

Introduction to Discrete Systems

Jinbo Bi Department of Computer Science & Engineering http://www.engr.uconn.edu/~jinbo

The Instructor

- Ph.D. in Mathematics
- Working experience
 - Siemens Medical Solutions
 - Department of Defense, Bioinformatics
 - UConn, CSE
- Contact: jinbo@engr.uconn.edu, 486-1458 (office)
- Research Interests:
 - Genetic analysis of complex human disease
 - Intelligent online counseling systems to monitor and regulate heavy alcohol use among college students
 - Clinical decision support systems Easy Breathing for asthma care

http://labhealthinfo.uconn.edu/Ea syBreathing

Today

Organizational details

Purpose of the course

- Material coverage
- Section 1.1 of the text

Course Syllabus

 Go over syllabus carefully, and keep a copy of it

Course website

http://www.engr.uconn.edu/~jinbo/Fall2012_discr ete_math.htm

Textbook

- Attending the lectures is not a substitute for reading the text
- Lectures merely highlight some examples
- Read the text and do as many exercises as humanly possible

Slides

- We may not have slides for each lecture (only the first lecture has a full set of slides)
- If a lecture uses slides, they will be available right after lecture at HuskyCT

Marking Scheme

- 6 out of 7 assignments
 - (the lowest mark assignment will be dropped)
- 2 Midterm:
- I Final Exam:

40% 30%

30%

- Curved
 - Curve is tuned to the final overall distribution
 - No pre-set passing percentage

In-Class Participation

Finding errors in my lecture notes

- Answering my questions
- Asking questions on the material

Assignments

- 6 out of 7 will count
- Each will have 4-10 problems from the textbook
- Solutions will be published at HuskCT after due day
- Each assignment will be given 1 week, but some may be 2-weeks

Some Arithmetic

- Suppose you are running late and the due date is near...
- If you don't hand in just one assignment:
 - No problem (only 6 out of 7 count)
- If you don't hand in two assignments:
 - Lose 30 / 6 = 5% of the final mark
- Suppose you copy it from a friend:
 - We will most likely detect it
 - You will lose 100% of the final mark
 - Your friend will be prosecuted as well
 - Plus: suspension, possible deportation, etc.
- The choice is always yours...

Why This Course?

- Relation to real life:
 - Algorithm correctness ~ programming, reverse-engineering, debugging
 - Propositional logic ~ hardware (including VLSI) design
 - Sets/relations ~ databases (Oracle, MS Access, etc.)
 - Predicate logic ~ Artificial Intelligence, compilers
 - Proofs ~ Artificial Intelligence, VLSI, compilers, theoretical physics/chemistry

Code Correctness

- Millions of programmers code away daily...
- How do we know if their code works?
- How can we find the bug if it does not work

Microsof	t Visual C++ Debug Library 🛛 🔣					
8	Debug Error!					
-	Program: C:\ARTICLES\EXCEPTIONS\TERMINATED\DEBUG\TERMINATED.EXE					
	abnormal program termination					
	(Press Retry to debug the application)					
	Abort Betry Ignore					

Argument #1

- All men are mortal
- Socrates is a man

Therefore,
 Socrates is mortal

Argument #2

Nothing is better than God
A sandwich is better than nothing

Therefore,
 a sandwich is better
 than God

Validity

 An argument is valid if and only if given that its premises hold its conclusion also holds

- So...
 - Socrates argument: Valid or Invalid?
 - Sandwich argument: Valid or Invalid?

How can we tell ?

- Common sense?
- Voting?
- Authority?
- What is valid argument anyway?
- Who cares?

● ???

CSE 2500

 Logic : a formal way to assess a validity of an argument

 Can prove theorems in a semiautomatic fashion

 Can verify given proofs that an argument is valid

Material Coverage

The logic of compound statements

The logic of quantified statements

elementary number theory

mathematical induction, Recursion

- Chapter 1: speaking mathematically
- Chapter 2:
- Chapter 3:
- Chapter 4:
- Chapter 5:
- Chapter 6: set theory
- Chapter 7: functions
- Chapter 8: Relation
- Chapter 10: Graphs (potential)

Arguments in Puzzles

The Island of Knights and Knaves

Never lie

Always lie

Example #1

- You meet two people: A, B
- A says:
 - I am a Knave or
 - B is a Knight.

Who is A?

Who is B?

Solution

- The original statement can be written as:
- S = X or Y
- X = "A is a Knave"
- Y = "B is a Knight"
- Suppose A is a Knave
- Then S must be false since A said it
- Then both X and Y are false
- If X is false then A is not a Knave
- Contradiction : A cannot be a Knave and not a Knave !
- So A must be a Knight
- So S is true and X is not true
- Thus, to keep S true Y must be true
- So B is a Knight too

How about...

You meet just one guy : A

A says:
"I'm a Knave!"

Who is A?

Features Of An Argument

- arguments involve things or objects
- things have properties
- arguments consist of statements
- statements may be composed
- an argument starts with assumptions which create a context.
- each step yields another statement which is true, within its context.
- arguments may contain sub-arguments
- it is absurd for a statement to be both true and false

Formalization

- Why formalize?
 - to remove ambiguity
 - to represent facts on a computer and use it for proving, proof-checking, etc.
 - to detect unsound reasoning in arguments

Logic

- Mathematical logic is a tool for dealing with formal reasoning
- Logic does:
 - Assess if an argument is valid/invalid
- Logic does not directly:
 - Assess the truth of atomic statements

Differences

- Logic can deduce that:
 Edmonton is in Canada
- given these facts:
 - Edmonton is in Alberta
 - Alberta is a part of Canada
- and the definitions of:
 - 'to be a part of'
 - 'to be in'

 Logic knows nothing of whether these facts actually hold in real life!

X,P,Q,...

P=" I'm a knave" Q= "He is a knight"

&, ∨, →, ⇔, ~, ... ΧνΥ

Connectives:

onnect propositions:

Mathematical Symbols

- Simplest kind of math logic
- Dealing with: Θ
 - Propositions: each can be true or false Examples:

Connectives

- Different notation is in use
- We will use the common math notation:

⊖ ~	not
⊖ V	or (non-exclusive!)
Θ	and
$\bullet \rightarrow$	implies (if then)
⊜ <⇔	if and only if
Θ \forall	for all
⊖∃	there exists

Formulae

- A statement/proposition: true or false
- Atomic:
- Unit Formula:
- Conjunctive:
- Disjunctive:
- Conditional:
- Biconditional:

- P, Q, X, Y, ...
- P, ~P, (formula), ...
- P & Q, P & ~Q, ...
- P v Q, P v (P & X),...
- $P \rightarrow Q$
- P ⇔ Q

Determining Truth of A Formula

given

- Atomic formulae:
- Compound formulae: via meaning of the connectives
- Suppose: P is true
 Q is false
 How about: (P v Q)

Truth tables

Truth Tables

• Suppose:

P is false Q is false X is true

How about:

- P & Q & X
- P v Q & X
- P & Q v X

Precedence

- ~ highest
- ⊜ &
- Θ V
- $\bullet \rightarrow$, \Leftrightarrow lowest

Avoid confusion - use '(' and ')':
 P & Q v X
 (P & Q) v X

Parenthesizing

- Parenthesize & build truth tables
- Similar to arithmetics:
 - 3*5+7 = (3*5)+7 but **<u>NOT</u>** 3*(5+7)
 - $A\&B \lor C = (A\&B) \lor C$ but <u>NOT</u> $A\&(B \lor C)$
- So start with sub-formulae with highestprecedence connectives and work your way out
- Let's do the knave & knight problem in TT

TT for K&K

- S = X or Y
- X = "A is a Knave"
- Y = "B is a Knight"

0	А	В	S	Х	Υ	ΧνΥ	Absurd
0							
0	Knave	Knave	false	true	false	true	yes
0	Knave	Knight	false	true	true	true	yes
0	Knight	Knave	true	false	false	false	yes
0	Knight	Knight	true	false	true	true	no

