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Abstract  
Characterization and quantification of the severity of diffuse parenchymal lung diseases (DPLD) using CT is an 
important issue in clinical research. Recently, several classification-based computer-aided diagnosis (CAD) systems for 
DPLD [1, 2] have been proposed. For some of those systems, a degradation of performance [2] was reported on unseen 
data because of considerable inter-patient variances of parenchymal tissue patterns.  
 
We believe that a CAD system of real clinical value should be robust to inter-patient variances and be able to classify 
unseen cases online more effectively. In this work, we developed a novel adaptive knowledge-driven CT image search 
engine that combines offline learning aspects of classification-based CAD systems with online learning aspects of 
content-based image retrieval (CBIR) systems. Our system could seamlessly and adaptively fuse offline accumulated 
knowledge with online feedback, leading to an improved online performance in detecting DPLD in both accuracy and 
speed aspects. Our contribution lies in: (1) newly developed 3D texture-based and morphology-based features; (2) a 
multi-class offline feature selection method; and, (3) a novel image search engine framework for detecting DPLD. Very 
promising results have been obtained on a small test set. 
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1. Methods 

1.1 System Overview 
 

 
Fig. 1. System Overview 

 
Fig.1 shows the basic overview of our system. We first select training images and ask experienced experts to mark 
volumes of interest (VOIs) on CT images and label them as containing healthy or DPLD parenchymal tissues. The VOIs 



are then processed to eliminate voxels characterized as being airways, after which volumetric features are extracted. 
Parametric statistical model for each disease class along with its optimal feature sets is learned and stored in our 
knowledge database.  
 
For online DPLD detection, the user first marks/scribbles a partial VOI. Our system will extract volumetric features from 
voxels within VOI. By comparing the extracted volumetric features with disease classes in the knowledge database, our 
intelligent search engine is able to decide the possible disease classes and compute the features optimized for the specific 
disease class on the whole image volume. These features are then computed at all the other voxels in the image, with 
each voxel in the image then represented as a feature vector. The similarity between each voxel and the VOI voxels is 
measured by Mahalanobis distance. Voxels with high similarity will then be highlighted so that the user can provide 
feedback for further refinement, which requires the online learning of standard CBIR system.  

1.2 Volumetric Feature Extraction 
Adaptive histogram binning based 3D local binary patterns: Local binary patterns (LBP) have been successfully 
extended by Zhao [3] to 3D texture analysis. In this work, we employ it to analyze parenchymal texture in CT image. 
First, we use multi-level thresholding Otsu method to adaptively merge image regions of approximately the same gray 
level properties. Then the LBP-Top algorithm [3] was used to extract volumetric texture-based features. 
 
3D bullae size histogram: We propose a 3D bullae size histogram feature to quantify morphology patterns of low-
attenuation areas (referred as “bullae” ) in the lung. First, all air-filled areas are marked with a simple thresholding 
algorithm. Then we use a 3D morphological filter and component labeling algorithm to locate disconnected bullaes. Size 
histograms are constructed by distributing bullaes into four size ranges of normal, small sized, medium-sized and large-
sized bullaes. 
 
Other features: First order and second order intensity-based and texture-based statistical features, including co-
occurrence matrix based texture (GLCM), intensity statistics, intensity ratio and wavelet texture, are computed.  

1.3 Intelligent Search Engine 
Our intelligent search engine is composed of four major components: (1) models offline learned for known diseases and 
healthy parenchymal tissues; (2) classification of user scribbled VOIs according to known disease models; (3) online 
feature selection based on dissimilarity measure between user scribbled VOIs and the healthy model; (4) similarity 
measure between each voxel in the image and user scribbled VOIs using the set of features selected both offline and 
online. 

1.3.1 Offline Learning for Diseases and Healthy Parenchymal Tissues  
We collect image data for certain DPLDs, and employ supervised learning techniques to construct classifiers for each 
disease, which can later be deployed in the on-line detection system. It is essential to select the best set of features to 
characterize each DPLD from a variety of low-cost image features. We have adopted both filtering methods that rank 
features according to a statistic score and wrapper methods that select a set of features on which the detection accuracy is 
optimal. 
 
Various scoring functions exist to rank features in terms of discriminant capacity. The so-called Fisher score is used in 
our setting. Denote a feature f, and its values on class 1 f1, and values on class 2 f2, then 

Fisher score ( 1) ( 2) ( ( 1) ( 2))mean f mean f stddev f stddev f= − +  

We also investigate a novel logistic-regression multi-class feature selection (LRMCFS) approach that takes into account 
the relatedness of all the classes. For many standard classification approaches such as SVM, logistic regression, a multi-
class problem is decomposed into multiple binary classification problems by taking a scheme like one-versus-all. Unlike 
the common feature selection process where each binary classifier selects its own features, our approach eliminates 
irrelevant features for all classes and identifies discriminant features for each of the classes. Hence the features are 
selected across all binary classifiers. For example, an individual binary classifier aims to separate emphysema from other 
diseases. It treats all other diseases as in one class and neglects there are actually multiple types of diseases. By learning 
all the binary classifiers together, our approach interacts between different classes for the best possible set of features. 
We formulate our approach based on logistic regression. In other words, we seek to optimize the following cost function: 
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is in class m, -1 otherwise.  The resulting one-versus-rest logistic regression classifiers based on selected features are 
stored in the knowledge database. 

1.3.2 Online VOI Classification 
After user marked VOI examples are available, we compute volumetric features for sampled voxels within VOI. Voxels 
are then classified by the multi-class classifier in knowledge database. Majority vote across all voxels in the VOI is used 
to determine the final VOI label. 

1.3.3 Online Feature Selection based on User Scribble or Relevance Feedback 
In order to enhance the flexibility in dealing with inter-patient variance, an online feature selection component was 
included in our system through on-line user interaction. The initial user scribble is used to construct the positive example 
set. We randomly sample healthy voxels from our knowledge database to form the negative example set. Rank features 
according to Fisher scores. Note that this feature set is specific to this particular patient. This is important and meaningful, 
because, for example, emphysema has high inter-patient variability and we may not find a good feature set for all 
possible variations offline. But for the current patient, emphysema patterns vary much less and a good, discriminative 
feature set may exist. This step is to supplement the generic, cross-patient disease-specific image features extracted off-
line with patient-specific and disease-specific image features to achieve better retrieval results. We merge the top 10 
online selected features with the offline feature set as the final feature set. Finally, we calculate these features for every 
voxel in the whole image. 

1.3.4 Similarity Measurement   

Mahalanobis distance is used as the similarity measurement, which is defined as: 1( ) ( ) ( )T
MD x x xµ µ−= − Σ − where 

x is the feature vector of a voxel based on the selected feature set, µ is the mean feature vector computed using the VOI 

examples, Σ are covariance matrix. Our system allows users to define the similarity threshold through friendly user 
interface. 

2. Results 

2.1 Results of Offline Classification 
Thirty CT scans of Patients with DPLDs and healthy patients were used in this study. Fifteen scans were from normal 
smokers/nonsmokers. Other fifteen scans contained DPLDs including emphysema and fibrosis. Table 1 shows the results 
of the error rate for a 3-fold stratified cross-validation experiment using different types of groups of features and multi-
class LDA classifier. Note that the test set is completely independent from the training patients. The precision using the 
logistic regression classifier by combining all classifiers is 75.27%  
 

Intensity-based Feature Precision (%) Texture-based Feature Precision (%) 
Intensity Ratio 60.17 LBP 61.38 
Intensity Statistics 50.72 GLCM 67.72 
Intensity Histogram 47.5 Wavelet 65.89 
Bullae Index 53.34    

Table 1. Offline classification precision of different group of features using multi-class LDA classifier  

2.2 Final System Illustration 
Fig. 2(a) and (b) shows two axial slices of the testing images and VOI examples scribbled by radiologists along with the 
color-coded outputs from our system. It can be seen that our system was able to classify various diffuse lung diseases on 
the fly from initial VOI examples. The output of our system aligned well with the radiologist’s markings. 
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Fig.2 (a.1) A CT slice with emphysema in the axial view, (a.2) Partial VOI example marked by the radiologist, (a.3) The 
color-coded output by our system. (b.1) A CT slice with fibrosis in the axial view, (b.2) Partial VOI example marked by 
the radiologist, (b.3) The color-coded output by our system. 
 

Conclusion 
We have developed a novel adaptive knowledge-driven image search engine that combines offline learning aspects of 
classification-based CAD systems along with online learning aspects of CBIR system. Our system could seamlessly and 
adaptively fuse offline accumulated knowledge with online feedback knowledge, leading to an improved online 
performance in detecting DPLDs in terms of both accuracy and speed.  Future steps are to optimize the processing time 
and to clinically evaluate the VOI marked by the system. 
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