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Abstract—Depression is a major public health issue with direct
and significant effects on both physical and mental health. In this
study, we analyze smartphone sensing data to find differential
behavioral features that are correlated with depression measures
such as patient health questionnaire (PHQ-9). Our approach
uses an innovative multi-view bi-clustering algorithm. It takes
multiple views of sensing data as input to identify homogeneous
behavioral groups and simultaneously the key sensing features
that characterize the different groups. Using a publicly available
dataset, we discover that these behavioral groups with differential
sensing features are highly discriminative of PHQ-9 scores that
are self reported by the study subjects. For instance, the group
comprising less active users in the sensed activities corresponds
to overall higher PHQ-9 scores. We then employ the key sensing
features that distinguish the different groups to create predictive
models to predict the group assignment of individuals. We
verify the generalizability of these models using the support
vector machine classifier. Cross validation studies show that our
classifiers can classify individuals into the correct subgroups with
an overall accuracy of 87%.

I. INTRODUCTION

Depression is a severe public health problem. It is estimated

that depression affects 350 million people worldwide, and is

ranked the 2nd among all the major illnesses in Years Lived

with Disability (YLDs), accounting for 9.6% of all YLDs

from all major illnesses [27]. It is a significant contributor to

death by suicide [27]. In the United States, reports in 2010
show that suicide is the 10th leading cause of death, and

70% of these suicide victims are reported to have a mood

disorder such as depression [1]. Depression is found to be

associated with life threatening diseases like diabetes and heart

related issues [4]. Currently, depression is diagnosed based

on physician-administered or patient self-administered survey

instruments that require significant effort and cost, rely on

accurate introspection and reporting, and are inappropriate for

continuous monitoring of depression or its onset.

The ubiquitous adoption of smartphones has created new

opportunities for uncovering the relationship between behavior

and depression. Smartphones are highly portable to their users

as a small device, making them effective “human sensors”

appropriate for cataloging and analyzing broad aspects of

human behavior. In addition, sensing data from smartphones

can be more objective than self-reports to reflect a user’s

behavior in the diagnosis of depression. Therefore, depression

screening using smartphones could be a significant initiative to

identify depression timely. On the other hand, human behavior

is extremely stochastic in nature and is affected by many

external factors. In addition, the correlations between behavior

and depression are complex. Until now the exact causes of

depression are unknown as they involve a complex interaction

of genes and environment. How to use smartphone sensing

data to effectively understand, monitor, detect and predict

depression remains a challenging task.

Several recent studies [7], [23], [28] have demonstrated that

sensing data collected from smartphones can be used to extract

features related to depressive mood. Various features have been

identified, ranging from activity, conversation, to locations vis-

ited, that each provide a different view into a user’s behavior.

It is thus important to ask whether there exist subgroups

of user behavior measured by different sensing views that

can be predictive or indicative of depression. Existing studies

use standard correlation analysis that identifies individual

features correlated with a depression measure (e.g., through

PHQ-9 examination with or without clinical oversight) [28].

However, depression can be diagnosed from heterogeneous

behavior, such as some patients with insomnia but others with

oversleeping. There can exist substantial difference in sensing

features indicative of depression. Differentiating subgroups of

behavior based on sensing data may shed light on different

characteristics of depression or mood swings and help us

understand if sensing data can play an essential role in the

screening of depression.

In this paper, we propose an innovative machine learning

approach to identify subgroups of user behavior and the key

features of these behavior that are indicative of depression

measures, in particular, the patient health questionnaire (PHQ-

9) scores. The central component of our approach is a novel

multi-view bi-clustering method we recently published [26],

that identifies the clusters (i.e., homogeneous groups) of indi-

viduals and the key features that characterize the behavior of

these clusters simultaneously. Specifically, we extract features

from different views of smartphone data, including activities

(e.g., walking, running), conversation statistics, phone light

features and locations that a user visited, and then represent

the users with their associated features using several data

matrices, one for each view. Our multi-view bi-clustering

method aims to identify consistent row clusters across the

views and column clusters in each view as shown in Fig. 1.

The column clusters will specify the features from each view

for a row cluster. Different from merging all views into a single
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data matrix and performing a standard cluster analysis, which

may identify clusters of users that only differ in a subset of

features from a single view, our approach can guarantee the

confirmatory evidence of a behavior subgroup from all sensing

feature inputs. Support vector machine (SVM) classifiers are

then constructed to distinguish a subgroup of subjects from

others based on the identified features. We demonstrate the

capability and effectiveness of our approach using a publicly

available dataset collected from the StudentLife project [28]

at the Dartmouth College.

The rest of the paper is organized as follows. Section

II discusses the related work, Section III is dedicated to

the proposed approach. Evaluation results and discussion are

included in Sections IV. Section V concludes the paper and

describes future work.

Fig. 1. Multi-view bi-clustering: rows are grouped in the same way across
the three matrices. The users in each row cluster are homogeneous over a
subset of features from each of the views (shown as column clusters).

II. RELATED WORK

Researchers have used the rich set of built-in sensors

in smartphones, for example, accelerometer, GPS, bluetooth

and gyroscope, to infer location [9], [10], co-location [11],

activity [12], and social relationships [18]. In terms of health

related applications, recent studies have shown that human

behavioral patterns identified through smartphone sensors have

potential to provide useful insights into the mental and phys-

ical health of the smartphone users. For instance, the authors

of [19] analyze smartphone sensor data to find the relationship

between sleep, mood and sociability. They observe that sleep

and sociability have significant relationship as good night sleep

leads to better sociability. In another work [17], smartphone is

used as a tool for understanding the effect of social interactions

on weight. The authors find that social interactions can influ-

ence the weight changes and dietary habits. The authors in [16]

analyze smartphones’ co-location and communication sensing

data to find behavioral changes when a person suffers from

physical or mental health issues like common cold or stress.

They find that the data can give interesting insights regarding

health status of the smartphone owners. In some other studies,

smartphones have been used to monitor sleep [8], stress [3],

[5], [15], [24], mood [13], and general wellbeing [14], [22].

Several recent studies use smartphone sensing data for de-

pression detection, prediction and intervention. In studentLife

[28], the authors find that conversation frequency and duration,

sleep duration and the number of co-locations are correlated

with depression symptoms. While in [7], the authors analyze

mobility patterns, extracted from GPS traces of smartphones,

to understand whether mobility patterns are correlated with

PHQ-9 scores. They use Support Vector Machines (SVM)

to build both individual and general prediction models, and

find a significant correlation between mobility patterns and

depressive mood. Similarly, authors in [23] use several features

extracted from smartphone GPS information and phone usage

patterns, and find that they are strongly related to depressive

symptoms. Another study [6] proposes Mobilyze! that pro-

vides momentary intervention to a patient that suffers from

depression based on prediction of the patients mode, emotions,

cognitive state, and activities using smartphone sensors.

Our work differs from the existing studies in that we

use multi-view clustering [26], an unsupervised clustering

algorithm, to find homogeneous behavior groups that are

discriminative of depression (in particular, PHQ-9 scores). In

addition, we identify a set of key features from an array

of smartphone sensing data that can be good indicators of

depressive mood disorder.

III. OUR APPROACH

The proposed approach consists of three steps as shown

in Fig. 2: feature extraction, clustering and feature selection,

and then classification of subjects into the identified user

clusters. Since our goal is to identify key behavioral features

that are related to depression, we first extract features from

the smartphone sensing data, and organize these features into

three views according to the kind of information described

by the features. The first view examines the average or

cumulative behaviors of users by averaging the daily activity

features, which we call the average view. The second view

examines the variation of day-to-day dynamics in the physical

activities, which we call the trend view. The third view extracts

features from GPS location data, measuring the variability of a

user’s transition among locations, which we call the location
view. We next apply the multi-view bi-clustering algorithm

to the three data matrices (each corresponding to one view)

to identify homogeneous behavior subgroups as well as the

key features that distinguish the subgroups. The concurrent

validity of the resultant subgroups is assessed not only by

comparing the sensing features used in the cluster analysis

but also other metrics, such as PHQ-9 scores (as we shall see,

the subgroups are discriminative of PHQ-9 scores). In the last

step, SVM classifiers are constructed to separate one cluster

of users from another cluster of users based on the identified

features, forming three classifiers. Cross validation is used to

evaluate the generalizability of these classifiers. To assess the

validity of the identified features, the classifiers built from

using the selected features are compared with those built from

using all the sensing features.

A. Dataset

We use the dataset from the Dartmouth Studentlife website

[28]. The dataset contains survey self-reports, academic perfor-

mance data, and passive and automatic sensing data collected

from smartphone built-in sensors of 60 college students for
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Fig. 2. High-level overview of our approach.

over 10 weeks. The specific data that we use in this study are

as follows.

• Physical Activity. Physical activity is characterized in

four categories: stationary, walking, running and un-
known, as specified in [28]. To infer physical activity,

data is collected 24/7 with duty cycling. Specifically,

the classifier runs for one minute, generating an activity

inference every 2 to 3 seconds, and then pauses for 3
minutes before the next run.

• Light Information. Light sensor is used to collect the

starting and ending times when a phone is in a dark

environment. Data is only recorded when the phone is

in a dark environment for more than an hour.

• Phone Lock. It records the starting and ending time when

a phone is locked for a significant amount of time, i.e.,

more than one hour.

• Conversation. It records the starting and ending time for

each conversation period.

• Audio. The data collection frequency is similar to that of

physical activity. The audio information is classified into

four categories, silence, voice, noise and unknown, using

a classifier in [28].

• GPS Location. GPS coordinates are collected after every

10 minutes. Each sample contains the longitude, latitude

and timestamp when the coordinate is sensed.

• PHQ-9. PHQ-9 is a standard self-report questionnaire that

is used as a screening and diagnostic tool for mental

health disorders of depression. Studentlife dataset con-

tains up to two PHQ-9 reports for each participant, one

at the beginning of the study and the other at the end of

the study.

B. Feature Extraction and Views

We extract features from the dataset described in Sec-

tion III-A and arrange them into three views as follows.
1) The Average View: Intuitively, the average behavior of

a low PHQ-9 scorer differs from that of a high PHQ-9 scorer.

The average view contains a set of features, each being an

average value (the average is over all the the days when a

participant is enrolled in the study) that reflects an individual’s

overall behavior in one category (e.g., conversation, activity) or

environment information (e.g., light level, noise). Specifically,

the features include the following.

• Activity features, specifically, Activitys, Activityw and

Activityr, which represent respectively the total duration

when a participant is in stationary, walking, and running

activities in a day.

• Conversation features, specifically, Convd and Convc,

which represent respectively the total duration and num-

ber of the conversations on average that a participant has

in a day.

• Light features, specifically, Darkd and Darkc, which

represents respectively the total duration and number of

times when a participant is a dark environment in a day.

• Audio features, specifically, Audioq, Audion, and Audiov,

which represents respectively the total duration when the

audio is classified as quiet, noisy and voice in a day.

• Phone lock features, specifically, PhoneLockd and

PhoneLockc, which represents respectively the total du-

ration and number of times when a participant’s phone is

locked in a day.

2) The Trend View: Although the average behavior across

multiple days can be indicative of depressive mood swings, the

average of daily features may also cancel out the effects from

day-to-day fluctuation or dynamics of a user’s behavior. In

the trend view, we calibrate the variation of several quantities
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(including walking activity, noise audio duration and conver-

sation duration) over the study period using signal processing

techniques, which is another innovative aspect of our study.
We next use the daily conversation duration Convd as an

example to illustrate how we calculate the variance of a

sensor feature. First we use wavelet transformation to filter

the noise from the time series, which is in a low resolution

presented as one value per day across the 60 days. In particular,

we used Haar wavelet in the transformation because Haar

wavelet filtering can preserve the peak and trend of a time

series curve. As a result of the filtering, smooth time series

curves are obtained. Fig. 3 illustrates the transformation of

the conversation duration time series of four users. We can

see from the figure that the overall (low frequency) trend is

retained in the denoised data. In particular, we compare the

curves of two low PHQ-9 scorers with those of two high PHQ-

9 scorers. The two users with high PHQ-9 scores (indicating

depression) tend to have a declined trend in the time they

spent in their daily phone conversations, while the two users

with low PHQ-9 scores tend to have more periodical behavior

during the study period. This was the intuition for us to

derive this view of features from the variation of the sensing

features. Second, after the wavelet transformation to obtain

the denoised time series, we solve a least squares problem in

Eq.(1) to extract four features: the amplitude (c1), period (c2),
phase (c3), and intercept (c4) from each individual’s denoised

conversation duration time series [21].

min
c

∑
d

(f(c, d)− ȳd)
2

subject to f(c, x) = c1 sin

(
2π

c2
x+ c3

)
+ c4,

(1)

where ȳd is the denoised daily-average conversation dura-

tion on the d-th day, and c represents the four parameters,

c1, . . . , c4, to be determined from this optimization prob-

lem. For instance, we extract the amplitude (ConDa), pe-

riod (ConDp), phase (ConDph), and intercept (ConDi) of the

conversation duration time series of an individual user. The

Levenberg-Marquardt Method [20] was employed to solve this

optimization problem. These four features have been shown to

provide important additional information to the average view

in our experimental results.
The following features are obtained by applying the above

process to the respective raw sensing features.

• Variation of daily walking activity: specifically, we use

Walka, Walkp, Walkph and Walki to represent the re-

spective amplitude, period, phase and intercept of daily

walking duration.

• Variation of daily noise audio: specifically, we use

Noisea, Noisep, Noiseph and Noisei to represent the

amplitude, period, phase and intercept of daily duration

of noise audio signals.

• Variation of daily conversation duration: specifically, we

use ConDa, ConDp, ConDph and ConDi to represent

the amplitude, period, phase and intercept of the daily

conversation duration.

(a) Results of two low PHQ-9 score users

(b) Results of two high PHQ-9 score users

Fig. 3. Illustration of the denoising process for conversation duration signals
of four users across the 60 days in the study period.

3) The Location View: Recent studies [7], [23] have shown

significant correlation between location, mobility patterns and

depressive mood disorder. In our location view, we used

similar features as proposed in [7], [23]. Specifically, the

features include the following:

• Location variance, Locationvar, which measures the vari-

ability in a participant’s location. Using the approach in

[23], we calculate the location variance as

Locationvar = (σ2long + σ2lat) , (2)

where σ2
long

and σ2
lat

represent respectively the variance

of the longitude and latitude of the GPS coordinates.

• Time in location clusters, Timec1 , Timec2 , and Timec3 ,
which represent respectively the amount of time that a

participant spends in the top three clusters, normalized

by the number of days that the participant is enrolled in

the study. We identify unique clusters from the location

data using k-means clustering. To find the optimal k, we

initially set k from 1 to 10, apply k-means clustering

for each of these values. We then calculate the distance

between a point in a cluster and the centroid of the

cluster. Intuitively, as the number of clusters increases,

the distance to the centroid decreases. The optimal k is

the value beyond which the decrease is minimal. Using

the described approach, we first find the optimal number

of clusters and then calculate the amount of time that a
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user spent respectively in each cluster. We find that for

all the participants, the top three clusters cover 90% of

the locations (sorting cluster w.r.t size).

• Entropy of a participant’s locations, specifically, Entropy,
measures how uniformly a participant spends time at

different locations. Let pi denote the percentage of time

that a participant spends in location cluster i. The entropy

of the participant is calculated as

Entropy = −
∑

(pi log pi) (3)

• Normalized Entropy, specifically, EntropyN . Since the

number of location clusters varies among the participants

and entropy increases as the number of location clusters

increases, we also adopt normalized entropy [23], which

is invariant to the number of clusters and depends solely

on the distribution of the visited location clusters. The

range of normalized entropy is in [0, 1], where 0 implies

that all location data points belong to the same cluster,

while 1 means that all points are uniformly distributed

among all the clusters. Let N represent the total number

of location clusters for a participant. Then the normalized

entropy for the participant is calculated as the partici-

pant’s entropy in location normalized by logN , i.e.,

EntropyN = Entropy/ logN (4)

• Percentage of time that a participant spends at

home/dorm, specifically, Homed . As in [23], we iden-

tify “home” for a participant as the location where the

participant is found most often between 12am to 6am.

For a participant, let Td denote the total amount of time

that the participant spends in all GPS locations and Hd

denote the amount of time that the participant spends at

home on the dth day. Then

Homed =
∑

Hd/
∑

Td (5)

• Percentage of time that a participant is moving, specifi-

cally, Movepercent. Let Md denote the total amount of

time when a participant is moving on the dth day. Then

Movepercent =
∑

Md/
∑

Td (6)

• Total distance coved by a participant while enrolled in the

study, specifically, Dist. Given the longitude and latitude

for a particular participant, we use Harversine formula

[25] to calculate the distance traveled in kilometers by

the participant, which is then normalized by the number

of days that the participant is enrolled in the study.

C. Identifying Homogeneous Behavior Groups

We now briefly describe our recently-developed multi-

view bi-clustering method [26], which is used to identify

homogeneous behavior groups and the key features. Given a

data matrix X of size n-by-d with n users and d features, a

subgroup of its rows and a subgroup of its columns can be

simultaneously achieved by decomposing the matrix into a pair

of left and right (singular) vectors that are both sparse. Let u of

size n and v of size d be the left and right vectors, respectively,

resulted from the decomposition. Their outer product forms

a sparse rank-one approximation of the original matrix, i.e.,

X ≈ uvT . Eq.(7) is solved to obtain u and v.

min
u,v

‖X− uvT ‖2F
subject to ‖u‖0 ≤ su, ‖v‖0 ≤ sv,

(7)

where the objective function measures the approximation error

with a Frobenius norm of the matrix difference, and ‖·‖0 is the

�0 vector norm (although commonly called a norm, it is not

really a norm) that returns the number of non-zeros in a vector.

The rows in X corresponding to non-zero components in u
form a row subgroup; and the columns in X corresponding

to non-zero components in v form a column subgroup. The

resultant row and column clusters help to define each other.

Afterwards, subsequent clusters can be obtained by solving

Eq.(7) with an updated matrix X, specifically by excluding

the rows in X that correspond to subjects that are in the

clusters already identified (other approaches are also possible,

see [26]).

When there are multiple views of input data (and hence

multiple data matrices), for instance, three different views as

in our study, the objective is then to find the same row clusters

from all the views. We use a binary vector ω to connect

the different u vectors decomposed from the data matrices

as shown in Eq.(8):

min
ω,uk,vk,k=1,2,3

h(ω,uk,vk) =
3∑

k=1

‖Xk − diag(ω)ukvk
T ‖2F

subject to ‖ω‖0 ≤ sω, ‖vk‖0 ≤ svk ,

k = 1, 2, 3,

ω ∈ Bn.
(8)

where diag(ω) is a diagonal matrix with diagonal entries

equal to ω, sω and svk ’s are hyper-parameters that are pre-

determined to enforce sparsity of ω and vk’s, and Bn is the

set that contains all binary vectors of length n. When ωi = 0,
regardless the value of the i-th components of uk, the i-th
row will be excluded from the subgroup in all views. Hence,

row clusters that are the same across the different views can

be identified directly by finding rows that correspond to non-

zero entries in the optimal ω. In other words, in multi-view

bi-clustering, we use ω instead of uk’s to enforce consistent

row clusters (and hence consistent user subgroups) across the

multiple views. The non-zero values in vk specifies the key

features that are selected from view k. Again, after one cluster

is identified, subsequent clusters can be identified by updating

Xk’s.

D. Assessing Group Separability

After the clusters have been identified, we label a subject

with respect to the cluster that he/she belongs to. Specifically,

we identify three clusters, and correspondingly label subjects

into three subgroups. To assess the separability of the sub-

groups (i.e., user clusters), we construct SVM classifiers to
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separate the subjects into clusters using the key features that

have been selected (recall multi-view bi-clustering identifies

clusters and simultaneously key features). SVM is a supervised

learning algorithm that transforms training examples to a

higher dimensional space. In our work, we use linear SVM

with one-vs-all approach. The reason for using linear SVM

is that our dataset is small with relatively more features. Our

SVM classifier evaluates the separability of the clusters. In

addition, as we shall see, it verifies that indeed the selected

features can represent the clusters reasonably well.

IV. EVALUATION

In this section, we first present the clustering results ob-

tained from the multi-view clustering algorithm. Once the

clusters are found, we then use SVM for classification. We

further compare the classification results when using all the

features and the key features that are selected by the multi-

view clustering algorithm. At the end, we present the overall

generalizability of our approach using 10-fold cross validation.

A. Multi-view Clustering

We use multi-view clustering [26] to cluster the users into

distinct groups. Specifically, we use 49 participants from the

dataset; the rest of the participants are ignored because of

missing values. In the following, we first describe parameter

tuning for the multi-view clustering algorithm and then present

the clustering results.

1) Parameter Tuning: Our multi-view clustering algorithm

uses four hyper-parameters, i.e., sω that controls the size of

the cluster, and sv1 , sv2 and sv3 that determine the number of

key features for clustering in the three views, respectively.

We first tune sv1 , sv2 , and sv3 since our recent study [26]

indicates that these three parameters are more sensitive than

sω , and hence they need to be more carefully selected. We use

Principal Component Analysis (PCA), a commonly-used tool

for dimension reduction, to find the optimal values for these

three parameters. Specifically, through dimension reduction,

PCA can find a subset of features, i.e., principal components

that can represent the feature space. To find the principal

components, we first calculate the covariance matrix C for

a view’s data matrix. Using PCA, we then compute all the

principal components of C. We then pick the first m principal

components that represent at least 90% of the covariance

matrix C. Through simulation, we found the optimal values

for sv1 , sv2 and sv3 to be 5.
To tune sω , we start with a range of possible values, i.e.,

5−20, and search the range to find the optimal value. For each

possible value, we apply multi-view clustering to the dataset.

Once the clusters are identified, we label the data using the

cluster index. After that, we run SVM for classification over

the labeled data. In this paper, we use 5-fold cross validation

for performance evaluation. Fig. 4 summarizes our simulation

results to find the optimal sω for cluster 1. We observe that

the prediction error is the lowest when sω = 9, and hence we

choose sω = 9 for cluster 1. Using the same approach, we

choose sω = 7 for cluster 2.

Fig. 4. Cross validation for searching the proper sω .

2) Clustering Results: After parameter selection, we apply

multi-view clustering to find clusters in the data. The algorithm

identifies two clusters with 9 and 7 participants respectively;

the remaining 33 participants are in the third cluster. Recall

that the clustering algorithm only takes the sensing features,

and does not take PHQ-9 scores as input. An interesting

question is whether the resultant clusters are discriminative

of the PHQ-9 scores, and in addition, what key features are

identified to be useful in each of the three views. To answer

the above two questions, we categorize the clusters and the

related PHQ-9 scores and feature information as follows. For

each view, we draw a bar plot that presents the relative mean

values of the PHQ-9 scores (the PHQ-9 score for a participant

is the average of the pre- and post- PHQ-9 scores) and the

key features for each of the three clusters, where the relative

mean value is calculated as

Mean(Sample in Cluster)−Mean(Entire sample)

STD(Entire sample)

where STD represents to the standard deviation of a feature

over the entire sample.

The results for the three views are summarized in Figures

5 to 7. In each figure, the first bar for a cluster represents the

relative mean value of the PHQ-9 scores for this particular

cluster. An interesting observation is that the participants in

cluster 1 tend to have low PHQ-9 scores, participants in

cluster 2 tend to have high PHQ-9 scores, and the remaining

participants, i.e., those in cluster 3, have medium PHQ-9
scores. The above observation indicates that the subgroups

identified by the multi-view clustering algorithm are indeed

discriminative of the PHQ-9 scores.

We next describe the key features identified by the multi-

view clustering algorithm for each of the three views. Fig. 5

plots the relative mean values of all the features in the first

view (i.e., the average view). The results for all the three

clusters are shown in the figure. The key features that are

identified by the multi-view clustering algorithm are Convd ,

Darkd , Darkc, Audiov, Audioq and PhoneLockd . Psycholog-
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Fig. 5. The characteristics of the three clusters in the average view. The bars
represent the relative mean values of the PHQ-9 scores and various features.

ical studies such as [2] found that conversation and sleep

duration can indicate depressive mood disorder. Our results on

finding that one feature related to conversation (Convd , i.e.,

average duration of conversation in a day) and two features

related to darkness (Darkd and Darkc, i.e., average duration

and number of times in a dark environment in a day) as two

key features are consistent with these results. Specifically,

cluster 1 subgroup (which turns out to contain participants

with lower PHQ-9 scores) tends to have longer duration of

conversations than cluster 2 subgroup (which turns out to

contain participants with higher PHQ-9 scores). Similarly, if

we infer sleep from Darkc, then cluster 1 subgroup shows a

normal sleep pattern compared to cluster 2 subgroup. A similar

pattern is observed by [28]. The two key features related to

audio, Audiov and Audioq (representing the average duration

when audio is classified as voice and quiet, respectively) are

also informative behavioral features, as cluster 2 subgroup

(i.e., the high PHQ-9 subgroup) spent more time in quiet

environment. Last, our results on identifying PhoneLockd (i.e.,

the average duration of phone being locked in a day) as another

key feature are consistent with the observations in [23]: the

participants in cluster 1 subgroup (the low PHQ-9 subgroup)

tend to use their phones less compared to participants in cluster

2 subgroup (i.e., the high PHQ-9 score subgroup).

The key features identified in the trend view (see Fig. 6)

includes Walki, Walkp, Noisei, ConDa, ConDp and ConDi.
A larger Walkp indicates that the corresponding curve’s fre-

quency is low, representing a more stable pattern. From Fig.

6, we observe that Walkp for cluster 1 is higher than that for

cluster 2, indicating a more stable walking routine. A similar

trend is observed in ConDp, i.e., the low PHQ-9 subgroup

(cluster 1) has a relatively more stable conversation routine.

The two features, ConDi and Walki (corresponding to re-

spectively the intercept of conversation and walking duration)

are also interesting since intercept in wavelet transformation

represents the approximate mean value. Therefore, these two

intercept features being identified as key features confirms our
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Fig. 6. The characteristics of the three clusters in the trend view. The bars
represent the relative mean values of the PHQ-9 scores and various features.
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Fig. 7. The characteristics of the three clusters in the location view. The bars
represent the relative mean values of the PHQ-9 scores and various features.

results from the average view that the low PHQ-9 subgroup

tends to spend more time in walking and conversation.

The key features identified in the location view (Fig. 7)

are LocationVar, Timec1 , Entropy, EntropyN, Movepercent
and Dist. We observe that cluster 1 subgroup (i.e., the low

PHQ-9 subgroup) has lower Timec1 than cluster 2 subgroup

(i.e., the high PHQ-9 subgroup), indicating that low PHQ-

9 subgroup tends to spend less time at a single location.

Similarly, Movepercent is high for this subgroup, meaning

that participants with low PHQ-9 scores are comparatively

more active than high PHQ-9 participants. These results are

intuitive as they suggest that participants with low PHQ-9
scores are in general more active than participants with high

PHQ-9 scores. Entropy and normalized entropy are used to

measure the uniformity in mobility patterns. From the bar plot

(Fig. 7), we find that low PHQ-9 score participants have lower

entropy, indicating that they have a more uniform mobility

pattern, while high PHQ-9 score participants spend time less
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(a) Histogram of pre-PHQ-9 scores

(b) Gaussian fitting of each cluster

Fig. 8. Pre-PHQ-9 score distribution and Gaussian approximation for each
of the three clusters.

uniformly, i.e., they tend to spend time in a small number of

locations.

We also estimate the PHQ-9 score distribution of a cluster

assuming PHQ-9 scores follow a Gaussian distribution. The

results are shown in Figures 8 and 9, where the top two figures

show the histograms of the pre- and post- PHQ-9 scores,

respectively, over the entire sample, and the bottom two figures

show the density curves of the scores for individual clusters.

The modes of clusters 1 and 2 are clearly separable. Cluster

3’s density curve spans across those of the other two clusters,

which is expected as it contains the remaining subjects (not

identified by the first two clusters). The above results further

demonstrate that the subgroups identified by the multi-view

clustering approach are discriminative of PHQ-9 scores.

B. Group Separability Results

After clustering, we label the subjects with their correspond-

ing cluster indices determined by the multi-view clustering

approach, and use SVM for classification to validate the

separability of the clusters. Furthermore, we compare the

classification accuracy when using the features selected from

our multi-view clustering algorithm [26] with that when using

all the features that are extracted. Specifically, now the dataset

has class labels as cluster 1, cluster 2 and cluster 3. Since the

dataset has only a small number of instances, before training

the classifier, we first up-sample by repeating the samples for

clusters 1 and 2, i.e., duplicate each row three more times for

cluster 1 and four times for cluster 2. As a result, cluster

1 now has 36 rows, and cluster 2 has 35 rows. We then

randomly choose 70% of the instances as the training set and

the remaining 30% as the testing set. Since we are dealing with

multi-class classification problem, we use one-vs-all scheme

for training the SVM. One-vs-all scheme builds K different

(a) Histogram of Post-PHQ-9

(b) Gaussian Fitting of Each Cluster

Fig. 9. Post-PHQ-9 score distribution and Gaussian approximation for each
of the clusters.

classifiers, where K represents the total number of classes.

For each classifier i, the positive example will be the one that

belongs to class i, while all others are considered as negative

instances. Let Ci be the ith classifier’s confidence score. The

classifier output C(x), for unseen instance x, reflects the

highest confidence score and can be represented as

C(x) = argmax
i

(Ci(x))

We now present the results of SVM classification when

using features selected by multi-view clustering. To check the

generalizability of the SVM model, 30% of the data is used as

the test data. Table I lists the confusion matrix, where cluster 1,
cluster 2 and cluster 3 represent the three classes respectively.

The diagonal of the matrix represent the correct classification

results. The overall accuracy of the classifier over the three

classes is approximately 87.1%. We observe that SVM mis-

classifies instances of class 3, while performs well for the

other two classes. The relatively high accuracy indicates that

the clusters are indeed separable using the key features.

����������Actual Label

Predicted Label
Cluster 1 Cluster 2 Cluster 3

1 11 0 0
2 0 11 0
3 3 1 5

TABLE I
CONFUSION MATRIX FOR THE SVM MODEL, USING THE KEY FEATURES

IDENTIFIED FROM THE MULTI-VIEW CLUSTERING ALGORITHM.

We also compare the performance of the above SVM model

with the model when using the complete feature set. Table II

lists the confusion matrix when using the complete feature
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set. Again, the diagonal of the matrix represents the correct

classification results. The overall accuracy of the classifier

over the three classes is approximately 80.6%. The comparable

accuracy when using the selected features and the complete

feature set (i.e., 87.1% versus 80.6%) indicate that the selected

features are sufficient (they capture sufficient information of

all the features).

����������Actual Label

Predicted Label
Cluster 1 Cluster 2 Cluster 3

1 10 0 0
2 0 11 0
3 3 3 4

TABLE II
CONFUSION MATRIX FOR THE SVM MODEL, USING ALL THE FEATURES.

Using confusion matrices I and II, we measure recall

(sensitivity) and precision. To calculate recall we use Recall =
TP/AP. Here TP stands for true positives, i.e., the correct true

class classification, and AP represents actual positives. When

using the selected features, recalls for the three classes are 1.0,
1.0 and 0.56, respectively, while when using all the features,

recalls are 1.0, 1.0 and 0.4, respectively. To calculate precision,

we use Precision = TP/PP, PP stands for predicted positives.

When using the selected features, precisions for the three

classes are 0.79, 0.92 and 1.0 respectively, when when using

all the features, precisions are 0.77, 0.79 and 1.0, respectively.

The comparable recall and precision when using the selected

features and all the features again confirm that the selected

features are sufficient.

C. Cross Validation

To further validate the accuracy of the classification, we

use 10-fold cross validation. Specifically, we divide the dataset

randomly into 10 equal-size disjoint subsets, and construct ten

training and testing sets, each training set uses 90% of the data

and the corresponding testing set uses the remaining 10% of

the data. SVM classifier is trained 10 times, and each time

a different set is held out as a test set. Using 10-fold cross

validation, the overall accuracy is 89.4% (see Table III).

����������Actual Label

Predicted Label
Cluster 1 Cluster 2 Cluster 3

1 36 0 0
2 0 35 0
3 7 4 22

TABLE III
CONFUSION MATRIX FOR SVM, 10-FOLD CROSS VALIDATION.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented a novel approach to identify

homogeneous behavioral groups using smartphone sensing

data. Our approach, centered on multi-view bi-clustering,

identifies three clusters that are discriminative of PHQ-9 scores

(they contain participants with low, high and medium PHQ-9
scores, respectively). In addition, it simultaneously finds the

key sensing features that characterize the different groups. We

further used SVM for classifying the clusters. The overall

prediction results when using the key features are promising,

with an overall accuracy of 87.1%.

As future work, our plan is to analyze data extracted from

other smartphone sensors. In addition, we are in the process

of collecting data from a larger population, and will analyze

the dataset to understand further the relationship of human

behavior reflected by smartphone sensing data and mental

health.
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