for the number of pre-specified iterations do

Sample paired images from (xkp, y
k
p) ∈ X × Y

Update w to min L(A)
end for
Initialize vX , vY , uX , uY as follows:
//Unpaired data
for the number of pre-specified iterations do

Sample unpaired images each from xiu and yju
Update vX , vY to max L(G1, G2, DX , DY )
Update uX , uY to min L(G1, G2, DX , DY )

end for
//All samples or paired samples from all data
for the number of pre-specified iterations do

Sample paired images from (xkp, y
k
p) ∈ X×Y to form

LAE(A,G1, G2)
Sample from all images to form LAEGAN and LCYC
Update vX , vY to max L(A,G1, G2, DX , DY )
Update uX , uY , w to min L(A,G1, G2, DX , DY )

end for

element-wise ReLU transformation on the FC layer output.
The ReLU operation stands for rectified linear unit, and is
defined as max(0, z) for an input z. The sigmoid layer is
applied to the output layers of the generators, discriminators
and the multi-modal DAE.

The multi-modal DAE architecture contains several
fully connected layers which are sandwiched between the
ReLU activation layers. Since we have two views in our
multi-modal DAE, we concatenate these views together as
an input to the network shown in Figure 3. During training,
the two views are connected in the hidden layers with the
goal of minimizing the reconstruction error of both views.

Network structure for image data: We adapt the
architecture from the CycleGAN [17] implementation
which has shown impressive results for unpaired image-to-
image translation. The generator networks from [17, 26]
contain two stride-2 convolutions, nine residual blocks
[27], and two fractionally strided convolutions with stride

Figure 4: The multi-stage training process where the multi-
modal autoencoder is first trained with paired data (top left).
The CycleGAN (top right) is trained with unpaired data.
Finally, these networks are combined into the final model
and the training can continue with paired, unpaired or all
data as needed.

0.5. The discriminator networks use 70×70 PatchGANs
[21, 28, 29]. The sigmoid layer is applied to the output
layers of the generators, discriminators and autoencoder
to generate images within the desired range values. The
multi-modal DAE network [14] is similar to the numeric
data architecture where the only difference is that we need
to vectorize an image to form an input. Furthermore, the
number of hidden nodes in these fully connected layers is
changed from the original paper.

We used the adaptive moment (Adam) algorithm [30] for
training the model and set the learning rate to 0.0002. All
methods were implemented by PyTorch [31] and run on
Ubuntu Linux 14.04 with NVIDIA Tesla K40C Graphics
Processing Units (GPUs). Our code is publicly available at
https://github.com/chaoshangcs/VIGAN.

IV. EXPERIMENTS

We evaluated the VIGAN method using three datasets,
include MNIST, Cocaine-Opioid, Alcohol-Cannabis. The
Cocain-Opioid and Alcohol-Cannabis datasets came from
an NIH-funded project which aimed to identify subtypes of
dependence disorders on certain substances such as cocaine,
opioid, or alcohol. To demonstrate the efficacy of our method
and how to use the paired data and unpaired data for missing
view imputation, we compared our method against a matrix
completion method, a multi-modal autoencoder, the pix2pix
and CycleGAN methods. We trained the CycleGAN model
using respectively paired data and unpaired data.



(a) X → Y (b) Y → X

Figure 5: The imputation examples.

(a) Outputs from X to Y . (b) Outputs from Y to X .

Figure 6: The VIGAN was able to impute bidirectionally
regardless of which view was missing.

A. Image benchmark data

MNIST dataset MNIST [32] is a widely known bench-
mark dataset consisting of 28 by 28 pixel black and white
images of handwritten digits. The MNIST database consists
of a training set of 60,000 examples and a test set of
10,000 examples. We created a validation set by splitting
the original training set into a new training set consisting of
54,000 examples and a validation set of 6,000 examples.

Since this dataset did not have multiple views, we created
a separate view following the method in the CoGAN paper
where the authors created a new digit image from an original
MNIST image by only maintaining the edge of the number
[20]. We used the original digit as the first view, whereas the
second view consisted of the edge images. We trained the
VIGAN network assuming either view can be completely
missing. In addition, we divided the 60,000 examples into
two equal sized disjoint sets as the unpaired datasets. The
original images remained in one dataset, and the edge images
were in another set.

Figure 5 demonstrates the results. It shows the imputed
y image in (a) where G1(x) is the initial estimate via the
domain mapping. The image labeled by AE(G1(X)) is the
denoised estimate, which gives the final imputed output.
Figure 5(b) shows the other way around.

The images in Figure 6 illustrate more results. In both
parts of Figure 6, the initial view is shown on the left, and the
ground truth target is on the right. The two middle columns
show the reconstructed images by just the domain mapping,

Figure 7: Several examples of X → Y and Y → X .

and by the VIGAN.
Paired data vs all data. Table I demonstrates how using
both paired and unpaired data could reduce the root mean
squared error (RMSE) between the reconstructed image and
the original image. When all data were used, the network
was trained in the multi-stage fashion described above. The
empirical results validated our hypothesis that the proposed
VIGAN could further enhance the results from a domain
mapping.

Table I: The comparison of the root mean squared errors
(RMSE) by the four methods in comparison.

RMSE
Methods Data V1 → V2 V2 → V1 Average
Multimodal AE Paired 5.46 6.12 5.79
pix2pix Paired 4.75 3.49 4.12
CycleGAN All data∗ 4.58 3.38 3.98
VIGAN All data∗ 4.52 3.16 3.84
∗Paired data and Unpaired data.

Comparison with other methods. For fair comparison, we
compared the VIGAN to several potentially most effective
imputation methods, including the domain mappings learned
respectively by the pix2pix, CycleGAN, and a multi-modal
autoencoder methods. We show both imputation of X → Y
and Y → X in Figure 7 after running the same number
of training epochs, along with the RMSE values in Table I.
As expected, the multi-modal DAE had a difficult time as it
could only take paired information, which constituted only
a small portion of the data. Although the CycleGAN and
pix2pix were comparable with the VIGAN which performed
the best, they did not have an effective way to refine the
reconstruction from view correspondence.

B. Healthcare numerical data

The proposed method can find great utility in many
healthcare problems. We applied the VIGAN to a chal-
lenging problem encountered when diagnosing and treating
substance use disorders (SUDs). To assist the diagnosis
of SUDs, the Diagnostic and Statistical Manual version



V (DSM-V) [33] describes 11 criteria (symptoms), which
can be clustered into four groups: impaired control, social
impairment, risk use and pharmacological criteria. In our
dataset, subjects who had exposure to a substance (e.g.,
cocaine) was assessed using the 11 criteria, which led to
a diagnosis of cocaine use disorder. For those who had
never been exposed to a substance, their symptoms related
to the use of this substance were considered unknown, or
in other words missing. Due to the comorbidity among
different SUDs, many of the clinical manifestations in the
different SUDs are similar [34, 35]. Thus, missing diagnostic
criteria for one substance use may be inferred from the
criteria for the use of another substance. The capability
of inferring missing diagnostic criteria is important. For
example, subjects have to be excluded from a genome-
wide association study because they had no exposure to
the investigative substance, even though they used other
related substances [36, 37]. By imputing the unreported
symptoms for subjects, sample size can be substantially
increased which then improves the power of any subse-
quent analysis. In our experiment, we applied the VIGAN
to two datasets: cocaine-opioid and alcohol-cannabis. The
first dataset was used to infer missing cocaine (or opioid)
symptoms from known opioid (or cocaine) symptoms. The
second dataset was used to infer missing symptoms from
the known symptoms between alcohol or cannabis use.

A total of 12,158 subjects were aggregated from multiple
family and case-control based genetic studies of four SUDs,
including cocaine use disorder (CUD), opioid use disor-
der (OUD), alcohol use disorder (AUD) and cannabis use
disorder (CUD). Subjects were recruited at five sites: Yale
University School of Medicine (N = 5,836, 48.00%), Uni-
versity of Connecticut Health Center (N = 3,808, 31.32%),
University of Pennsylvania Perelman School of Medicine (N
= 1,725, 14.19%), Medical University of South Carolina (N
= 531, 4.37%), and McLean Hospital (N = 258, 2.12%). The
institutional review board at each site approved the study
protocol and informed consent forms. The National Institute
on Drug Abuse and the National Institute on Alcohol Abuse
and Alcoholism each provided a Certificate of Confiden-
tiality to protect participants. Subjects were paid for their
participation. Out of the total 12,158 subjects, there were
8,786 exposed to cocaine or opioid or both, and 12,075
exposed to alcohol or cannabis or both. Sample statistics
can be found in Table II.

The sample included 2,600 subjects from 1,109 small
nuclear families (SNFs) and 9,558 unrelated individuals.
The self-reported population distribution of the sample
was 48.22% European-American (EA), 44.27% African-
American (AA), 7.45% other race. The majority of the
sample (58.64%) was never married; 25.97% was widowed,
separated, or divorced; and 15.35% was married. Few sub-
jects (0.06%) had grade school only; 32.99% had some high
school, but no diploma; 25.46% completed high school only;

Table II: Sample size by substance exposure and race.

African American European American Other

Cocaine 3,994 3,696 655
Opioid 1,496 3,034 422
Cocaine or Opioid 4,104 3,981 695
Cocaine and Opioid 1,386 2,749 382
Alcohol 4,911 5,606 825
Cannabis 4,839 5,153 794
Alcohol or Cannabis 5,333 5,842 893
Alcohol and Cannabis 4,417 4,917 726

and 41.27% received education beyond high school.
Symptoms of all subjects were assessed through admin-

istration of the Semi-Structured Assessment for Drug De-
pendence and Alcoholism (SSADDA), a computer-assisted
interview comprised of 26 sections (including sections for
individual substance) that yields diagnoses of various SUDs
and Axis I psychiatric disorders, as well as antisocial person-
ality disorder [38, 39]. The reliability of the individual diag-
nosis ranged from κ = 0.47− 0.60 for cocaine, 0.56− 0.90
for opioid, 0.53 − 0.70 for alcohol, and 0.30 − 0.55 for
cannabis [39].

For both datasets, 200 subjects exposed to the two inves-
tigative substances were reserved and used as a validation set
to determine the optimal number of layers and the number
of nodes in each layer. Another set of 300 subjects with both
substance exposure was used as a test set to report all our
results. All the remaining subjects in the dataset were used
to train models. During either validation or testing, we set a
view missing and imputed it using the trained VIGAN and
data from the other view.

Table III: Data 1: V iew1 = Cocaine and V iew2 = Opioid.
Imputation performance was assessed using the Hamming
distance that ranged from 0 to 1.

Accuracy (%)
Methods Data V1 → V2 V2 → V1 Average
Matrix Completion Paired 43.85 48.13 45.99
Multimodal AE Paired 56.55 53.72 55.14
pix2pix Paired 78.27 65.51 71.89
CycleGAN All data∗ 78.62 72.78 75.70
VIGAN All data∗ 83.82 76.24 80.03
∗Paired data and Unpaired data.

Reconstruction quality. Tables III and IV provide the
comparison results among a matrix completion method [40],
the multi-modal DAE [14], pix2pix [21] and CycleGAN
[17]. For the examples that missed an entire view of data,
we observed that the VIGAN was able to recover missing
data fairly well. We used the Hamming distance to measure
the discrepancy between the observed symptoms (all binary
symptoms) and the imputed symptoms. The Hamming dis-
tance calculates the number of changes that need to be made
in order to turn string 1 of length x into string 2 of the same
length. Additionally, we observed that the reconstruction
accuracy in both directions was consistently higher than that



Table IV: Data 2: V iew1 = Alcohol and V iew2 = Cannabis.
Imputation performance was assessed using the Hamming
distance that ranged from 0 to 1.

Accuracy (%)
Methods Data V1 → V2 V2 → V1 Average
Matrix Completion Paired 44.64 43.02 43.83
Multimodal AE Paired 53.16 54.22 53.69
pix2pix Paired 57.18 65.05 61.12
CycleGAN All data∗ 56.60 67.31 61.96
VIGAN All data∗ 58.42 70.58 64.50
∗Paired data and Unpaired data.

of other methods. Our method also appeared to be more
stable regardless of which view to impute.
Paired data vs all data. Tables III and IV show results of
the different methods that used paired datasets only such as
the multi-modal DAE and pix2pix methods against those that
utilized unpaired data during training. The results supported
our hypothesis that the unpaired data could help improve the
view imputation from only the paired data.
Comparison with CycleGAN. Since we used CycleGAN
as a basis of the VIGAN, it was important to compare
the performance of our method and CycleGAN. While
CycleGAN did a good job for the image-to-image domain
transfer problem it struggled in imputing numeric data. We
believe that this might be the value that the multi-modal
DAE brought additionally to improve accuracy.
Multi-view generalization of the model. Although the
proposed method was only tested in a bi-modal setting with
two views, it can be readily extended to three or more views.
The extension of CycleGAN to a tri-modal setting would be
similar to that described by the TripleGAN method [41].
Extending the VIGAN to more views would also require
constructing and pre-training multi-modal autoencoders.
Scalability. One of the important advantages of the VIGAN
method is its scalability inherited from the use of deep neural
networks. The VIGAN can carry on with very large datasets
or a very large amount of parameters due to the scalability
and convergence property of the stochastic gradient-based
optimization algorithm, i.e. Adam. Imputation of missing
values in massive datasets has been impractical with pre-
vious matrix completion methods. In our experiments, we
observed that matrix completion methods failed to load data
into memory, whereas the VIGAN training took only a few
hours at most on a Tesla K40 GPU to obtain competitive
imputation accuracy.

V. CONCLUSION

We have introduced a new approach to the view imputa-
tion problem based on generative adversarial networks which
we call the VIGAN. The VIGAN constructs a composite
neural network that consists of a cycle-consistent GAN
component and a multi-modal autoencoder component, and
needs to be trained in a multi-stage fashion. We demonstrate

the effectiveness and efficiency of our model empirically on
three datasets: an image dataset MNIST, and two healthcare
datasets containing numerical vectors. Experimental results
have suggested that the proposed VIGAN method is capable
of knowledge integration from the domain mappings and the
view correspondences to effectively recover a missing view
for a sample. Future work may include the extension of the
existing implementation to more than two views, and its
evaluation using additional large datasets from a variety of
different domains. In the future, we also plan to augment
the method to be able to identify which view impacts the
imputation the most, and consequently, may facilitate the
view selection.
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