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Abstract

We develop an intuitive geometric framework for support vector regression (SVR).
By examining when ε-tubes exist, we show that SVR can be regarded as a classifica-
tion problem in the dual space. Hard and soft ε-tubes are constructed by separating
the convex or reduced convex hulls respectively of the training data with the re-
sponse variable shifted up and down by ε. A novel SVR model is proposed based
on choosing the max-margin plane between the two shifted datasets. Maximizing
the margin corresponds to shrinking the effective ε-tube. In the proposed approach,
the effects of the choices of all parameters become clear geometrically. The kernel-
ized model corresponds to separating the convex or reduced convex hulls in feature
space. Generalization bounds for classification can be extended to characterize the
generalization performance of the proposed approach. We propose a simple itera-
tive nearest-point algorithm that can be directly applied to the reduced convex hull
case in order to construct soft ε-tubes. Computational comparisons with other SVR
formulations are also included.

Key words: support vector machines, kernel methods, regression, nearest-point
algorithms

1 Introduction

Support Vector Machines (SVMs) [21,22,7] are a robust methodology for inference
with minimal parameter choices. Intuitive geometric formulations exist for the classi-
fication case addressing both the error metric and capacity control [4,6]. For linearly
separable classification, the primal SVM finds the separating plane with the maxi-
mum hard margin between the classes. As shown in Figure 1(left), the equivalent dual
SVM computes the closest points in the convex hulls of the data from each class. The
optimal separating plane bisects these two points. For the inseparable case, the primal
SVM optimizes the soft margin of separation between the two classes. As shown in
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Figure 1(right), the corresponding dual SVM finds the closest points in the reduced
convex hulls. In this paper, we derive analogous arguments for SVM regression (SVR).

Fig. 1. SVM Classification; left: hard margin case; right: soft margin case.

We provide a geometric explanation for SVR with the ε-insensitive loss function. From
the primal perspective, a linear function with no residuals greater than ε corresponds
to an ε-tube constructed about the data in the space of the data attributes and the
response variable [21] (see e.g. Figure 3(a)). In Section 2, for a fixed ε > 0 we examine
the question, “When does a “perfect” or “hard” ε-tube exist?”. As shown by duality
analysis, the existence of a hard ε-tube depends on the separability of two sets. The
two sets consist of the training data augmented with the response variable shifted up
and down by ε. In the dual space, regression becomes the classification problem of
distinguishing between these two sets. The geometric formulations developed for the
classification cases [4,6] become applicable to the regression cases [5].

Let us briefly review the geometric interpretation of classic SVMs for binary classifi-
cation of both linearly separable and inseparable data. For the separable case, finding
the maximum margin plane between the two classes A and B is equivalent to bisecting
the closest points in the convex hulls of each class. As in Figure 1(left), the convex
hull method finds the closest points c and d respectively in the convex hulls of A and
B, then bisects them to obtain the optimal separating plane. A similar interpretation
can be achieved for the inseparable case by using reduced convex hulls. Reduced con-
vex hulls are a subset of the original convex hull created by reducing the influence of
any single data point. Solving the reduced convex hull formulation is exactly equiv-
alent to solving the classic inseparable SVM classification for appropriate choices of
parameters. The optimal plane bisects the closest points in the reduced convex hulls
as in Figure 1(right).

In this work we show the same geometric intuition can be applied to the ε-insensitive
regression problem by converting the regression problem to a classification problem.
Figure 2(left) illustrates a simple regression problem. In Figure 2(middle), the class of
points (circles) that overestimate the data is constructed by shifting each data point
up by ε and the class of points (triangles) that underestimate the data is constructed
by shifting each data point down by ε. Then a maximum margin separating plane
is constructed between the two shifted data sets. Figure 2(right) demonstrates how
the separating plane is the final regression function. Figure 2 assumes that a hard
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ε-tube exists with zero ε-insensitive error. As in classification, the reduced convex hull
approach is used for the soft ε-tube case when the ε-insensitive error is positive.

Fig. 2. SVM Regression; left: original data; middle: shifted data and separating plane; right:
regression plane.

The primary contributions of this work include the following:

• A novel geometric interpretation of SVR from the dual perspective is developed
along with a mathematically rigorous derivation of the geometric concepts.

• New SVR models, H-SVR and RH-SVR, are proposed based on separating the
convex hulls or reduced convex hulls of the augmented training data. We call the
resulting formulation convex hull SVR (H-SVR) and reduced convex hull SVR
(RH-SVR) 1 . Much like in SVM classification, to compute a hard ε-tube, H-SVR
computes the closest points in the convex hulls of the augmented classes. The cor-
responding maximum margin (max-margin) plane defines the effective ε-tube. The
size of the margin determines how much the effective ε-tube shrinks. Similarly, to
compute a soft ε-tube, RH-SVR finds the closest points in the reduced convex hulls
of the two augmented sets. For properly-tuned parameters, the methods perform
similarly but not necessarily identically to traditional ε-SVR [9] and ν-SVR [18].

• RH-SVR eliminates the parameter C, for which the geometric role or interpretation
is not known for the formulations of ε-SVR and ν-SVR. The geometric roles of the
two parameters of RH-SVR, ν and ε, are very clear, facilitating model selection,
especially for nonexperts. Like ν-SVR, RH-SVR shrinks the ε-tube and has a pa-
rameter ν controlling the robustness of the solution. The parameter ε acts as an
upper bound on the size of the allowable insensitivity to error. Thus the effective
size of the tube, denoted as ε̂, is determined by both ε and ν.

• A bound on generalization performance is derived by analyzing the connection be-
tween the primal regression problem and dual classification problem. The regression
model obtained by solving the RH-SVR has the property that a point having resid-
ual larger than ε in the primal space corresponds to a misclassified point in the
dual classification space, and a point having residual larger than ε̂ corresponds to a
margin error in the dual space. Therefore bounds derived for classification can be

1 Note that the algorithms were originally denoted as C-SVR and RC-SVR in [5]. We
change the acronym to avoid confusion with the classic SVR.
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adopted to analogously analyze the generalization performance of RH-SVR. The
proposed RH-SVR model directly minimizes this bound.

• One of the major benefits of H-SVR and RH-SVR is that they can be solved by
fast iterative nearest-point algorithms such as those used in the SVM classification.
Prior nearest-point algorithms (NPA) [13,14] were very effective but limited to the
convex hull case for classification. We propose a generic NPA applicable to both the
regular and reduced convex hull cases. Consequently, the approach is applicable to
both the hard ε-tube and soft ε-tube cases of regression problems. We can therefore
adapt the NPA to classification and regression SVMs. The resulting algorithm is
efficient, easy to implement, and requires no optimization solvers.

The remainder of this paper is organized as follows. In Section 2, we examine when the
ε-tubes exist using theorems of alternative and duality analysis. Section 3 is dedicated
to the construction of hard ε-tubes about data by the regression models produced by
separating the convex hulls of shifted data. We present how to construct the soft
ε-tubes if ε is not large enough to make a hard tube exist in Section 4. Following
that, we kernelize our approaches, H-SVR and RH-SVR, in Section 5. Then some
further characteristics about RH-SVR are discussed in Section 6. Section 7 explores
the generalization performance of the RH-SVR. A generic nearest-point algorithm is
proposed and analyzed in Section 8 for both the hard-tube and soft-tube cases in
regression. Experimental studies for demonstration of RH-SVR behaviors and com-
parison with ε-SVR and ν-SVR are included in Section 9. The last section summarizes
the conclusions and discusses potential extensions.

2 When Does the ε-Tube Exist?

SVR constructs a regression model that minimizes some empirical risk measure reg-
ularized to control capacity. Let x be the n predictor variables and y the depen-
dent response variable. In [21], Vapnik proposed using the ε-insensitive loss function
Lε(x, y, f) = |y − f(x)|ε = max (0, |y − f(x)| − ε), in which an example is an error
if its residual |y − f(x)| is greater than ε. Plotting the points in (x, y) space as in
Figure 3(a), we see that for a “perfect” regression model the data fall in a hard ε-
tube about the regression line. Let (xi, yi) be an example where xi ∈ Rn is the ith

predictor vector, yi is the corresponding response, and i = 1, 2, · · · , `. The training
data are then (X,y) where the matrix X = (x1 x2 · · · x`)

′ ∈ R`×n and y ∈ R` is the
response. A hard ε-tube for a fixed ε > 0 is defined as a plane y = w′x + b satisfying
−εe ≤ y − Xw − be ≤ εe where e is an `-dimensional vector of ones. Vectors and
matrices are denoted as bold lower-case and capital letters respectively, and x′ or X′

is the transpose of a vector x or a matrix X.

When does a hard ε-tube exist? Clearly, for ε large enough such a tube always exists
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Fig. 3. The (a) primal hard ε0-tube, and dual cases: (b) dual strictly separable ε > ε0, (c)
dual separable ε = ε0, and (d) dual inseparable ε < ε0.

for finite data. The smallest hard tube, the ε0-tube, can be found by optimizing:

minw,b,ε ε

s.t. −εe ≤ y −Xw − be ≤ εe
(1)

Note that the smallest tube is typically not the ε-SVR solution. Let D+ and D− be
formed by augmenting the data with the response variable respectively increased and
decreased by ε, i.e., D+ = {

(
xi

yi+ε

)
, i = 1, · · · , `} and D− = {

(
xi

yi−ε

)
, i = 1, · · · , `}.

The vector z =
(
x
y

)
is in the augmented space. Consider the simple problem in Figure

3(a). For any fixed ε > 0, there are three possible cases: ε > ε0 in which strict hard
ε-tubes exist, ε = ε0 in which only ε0-tubes exist, and ε < ε0 in which no hard ε-tubes
exist. A strict hard ε-tube with no points on the edges of the tube only exists for
ε > ε0. Figure 3(b-d) illustrates what happens in the dual space for each case. The
convex hulls of D+ and D− are drawn along with the max-margin plane in (b) and
the supporting plane in (c) for separating the convex hulls.

Clearly, the existence of the tube is directly related to the separability of D+ and
D−. If ε > ε0, then a strict hard tube exists and the convex hulls of D+ and D− are
strictly separable. We use the following definitions of separation of convex sets.

Definition 1 (Separable and strictly separable convex sets) [3] Let U and V
be nonempty convex sets. A plane H = {x : w′x = α} is said to separate U and V
if w′x ≥ α, ∀x ∈ U and w′x ≤ α, ∀x ∈ V. H is said to strictly separate U and V if
w′x ≥ α + ∆ for x ∈ U , and w′x ≤ α − ∆ for each x ∈ V where ∆ is a positive
scalar.

There are infinitely many possible ε-tubes when ε > ε0. One can see that the max-
margin plane separating D+ and D− corresponds to one such ε-tube. In fact this
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plane forms an ε̂-tube where ε > ε̂ ≥ ε0. If ε = ε0, then the convex hulls of D+ and
D− are separable but not strictly separable. The plane that separates the two convex
hulls forms the ε0-tube. In the last case, where ε < ε0, the convex hulls of D+ and
D− intersect. No hard ε-tubes or max-margin planes exist.

It is easy to show by construction that if a hard ε-tube exists for a given ε > 0 then
the convex hulls of D+ and D− will be separable. If a hard ε-tube exists, then there
exists (w, b) such that

Xw + be ≤ y + εe,

−Xw − be ≤ −y + εe.
(2)

Gale’s Theorem of the alternative can be used to precisely characterize the ε-tube.
By Gale’s Theorem [15], the system Ax ≤ c has a (or has no) solution if and only if
the alternative system A′y = 0, c′y = −1, y ≥ 0 has no (or has a) solution.

Theorem 2 (Conditions for existence of hard ε-tube) A hard ε-tube exists for
a given ε > 0 if and only if the following system in (u,v) has no solution:

(y + εe)′u− (y − εe)′v < 0,

X′u = X′v, e′u = e′v = 1, u ≥ 0, v ≥ 0.
(3)

PROOF. A hard ε-tube exists if and only if System (2) has a solution. By Gale’s
Theorem of the alternative [15], System (2) has a solution if and only if the following
alternative system has no solution:

X′u = X′v, (y + εe)′u− (y − εe)′v = −1,

e′u = e′v, u ≥ 0, v ≥ 0.

Rescaling by 1
σ

where σ = e′u = e′v > 0 yields the result. 2

Examining the geometry of the alternative system can give us insight into the problem.
Note that if ε is large enough, ε ≥ ε0, then (y + εe)′u − (y − εe)′v ≥ 0 for any
(u,v) satisfying X′u = X′v, e′u = e′v = 1, u,v ≥ 0. Clearly the alternative

system investigates the convex combinations
(

X′
(y+εe)′

)
u and

(
X′

(y−εe)′

)
v, and thus the

system explores the property of convex hulls of shifted data D+ and D−. The relation
between existence of a hard tube and separability of two convex hulls is summarized
in Corollary 3.

Corollary 3 (Relation between existence of hard ε-tube and separability)
A hard ε-tube exists for a given ε > 0 if and only if the convex hull of points(

xi

yi+ε

)
, i = 1, · · · , `, and the convex hull of points

(
xi

yi−ε

)
, i = 1, · · · , ` are separa-

ble.

6



PROOF. A hard ε-tube exists if and only if System (2) has a solution (w, b). Then

for any convex combination
(

X′
(y+εe)′

)
u of points

(
xi

yi+ε

)
, i = 1, 2, · · · , ` in D+ where

e′u = 1, u ≥ 0 , we have (y + εe)′u−w′(X′u)− b ≥ 0. Similarly for D−, any convex

combination
(

X′
(y−εe)′

)
v of points

(
xi

yi−ε

)
, i = 1, 2, · · · , `, satisfies (y−εe)′v−w′(X′v)−

b ≤ 0. Then by Definition 1, the plane y−w′x− b = 0, i.e., y = w′x+ b in the middle
of the ε-tube separates the two convex hulls. Note the separating plane and the plane
constructing the ε-tube are the same. If no separating plane exists, then there is no
tube. So as a consequence of this theorem, if D+ and D− are separable, then a hard
ε-tube exists. 2

3 Constructing the Hard ε-Tube

For any ε > ε0 infinitely many possible ε-tubes exist. Which ε-tube should be used?
The linear program (1) can be solved to find the smallest ε0-tube, but this corresponds
to just doing empirical risk minimization and may result in poor generalization due to
overfitting. We know capacity control or structural risk minimization is fundamental
to the success of SVM classification and regression.

We take our inspiration from SVM classification. In hard-margin SVM classification,
the dual SVM formulation constructs the max-margin plane by finding the two closest
points in the convex hulls of the two classes. The max-margin plane is the plane
bisecting these two points. We know that the existence of the tube in primal space
is linked to the separability of the shifted sets, D+ and D−, in dual space. The key
insight is that the regression problem can be regarded as a classification problem
between D+ and D−. The two sets D+ and D− defined as in Section 2 both contain
the same number of data points. The only significant difference occurs along the y
dimension as the response variable y is shifted up by ε in D+ and down by ε in
D−. For ε > ε0, the max-margin separating plane corresponds to a hard ε̂-tube where
ε > ε̂ ≥ ε0. The resulting tube is smaller than ε but not necessarily the smallest tube.
Figure 3(b) shows the max-margin plane found for ε > ε0. Figure 3(a) shows that
the corresponding linear regression function for this simple example turns out to be
the ε0 tube. As in classification, we will have the hard and soft ε-tube cases. The soft
ε-tube with ε ≤ ε0 is used to obtain good generalization when there are outliers.

We now apply the dual convex hull method to constructing the max-margin plane
for our augmented sets D+ and D− assuming they are strictly separable, i.e. ε > ε0.
The problem is illustrated in detail in Figure 4. The convex hulls of D+ and D− are
defined as:

conv(D+) =
{∑

z+
i ∈D+ uiz

+
i |

∑
ui = 1, ui ≥ 0

}
,

conv(D−) =
{∑

z−i ∈D− viz
−
i |

∑
vi = 1, vi ≥ 0

}
.

(4)

The closest points of the convex hulls of D+ and D− can be found by solving the
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following dual H-SVR quadratic program in (u,v):

min
u,v

1
2

∥∥∥∥
(

X′
(y+εe)′

)
u−

(
X′

(y−εe)′

)
v

∥∥∥∥
2

s.t.
e′u = 1, e′v = 1,

u ≥ 0, v ≥ 0.

(5)

Let the closest points in the convex hulls of D+ and D− be c =
(

X′
(y+εe)′

)
û and d =(

X′
(y−εe)′

)
v̂ respectively. The max-margin separating plane bisects these two points. The

normal (ŵ, δ̂) of the plane is the difference between them, i.e., ŵ = X′û−X′v̂, δ̂ =
(y + εe)′û − (y − εe)′v̂. The threshold, b̂, is the distance from the origin to the

point halfway between the two closest points along the normal: b̂ = ŵ′
(

X′û+X′v̂
2

)
+

δ̂
(

y′û+y′v̂
2

)
. The separating plane has the equation ŵ′x + δ̂y − b̂ = 0. Rescaling this

plane by −δ̂ yields the regression function.

Dual H-SVR (5) is in the dual space. The corresponding Primal H-SVR is:

min
w,δ,α,β

1
2

∥∥∥∥w
∥∥∥∥
2

+ 1
2
δ2 − (α− β)

s.t.
Xw + δ(y + εe)− αe ≥ 0,

Xw + δ(y − εe)− βe ≤ 0.

(6)

Dual H-SVR (5) can be derived by taking the Wolfe or Lagrangian dual [15] of Primal
H-SVR (6) and simplifying. In addition, by the KKT conditions, the primal solutions

ŵ and δ̂ are exactly the ones defined above as
(
ŵ
δ̂

)
= c− d. The primal formulation

works in the regression space. Once the optimal solution (ŵ, δ̂, α̂, β̂) is obtained, we
have the regression model.

Fig. 4. The solution ε̂-tube found by H-SVR can have ε̂ < ε. left: Dots are in D+. Triangles
are in D−. Support vectors are circled. right: Squares are original data.

It has been shown that the optimal plane from H-SVR bisects the ε̂-tube [5]. The
boundary planes of the margin for class D+ and class D− determine the lower and up-
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per edges of the ε̂-tube respectively. The support vectors from D+ and D− correspond
to the points along the lower and upper edges of the ε̂-tube as in Figure 4. The follow-
ing theorem shows that maximizing the margin corresponds to reducing the effective
tube size.

Theorem 4 (H-SVR constructs ε̂-tube) [5] Let the max-margin plane obtained
by H-SVR (5) be ŵ′x+ δ̂y− b̂ = 0 where ŵ = X′û−X′v̂, δ̂ = (y+ εe)′û− (y− εe)′v̂,

and b̂ = ŵ′
(

X′û+X′v̂
2

)
+ δ̂

(
y′û+y′v̂

2

)
. If ε > ε0, then the plane y = w̄′x+ b̄ corresponds

to an ε̂-tube of the training data (xi, yi), i = 1, 2, · · · , ` where w̄ = − ŵ
δ̂
, b̄ = b̂

δ̂
and

ε̂ = ε− α̂−β̂

2δ̂
< ε.

The effective tube size is reduced by the size of the maximal margin. The regression
model and the effective ε̂-tube defined by this model depend on the choice of ε. How-
ever, within a certain range of ε, they will remain the same as shown in Figure 5(a,b).
When ε becomes too large as in Figure 5(c), support vectors and the corresponding
(ŵ, δ̂) will change, and so will the regression model.

(a) (b)

(c)

Fig. 5. In (a) and (b), the regression model remains the same for different values of ε. The
regression model changes in (c) when ε becomes too large. Support vectors are circled.

4 Constructing the Soft ε-Tube

In real-life applications, outliers almost always exist. Making ε large to fit outliers
may result in poor overall accuracy. For ε < ε0, a hard ε-tube does not exist. In
soft-margin classification, outliers were handled in the dual space by using reduced
convex hulls. Reduced convex hulls limit the influence of any given point by reducing
the upper bound on the multiplier for each point to D < 1. The same strategy works
for soft ε-tubes. Formally the reduced convex hulls of D+ and D−are defined as:

U =
{∑

z+
i ∈D+ uiz

+
i |

∑
ui = 1, 0 ≤ ui ≤ D

}
,

V =
{∑

z−i ∈D− viz
−
i |

∑
vi = 1, 0 ≤ vi ≤ D

}
.

(7)
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Fig. 6. Soft ε̂-tube found by RH-SVR: left: dual, right: primal space.

See Figure 6 for an example with D = 1/2. Instead of taking the full convex hulls
of D+ and D−, we reduce the convex hulls away from the difficult boundary cases.
RH-SVR computes the closest points in the reduced convex hulls of the shifted data
points of zi =

(
xi

yi

)
along the y dimension respectively up and down by ε. Then the

RH-SVR formulation becomes

min
u,v

1
2

∥∥∥∥
(

X′
(y+εe)′

)
u−

(
X′

(y−εe)′

)
v

∥∥∥∥
2

s.t.
e′u = 1, e′v = 1,

0 ≤ u ≤ De, 0 ≤ v ≤ De.

(8)

If D < 1, Equation (7) defines the reduced convex hulls; if D ≥ 1, it becomes
equivalent to defining the convex hulls because if the summation of non-negative
coefficients equals 1, each of the coefficients cannot be larger than 1. The parameter
D hence determines whether or not the convex hulls are reduced and the extent of
the reduction. We consider Equation (7) as both cases and distinguish them only by
different D values.

Now let us derive the same result as in Theorem 4 for the more general formulation (8).
As in the separable case, the dual RH-SVR problem (8) corresponds to computing a
soft ε-tube in the primal regression space by duality theorems. The following soft-tube
version of Primal H-SVR (9) has RH-SVR (8) as its Wolfe Dual.

min
w,δ,α,β,ξ,η

1
2

∥∥∥∥w
∥∥∥∥
2

+ 1
2
δ2 − (α− β) + D(e′ξ + e′η)

s.t. Xw + δ(y + εe)− αe + ξ ≥ 0, ξ ≥ 0,

Xw + δ(y − εe)− βe− η ≤ 0, η ≥ 0.

(9)

As in the SVM classification case, we assume D is sufficiently small such that the two
convex sets are strictly separable. RH-SVR separates them by bisecting the closest
points in each of the sets. The next theorem proves that after rescaling, the separating
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surface is exactly the regression function and the effective tube size is ε reduced by
the margin of separation. This result is proved using the Separation Theorem 17 in
Appendix A.

Theorem 5 (RH-SVR constructs soft ε̂-tube) Let the soft max-margin plane ob-
tained by RH-SVR (8) be ŵ′x + δ̂y − b̂ = 0 where ŵ = X′û−X′v̂, δ̂ = (y + εe)′û−
(y − εe)′v̂, and b̂ = ŵ′

(
X′û+X′v̂

2

)
+ δ̂

(
y′û+y′v̂

2

)
. Then the plane y = w̄′x + b̄ corre-

sponds to a soft ε̂ = ε − α̃−β̃

2δ̂
< ε tube of training data zi =

(
xi

yi

)
, i = 1, 2, · · · , `, or

equivalently, an ε̂-tube about the convex set S =
{∑

zi∈D sizi | ∑
si = 1, 0 ≤ si ≤ D

}

where w̄ = − ŵ
δ̂
, b̄ = b̂

δ̂
and α̃ = ŵ′X′û + δ̂(y + εe)′û, β̃ = ŵ′X′v̂ + δ̂(y − εe)′v̂.

PROOF. First we prove that δ̂ > 0. Let the closest points be c =
(

X′
(y+εe)′

)
û ∈ U

and d =
(

X′
(y−εe)′

)
v̂ ∈ V . By the KKT conditions,

(
ŵ
δ̂

)
= c−d. For any point z =

(
x
y

)

in the reduced convex hull S of training data, z+ =
(

x
y+ε

)
∈ U , and z− =

(
x

y−ε

)
∈ V .

By the Separation Theorem 17 in Appendix A,

(c− d)′z+ = ŵ′x + δ̂(y + ε) ≥ (c− d)′c,

(c− d)′z− = ŵ′x + δ̂(y − ε) ≤ (c− d)′d.
(10)

Define α̃ = (c−d)′c = ŵ′X′û+ δ̂(y+ εe)′û and β̃ = (c−d)′d = ŵ′X′v̂+ δ̂(y− εe)′v̂.
Then α̃− β̃ = ||c−d||2 > 0. Subtract the second inequality from the first inequality:

2δ̂ε ≥ α̃−β̃, that is, δ̂ ≥ α̃−β̃
2ε

> 0. Rescale the inequalities by−δ̂ < 0, reverse the signs,

and let w̄ = − ŵ
δ̂
. The inequalities (10) become w̄′x− y ≤ ε− α̃

δ̂
, w̄′x− y ≥ −ε− β̃

δ̂
.

Let b̄ = b̂
δ̂

= α̃+β̃

2δ̂
. Substituting b̄ into the inequalities yields

w̄′x + b̄− y ≤
(
ε− α̃−β̃

2δ̂

)
, w̄′x + b̄− y ≥ −

(
ε− α̃−β̃

2δ̂

)
.

Denoting ε̂ = ε − α̃−β̃

2δ̂
, we end up with w̄′x + b̄− y ≤ ε̂, w̄′x + b̄− y ≥ −ε̂, for any

(x, y) in the reduced convex hull S of training data. Hence the plane y = w̄′x + b̄ is

in the middle of the ε̂ = ε− α̃−β̃

2δ̂
< ε tube. 2

Notice that Theorem 4 is the special case of this theorem when D = 1. The thresholds
α̃ and β̃ determine the planes parallel to the regression plane and through the closest
points. In the separable case where D = 1, α̃ and β̃ are optimal for the primal H-SVR
(6). However, in the inseparable case, these planes are parallel but not necessarily
identical to the planes obtained by Primal RH-SVR (9).
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5 Kernelizing H-SVR and RH-SVR

In this section, we kernelize H-SVR and RH-SVR. The objective functions of H-SVR
(5) and RH-SVR (8) can be rewritten as

1
2
(u− v)′(XX′ + yy′)(u− v) + 2εy′(u− v) + 2ε2. (11)

The matrix XX′ is induced by the inner product in the vector space Rn. Once an
algorithm can be cast in terms of inner products, it is possible to substitute a kernel
k for the inner product. By computing a kernel function, we implicitly map the
input vector x to Φ(x) in a (usually higher dimensional) feature space which has
the structure of a reproducing kernel Hilbert space through the nonlinear mapping
Φ(·). The mapping operator Φ(·) is a vector of d functions such that k(xi,xj) =
Φ(xi)

′Φ(xj), where d could be infinite. Nonlinear H-SVR and RH-SVR can then
be constructed by minimizing the objective function (11) with the inner product
matrix XX′ replaced by the kernel matrix K whose ijth entry is k(xi,xj). Define
Φ(X) = (Φ(x1) Φ(x2) · · · Φ(x`))

′, then K = Φ(X)Φ(X)′. The dual reduced convex
hull problem in feature space becomes

min
u,v

1
2
(u− v)′(K + yy′)(u− v) + 2εy′(u− v)

s.t.
e′u = 1, e′v = 1,

0 ≤ u ≤ De, 0 ≤ v ≤ De.

(12)

where the objective function is equivalent to 1
2

∥∥∥∥
(

Φ(X)′
(y+εe)′

)
u−

(
Φ(X)′

(y−εe)′

)
v

∥∥∥∥
2

after adding

the constant 2ε2. In the dual classification space, the response y serves as one more
dimension of the attribute space. If k̂(xi,xj) is a kernel function in the regression

problem, then the function k(
(
xi

yi

)
,
(
xj

yj

)
) = k̂(xi,xj) + yiyj is a kernel [7] in the dual

augmented space that maps z 7→ Φ(z) =
(

Φ(x)
y

)
. The formulation (12) actually com-

putes the closest points respectively in the convex sets

U =
{∑

z+
i ∈D+ uiΦ(z+

i ) | ∑
ui = 1, 0 ≤ ui ≤ D

}
,

V =
{∑

z−i ∈D− viΦ(z−i ) | ∑
vi = 1, 0 ≤ vi ≤ D

}
.

(13)

In primal regression space, bisecting the two closest points corresponds to constructing
a linear plane f(x) = w′Φ(x) + b in the feature space. The final regression model can
be obtained through the following theorem.

Theorem 6 (Construct ε̂-tube in feature space) If (û, v̂) is the solution to Prob-
lem (12), then the resulting regression model is f(x) =

∑`
i=1(v̄i− ūi)k(xi,x)+ b̄ which

constructs an ε̂-tube in feature space, where ūi = ûi

δ̂
, v̄i = v̂i

δ̂
, δ̂ = (û− v̂)′y + 2ε, the

intercept term b̄ = (û−v̂)′K(û+v̂)

2δ̂
+ (û+v̂)′y

2
, and ε̂ = − (û−v̂)′K(û−v̂)

2δ̂
+ (v̂−û)′y

2
.
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PROOF. Replacing the matrix X by Φ(X) in RH-SVR Primal (9) yields the primal
formulation to Problem (12). Then the primal finds the max-margin plane ŵ′Φ(x) +

δ̂y− b̂ = 0 in feature space. By the KKT conditions, the primal solution is
(
ŵ
δ̂

)
= c−d

where c =
(

Φ(X)′
(y+εe)′

)
û and d =

(
Φ(X)′

(y−εe)′

)
v̂ are the closest points in the sets of Equation

(13). Following the same line of argument as in Theorem 5, we define α̃ = (c − d)′c
and β̃ = (c− d)′d, and use Separation Theorem 17. Then we have

ŵ′Φ(x) + δ̂(y + ε) ≥ α̃, ŵ′Φ(x) + δ̂(y − ε) ≤ β̃

and δ̂ > 0. Substitute ŵ = Φ(X)′(û − v̂), and rescale by −δ̂. Let b̄ = α̃+β̃

2δ̂
, then the

inequalities become

∑`
i=1 (v̄i − ūi)k(xi,x) + b̄− y ≤ (ε− α̃−β̃

2δ̂
),

∑`
i=1 (v̄i − ūi)k(xi,x) + b̄− y ≥ −(ε− α̃−β̃

2δ̂
).

Therefore the resulting regression model f(x) satisfies |f(x) − y| ≤ ε̂ for any (x, y)

whose image is in the convex set S =
{∑

zi∈D siΦ(zi) | ∑
si = 1, 0 ≤ si ≤ D

}
. The

f(x) constructs an ε̂-tube in feature space where ε̂ = ε − α̃−β̃

2δ̂
= − (û−v̂)′K(û−v̂)

2δ̂
+

(v̂−û)′y
2

. 2

6 Characterizing RH-SVR

We now investigate some characteristics of RH-SVR. RH-SVR has two parameters,
D and ε, which must be selected by the user or by cross-validation. The parameter
D determines the robustness of the solution by reducing the convex hull, and thus
limits the influence of any single point. As in ν-SVR, we can parameterize D by ν. Let
D = 1

`ν
where ` is the number of points. Figure 6 illustrates the case for ` = 6 points,

ν = 1/3, and D = 1/2. In this example, every point in the reduced convex hull must
depend on at least two data points since

∑`
i=1 ui = 1 and 0 ≤ ui ≤ 1/2. In general,

every point in the reduced convex hull can be written as the convex combination of
at least d1/De = d`νe points. Since these points are exactly the support vectors and
there are two reduced convex hulls, 2d`νe is a lower bound on the number of support
vectors in RH-SVR.

Let us denote the max-margin plane obtained by solving Problem (12) as the classifi-
cation function f c(x, y). The functional margin denoted as ρ is defined as the distance
from either of the two boundary planes to the classification plane. The classification

function f c(x, y) has functional margin ρ = α̃−β̃
2

. After scaling by −δ̂, the same plane
is regarded as the regression function y = f(x). Although the regression plane is ex-
actly the same as the classification plane after rescaling, the functional margin scales

13



differently. It is now α̃−β̃

2δ̂
. Based on our analysis in Theorem 5 for linear models and

Theorem 6 for nonlinear models, the above functional margin is just ε − ε̂ where ε̂
is the effective size of the tube. The geometric margin, however, does not vary with
rescaling, so it characterizes the real geometric view of models. The geometric margin
is defined as the Euclidean distance from either of the boundary planes to the classi-
fication plane. It can be calculated by dividing the functional margin by the length of
the normal vector to the plane. Recall that the model used in the RH-SVR approach
is y = w̄′Φ(x) + b̄. So the geometric margin is ε−ε̂√

||w̄||2+1
.

We adopt the same definitions of error and margin error as in [18]. If a point is an
error, it means the point is misclassified by the decision function sgn ◦ f c, in other
words, either f c(xi, yi + ε) < 0 or f c(xi, yi − ε) > 0. The margin errors are either
errors or lie within the margin. The empirical probability of a margin error is the
fraction of margin errors in the training dataset

Rρ
emp[f

c] :=
1

`
|{ i | f c(xi, yi + ε) < ρ, or f c(xi, yi − ε) > −ρ}| . (14)

At most a fraction ν of training points can have coefficients up to the upper bound 1
`ν

for each of the two reduced convex hulls since
∑`

i=1 ui = 1 and 0 ≤ ui ≤ 1
`ν

. Totally
there will be at most 2ν fraction of the points with coefficients equal to 1

`ν
. Suppose

α̃ and β̃ are primal optimal, i.e., α̃ = α̂, β̃ = β̂. By complementarity

û′
(
Xŵ + δ̂(y + εe)− α̂e + ξ

)
= 0, (De− u)′ξ = 0,

v̂′
(
Xŵ + δ̂(y − εe)− β̂e− η

)
= 0, (De− v)′η = 0,

(15)

a point with ui or vi = 1
`ν

may be a margin error since the associated ξi or ηi may be
> 0. Therefore at most 2ν of all points can be margin errors, so Rρ

emp[f
c] is bounded

by 2ν.

Hence, 2ν controls the number of support vectors and the number of margin errors.
Moreover, the above argument actually holds true for the upper and lower edges of
the tube separately. So ν is the upper bound on the fractions of underestimated errors
as well as overestimated errors. By choosing ν sufficiently large, the inseparable case
with ε ≤ ε0 is transformed to a separable case where once again our nearest-points
problem is well defined. We can summarize these results in the following proposition.

Proposition 7 Assume U ∩V = ∅ for RH-SVR. Then the following statements hold:

(1) 2ν is an upper bound on the fraction of points with error greater than ε̂.
(2) 2ν is a lower bound on the fraction of support vectors.

This proposition also holds for ν-SVR under the assumption that the optimal ε is
greater than zero – an equivalent condition to the reduced convex hulls not intersect-
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ing. Consider the dual ν-SVR formulation in [18] expressed using their notation:

min
α,α∗

1
2
(α−α∗)′K(α−α∗) + y′(α−α∗)

s.t.
e′α = e′α∗, e′α + e′α∗ ≤ Cν,

0 ≤ α ≤ C
`
e, 0 ≤ α∗ ≤ C

`
e.

(16)

To see the relationship between RH-SVR and ν-SVR, one can rescale the problem by
defining u = 2α

Cν
and v = 2α∗

Cν
.

min
u,v

1
2
(u− v)′K(u− v) + 2

Cν
y′(u− v)

s.t.
e′u = e′v, e′u + e′v ≤ 2,

0 ≤ u ≤ 2
`ν

e, 0 ≤ v ≤ 2
`ν

e.

(17)

For reasonable choices of C and ν, we can assume that at optimality e′u+e′v = 2 and
by complementarity ε > 0 for ν-SVR. Thus the constraints of ν-SVR and RH-SVR
are identical for D = 2

`ν
. The principal difference lies in the objective function. The

Hessian of the objective function is K for ν-SVR and K + yy′ for RH-SVR. Thus
ν-SVR does not find the closest points of the reduced convex hulls of the augmented
datasets. In some sense the ν-SVR method is regularized in the feature space, whereas
RH-SVR is regularized in the feature and the response space. It is an open question
as to the effect of this extra regularization. The parameter ν in ν-SVR is the same
as 2ν in RH-SVR. By comparing the objectives of ν-SVR (17) and RH-SVR (12), C
should be chosen in ν-SVR so that 2

Cν
is equal to 1

2
(û− v̂)′y+2ε in RH-SVR in order

for both methods to obtain the same solution (û, v̂).

To summarize the geometric properties, the solution of RH-SVR depends on the
user’s choice of the maximum tube size ε. RH-SVR shrinks the tube by maximizing
the margin of separation of the shifted data. The size of the reduced convex hull,
controlled by ν, affects the size of the margin. So the effective size of the tube depends
on both ε and ν. For given data, ε0 is the smallest value to form a hard tube. Consider
the following cases. If ε > ε0, the convex hulls themselves are strictly separable. It is
not necessary to reduce them. The optimal regression function will be solely dependent
on ε. If ε ≤ ε0, or if users prefer robust solutions in the separable case, the convex
hulls are reduced so that the reduced convex hulls are strictly separable. The optimal
planes depend on both ε and ν, because ν alters the shape of the convex sets. The
number of support vectors depends on the interplay of ν and ε. There are at least 2ν`
support vectors. A larger ε allows a smaller ν to be used.
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7 Analyzing Generalization Performance

In this section, a generalization error bound is derived for the geometric SVR model.
We analyze the bound on the probability that a point has residual |y − f(x)| larger
than ε. Geometrically this corresponds to the point being located outside of the ε-
tube. Although the bound is not based on typical metrics for regression such as mean
squared error, the result is still useful because if the probability of |y − f(x)| > ε
for a point (x, y) is high under the given tolerance of error ε, then the model needs
improvement. The basic idea to derive the bound is that since solving regression
problems, by our approach, has been converted to solving classification problems, we
can take advantage of theoretical results concerning the generalization performance
of a classifier [23,22,1,20]. Figure 7 shows that a misclassification error in the dual
classification space corresponds to a point outside of ε-tube in the primal regression
space, and a margin error corresponds to a point outside of the ε̂-tube. We show the
result in Theorem 8.

Fig. 7. The circled point in D+ is an error in the left graph, and has distance larger than ε
from the regression plane on the right. The point with a rectangle is a margin error in the
left graph, and has distance larger than ε̂ from the regression plane on the right.

Theorem 8 (Connection between regression and classification) Let f c(x, y)
be the classification function obtained by bisecting the two closest points in Problem
(12), and f(x) be the corresponding regression function. (i) A point

(
x

y+ε

)
or

(
x

y−ε

)

is an error if and only if the point
(
x
y

)
is outside of the ε-tube constructed around

y = f(x); (ii) a point
(

x
y+ε

)
or

(
x

y−ε

)
is a margin error if and only if the point

(
x
y

)
is

outside of the ε̂-tube constructed around y = f(x).

PROOF. The classification function f c(x, y) obtained by bisecting the closest points
in Problem (12) is ŵ′Φ(x) + δ̂y − b̂ = 0. (For notational convenience, we do not use
the expression in terms of kernel entries here.) As in Theorem 6, the corresponding
regression function is f(x) = w̄′Φ(x) + b̄.

16



(i) If a point
(

xi

yi+ε

)
in class D+ is misclassified as in class D− by sgn ◦ f c, it means

ŵ′Φ(xi) + δ̂(yi + ε) − b̂ < 0. Scale by −δ̂ (remember δ̂ > 0), reverse the sign, and

then we have w̄′Φ(xi) + b̄ − yi > ε, i.e., f(xi) − yi > ε, so the point
(
xi

yi

)
is outside

of the ε-tube. Similarly, if a point
(

xi

yi−ε

)
in D− has been misclassified, then we have

yi − f(xi) > ε. The opposite direction also holds true. If a point is out of the ε-tube
in regression space, one of the corresponding shifted points has to be an error in
classification.

(ii) If a point such as
(

xi

yi+ε

)
in D+ is a margin error, based on the definition of margin

errors, we have ŵ′Φ(xi)+ δ̂(yi +ε)− b̂ < ρ. Then after scaling by −δ̂, and substituting

ρ = α̃−β̃
2

, it becomes w̄′Φ(xi) + b̄ − yi > ε − α̃−β̃

2δ̂
= ε̂. Following the same line of

reasoning, similar results hold true for margin errors
(

xi

yi−ε

)
on the other side of the

tube. If a point is out of the ε̂-tube in regression space, then one of the shifted points
has to be a margin error in classification. 2

The empirical fraction of margin errors is always less than or equal to 2ν. Let α̂ and
β̂ be optimal for Primal RH-SVR (9). Let α̃ and β̃ be the values determined by the
closest points as in Theorem 5. For D = 1

`ν
for 0 ≤ ν ≤ 0.5, if α̃ = α̂ and β̃ = β̂,

then by complementarity 2ν is the upper bound on the fraction of margin errors. This
fact is also true if α̃ 6= α̂ and β̃ 6= β̂. By complementarity for the shifted data D+,
support vectors with ui < 1

`ν
, called non-bound support vectors [17], have to locate

precisely on the plane determined by α̂. The support vectors with ui = 1
`ν

may be
margin errors, which means they are likely to be closer to the classification plane than
non-bound support vectors or even on the wrong side. The closest point, which is the
convex combination of all support vectors, is closer to the classification plane than the
non-bound support vectors. Since all planes are parallel, the plane determined by α̃
is closer to the classification plane than the one determined by α̂. Similarly the plane
determined by β̃ is closer to the classification plane than the plane determined by β̂.
We then conclude that α̃ − β̃ ≤ α̂ − β̂. Consequently taking the planes determined
by α̃ and β̃ as margin planes will yield fewer margin errors. Therefore 2ν still bounds
from above the empirical fraction of margin errors.

There is a class of bounds on the generalization error of classifiers using the empirical
fraction of margin errors and covering numbers to measure the classifier capacity.
Schölkopf et al. proposed a generalization error bound for ν-SVM classification in
[18] by applying theorems from [2] and [24]. They also hypothesized that better and
perhaps more complicated bounds could be obtained by estimating the radius or even
optimizing the choice of the center of the ball. Similar techniques can be adopted to
analyze the generalization error of the RH-SVR regression approach based on the
connection established in Theorem 8. Notice that the intercept term b in the general
case can be incorporated into the kernel matrix K with minor modification.
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Proposition 9 (Bound on generalization error) Suppose RH-SVR uses a ker-
nel of the form k(·, ·) such that k(x,x) = 1 (for example, the RBF kernel). Let the

response y be normalized to [-1,1]. Then all the data points
(

Φ(xi)
yi

)
in feature space

live in a ball of radius
√

2 centered at the origin. With probability at least 1−∆, the
RH-SVR regression function f(x) =

∑
i(v̄i− ūi)k(xi,x) has Rε[f ], the probability that

|y − f(x)| > ε for any (x, y), bounded by

Rε[f ] ≤ 2ν +

√√√√2

`

(
8c2(||w||2 + 1)

(ε− ε̂)2
log2(2`)− 1 + ln(

2

∆
)

)
. (18)

PROOF. The proof follows the one in [18] by applying the following two results.
Suppose ρ > 0, 0 < ∆ < 1

2
, and P is a probability distribution on the input space

from which the training set is drawn. With probability at least 1 −∆ for every f in
some function class F , the probability of error of the classification decision function
sgn ◦ f on an independent test set denoted as R[f ] is bounded according to [2] by

R[f ] ≤ Rρ
emp[f ] +

√
2

`

(
lnN (F , l2`∞,

ρ

2
) + ln(

2

∆
)
)
. (19)

Let BR be the ball of radius R around the origin in a certain Hilbert space F (feature
space). Then the covering number N of the class of functions

F = {x 7→ w′x | ||w|| ≤ 1,x ∈ BR}

at scale ρ when ` ≥ 2 satisfies log2N (F , l`∞, ρ) ≤ c2R2

ρ2 log2 ` − 1 where c < 103 is a

constant [24]. Consequently

log2N (F , l2`
∞, ρ/2) ≤ 4c2R2

ρ2
log2 2`− 1. (20)

In order to apply the second result, the geometric margin should be taken instead
of the functional margin due to the condition ||w|| ≤ 1 in the class of functions F .
As we stated before in Section 6, the geometric margin of our method is ε−ε̂√

||w||2+1
.

Notice that Rρ
emp[f ] ≤ 2ν. Substituting ρ2 = (ε−ε̂)2

||w||2+1
into Equation (20), and then

substituting the resulting term into Equation (19), we obtain the bound Equation
(18). 2

When users take a large ε value, it means the tolerance of error is high, so the
probability of a point outside of the ε-tube becomes low, which is exactly as shown in
the bound (18). From the perspective of Primal RH-SVR (9), RH-SVR minimizes the
norm of the normal to the plane and maximizes the functional margin, so RH-SVR
actually minimizes this generalization bound by maximizing the geometric margin of
the classification function.
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8 The Nearest Point Algorithm

RH-SVR can be solved by applying nearest-point algorithms (NPAs) for finding the
closest points in the reduced convex hulls. Prior NPAs of Keerthi et al. [13] and
Kowalczyk [14] were limited to finding the closest points in convex hulls. We now
demonstrate how the NPA can be extended to the problem of finding the closest
points in the reduced convex hulls. The key to our NPA is the geometric conditions
for optimality, thus we begin with a discussion of the optimality conditions.

8.1 Optimality Conditions

Finding the closest points in two convex sets U and V can be briefly rewritten as

min
z+, z−

1
2
||z+ − z−||2

s.t. z+ ∈ U , z− ∈ V .
(21)

In our case, U and V are the convex hulls or reduced convex hulls of the augmented
training data. The convex hull generated by a finite set of points in Rn is actually
a polyhedron. A polyhedron can be expressed by linear constraints. An optimization
problem with linear cost function over a polyhedron such as min {a′z | z ∈ U} in
Theorem 17 is just a linear program. If a linear program has an optimal feasible
solution, it has an optimal basic feasible solution which is an extreme point of the
polyhedron. An extreme point is defined as a point in the set that does not lie within
the line segment connecting any two distinct points in the set. When D ≥ 1 the
extreme points of U and V are subsets of D+ and D− respectively. So the following
corollary of Theorem 17 can be easily derived. We describe it without proof.

Corollary 10 (Separation of U and V with D ≥ 1) Let U and V be defined as in
Equation ( (7). Then (c ∈ U , d ∈ V) is the solution to Problem (21) if and only if

min {a′zi | zi ∈ D+} ≥ a′c AND max {a′zj | zj ∈ D−} ≤ a′d (22)

where a = c− d.

Since D+ and D− are finite, the solution (c,d) to Problem (21) can be verified by
simply iterating through all the points. A linear programming package is not required.
When D < 1, the extreme points of U are not necessarily included in D+. Assume `ν
takes a positive integer value M , obviously, 1 ≤ M ≤ |D|. Since D = 1

`ν
, it implies

that the closest points c and d each depend on at least M training points. We now
show that an extreme point of U , z =

∑
uizi, has all ui’s either equal to 0 or 1

M
, but

never in between.
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Theorem 11 (Vertices of reduced convex set) Let S be a reduced convex set de-
fined as

S =

{∑̀

i=1

uizi |
∑̀

i=1

ui = 1, 0 ≤ ui ≤ 1

M

}
.

If z =
∑`

i=1 γizi is an extreme point of S, then γi = 0 or 1
M

, ∀ i = 1, · · · , `.

PROOF. We use proof by contradiction. Suppose not all γi’s are either 0 or 1
M

, i.e.,
∃γt such that 0 < γt < 1

M
. We show that there has to exist another γs, (s 6= t,) and

0 < γs < 1
M

. Otherwise, all coefficients γi = 0, or 1
M

, ∀ i 6= t. Let the number of
coefficients equal to 1

M
be Γ. Case 1: if Γ ≥ M , then

∑
γi =

∑
i6=t γi + γt ≥ 1+ γt > 1;

Case 2: if Γ ≤ M −1, then
∑

γi =
∑

i6=t γi +γt ≤ (M −1) 1
M

+γt < 1. This contradicts

the condition of
∑`

i=1 γi = 1. Hence ∃γs, γt, such that s 6= t, 0 < γt, γs < 1
M

.
Let ∆ > 0 be small enough such that 0 ≤ γ1

t , γ2
t ≤ 1

M
where γ1

t = γt − ∆, γ2
t =

γt + ∆, and 0 ≤ γ1
s , γ2

s ≤ 1
M

where γ1
s = γs + ∆, γ2

s = γs − ∆. Then the points
z1 =

∑
i6=t,s γizi + γ1

t zt + γ1
szs ∈ S, and z2 =

∑
i6=t,s γizi + γ2

t zt + γ2
szs ∈ S. Therefore

z = 1
2
z1 + 1

2
z2, which means z is not an extreme point of S, a contradiction. 2

By exploiting Theorem 11, the optimality conditions can be evaluated more efficiently.
It is not necessary to explicitly solve the linear programs in Theorem 17 even for the
reduced convex hull cases. Denote the set containing all convex combinations of zi’s
with coefficients either 0 or 1

M
by SE. Each point in SE will have exactly M non-zero

coefficients of value 1
M

. By Theorem 11, the set ES of extreme points of S is a subset of
SE. We can evaluate optimality by sequentially examining the points in SE since it is
a finite set. The cardinality of SE, however, is

(
`

M

)
= `!

M !(`−M)!
, a rather large number

for ` and M large. Fortunately, we do not have to evaluate all
(

`
M

)
points. Consider

the reduced convex hull U . We can calculate a′zi, ∀zi ∈ D+ and select the M points
with the smallest values of a′zi. Denote these M points in D+ as {z+

r , r = 1, · · · ,M}.
A point ẑ in UE can be formed by associating these M points with coefficients 1

M
and

others with 0, i.e., ẑ =
∑M

r=1
1
M

z+
r . Only this point has to be examined as shown in the

following corollary. If ẑ satisfies a′ẑ ≥ a′c, then c is currently optimal in U ; otherwise,
the c can be improved using ẑ. Correspondingly, the M points in D− with largest
values of a′zj, ∀zj ∈ D− are denoted as {z−r , r = 1, · · · ,M}. The following corollary
holds true for the reduced convex hull case.

Corollary 12 (Separation of U and V with D = 1
M

) Let U and V be defined as
in Equation (7), then (c, d) is the solution to Problem (21) if and only if 1

M

∑M
r=1 a′z+

r ≥
a′c where a′z+

1 , · · · , a′z+
M are the M smallest values of a′zi, ∀zi ∈ D+ AND 1

M

∑M
r=1 a′z−r ≤

a′d where a′z−1 , · · · , a′z−M are the M largest values of all a′zj, ∀zj ∈ D−, where
a = c− d.

Notice that Corollary 10 is the special case of Corollary 12 for M = 1. So Corollary
12 is a more general result, and it can be applied to either convex hulls or reduced
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convex hulls. By using kernels, we evaluate the separation of the regular or reduced
convex hulls generated by the images Φ(zi) in feature space. All theoretical analysis
above can be extended to feature space. Let us consider the convex hulls of D+ and
D− defined in feature space in Equation (13). Then similarly the closest points c and
d can be expressed as c =

∑
zi∈D+ ûiΦ(zi), d =

∑
zj∈D− v̂jΦ(zj), and still a = c − d.

As a consequence, the inner product such as a′z+
r in the previous theorem should be

calculated in feature space as

a′Φ(z+
r ) = (

∑
zi∈D+ ûiΦ(zi)−∑

zj∈D− v̂jΦ(zj))
′Φ(z+

r )

=
∑

zi∈D+ ûiΦ(zi)
′Φ(z+

r )−∑
zj∈D− v̂jΦ(zj)

′Φ(z+
r )

=
∑

zi∈D+ ûik(zi, z
+
r )−∑

zj∈D− v̂jk(zj, z
+
r ).

The kernel version of Theorem 17 becomes

Corollary 13 (Separation of U and V in feature space) Let U and V be defined
as in Equation (13), then (c, d) is the solution to Problem (21) if and only if
min {a′z | z ∈ U} ≥ a′c AND max {a′z | z ∈ V} ≤ a′d where c =

∑
zi∈D+ ûiΦ(zi),

d =
∑

zj∈D− v̂jΦ(zj), and a = c− d.

One of the significant advantages of kernel methods is that the image Φ(z) is never
explicitly formed, and the mapping is implicitly done when calculating the kernel
values, the inner products between the images. Notice that the calculation of a′Φ(z+

r )
uses only inner products of Φ(z)’s. Thus a′c and a′d can also be expressed in terms
of kernel values. We only need to know the coefficients ûi and v̂j because the final
regression function is f(x) =

∑`
i=1(v̄i − ūi)k(xi,x) + b̄, and v̄i = v̂i

δ̂
, ūi = ûi

δ̂
. The

following corollary is the kernel version of Corollary 12.

Corollary 14 (Optimality of separation between U and V) Let U and V be de-
fined as in Equation (13), then (û, v̂) is the solution to Problem (12) if and only if

1

M

M∑

r=1


 ∑

zi∈D+

ûik(zi, z
+
r )− ∑

zj∈D−
v̂jk(zj, z

+
r )


 ≥ c′c− c′d (23)

AND
1

M

M∑

r=1


 ∑

zi∈D+

ûik(zi, z
−
r )− ∑

zj∈D−
v̂jk(zj, z

−
r )


 ≤ c′d− d′d (24)

where

c′c =
∑

zi,zj∈D+ ûiûjk(zi, zj),

c′d =
∑

zi∈D+,zj∈D− ûiv̂jk(zi, zj),

d′d =
∑

zi,zj∈D− v̂iv̂jk(zi, zj),

(25)

z+
r , r = 1, · · · ,M are the M points with the smallest values of a′Φ(zi), ∀zi ∈ D+,

and z−r , r = 1, · · · ,M are the M points with the largest values of a′Φ(zj), ∀zj ∈ D−.
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8.2 The Algorithm

Our NPA exploits the optimality conditions in Corollary 14. In each iteration the
algorithm evaluates the optimality of the current tth solution (ut,vt) by computing
Equation (23) and Equation (24). Once a point is found violating the optimality
conditions, it provides clues on how to update the current solution. We provide the
basic ideas and procedures of the NPA in this article. There are possibilities for
improvement that are left to future research.

Keerthi et al. proposed a nearest-point algorithm [12] which is a hybrid approach
combining Gilbert’s algorithm for minimizing a quadratic form on a convex set [10,11]
and the Mitchell-Dem’yanov-Malozemov algorithm [16] for separable classification
problems. The second algorithm is one way to speed up convergence of NPA. There
exist other ways to speed up the NPA based on the analysis in [13,14]. For example,
Keerthi et al. has reported that it helps to find the point within a triangle, instead of
on a line segment, in one convex hull that is closest to the point in the other convex
hull. In Kowalczyk’s implementation, allowing the searching points outside of the line
segment is an essential step to speed it up. To keep our generic description of the
NPA simple, we will not include those discussions in the framework of NPA here.

Let ẑ+ =
∑M

r=1
1
M

Φ(z+
r ) and ẑ− =

∑M
r=1

1
M

Φ(z−r ). Denote a = c−d. We seek a solution
to satisfy the optimality conditions with a tolerance of τ > 0. Then Equation (23)
and Equation (24) become

a′ẑ+ ≥ a′c− τ, (26)

a′ẑ− ≤ a′d + τ. (27)

If these optimality conditions are not satisfied, e.g. a′ẑ+ < a′c− τ , then there exists
a point cnew on the segment from c to ẑ+ such that the objective value is strictly
decreased, i.e., ||cnew − d||2 < ||c− d||2. A point on a line segment with end points c
and ẑ+ can be expressed as λc + (1− λ)ẑ+ where 0 ≤ λ ≤ 1. Figure 8 illustrates this
process. Correspondingly, in set V , we can update d in a similar way. The following
theorem applies to both cases.

Theorem 15 (Closest point of line segment) Let S be a reduced convex hull,
p /∈ S, z ∈ S, and a = p−z. If ẑ ∈ S such that a′ẑ > a′z, then ∃ znew = λ̂z+(1−λ̂)ẑ,
and znew 6= z, such that ||znew − p||2 < ||z− p||2 where

λ̂ =





0 if (z− ẑ)′(p− ẑ) ≤ 0

(z−ẑ)′(p−ẑ)
||z−ẑ||2 if (z− ẑ)′(p− ẑ) > 0.
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Fig. 8. The point cnew is the point on the line segment from c to ẑ closest to d, and the
distance between cnew and d is smaller than that between c and d.

PROOF. The point on the line segment closest to p can be found by solving the
following problem for λ

min
0≤λ≤1

g(λ) = ||λz + (1− λ)ẑ− p||2. (28)

The derivative of g is

g′(λ) = (λz + (1− λ)ẑ− p)′(z− ẑ).

Setting g′(λ) = 0 yields λ̂ = (z−ẑ)′(p−ẑ)
||z−ẑ||2 . The λ̂ must be < 1 since

||z− ẑ||2 = (z− ẑ)′(z− ẑ) = (z− ẑ)′((z− p) + (p− ẑ))

= (z− ẑ)′(z− p) + (z− ẑ)′(p− ẑ)

> (z− ẑ)′(p− ẑ)

by the condition of a′ẑ > a′z. Therefore we have znew 6= z. Since g(λ) is a strictly
convex function, if λ̂ < 0, we just set λ̂ = 0. Then λ̂ is feasible, and is the unique
global minimizer of Problem (28). Furthermore z, ẑ are both in the convex set S, so
znew ∈ S. 2

The normal of the max-margin plane
(
ŵ
δ̂

)
is exactly the difference between the closest

points c− d, and the intercept term b̂ in Theorems 5 and 6 is the distance from the
origin to the point halfway between the two closest points c and d along the normal(
ŵ
δ̂

)
, so b̂ =

(
ŵ
δ̂

)′
c+d

2
= 1

2
(c − d)′(c + d) = ||c||2−||d||2

2
. The outline of our NPA is

presented in Algorithm 1. In order to use one subroutine to assess optimality for both
sets, we add a minus sign to Equation (27) so that evaluating optimality in V becomes
a minimization problem too. The parentheses contain the algorithm parameters.

Algorithm 1 Nearest Point Algorithm
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main routine NPA(M, ε, τ)
Initialize u, v as ui = vi = 1

`
, i = 1, · · · , `

repeat
UpdateOneSet(c, D+, c− d)
UpdateOneSet(d, D−, d− c)

until (u,v) is optimal for both U and V
Compute b
Compute δ
Scale u and v by −δ, b by δ
Return the obtained model

end

subroutine UpdateOneSet(z, S, a)
Find M points zi in S with smallest value of a′Φ(zi), compute ẑ

using these M points

Check the optimality of ẑ by a′ẑ ≥ a′z− τ (Equation (26) or (27))

If not optimal, then update z using ẑ as given in Theorem 15

end

We have successfully tested this NPA on the Boston Housing problem discussed in
the next section. Optimal solutions were found and the quality of the results was
equivalent to that of those found using the commercial optimization package CPLEX.
But our initial implementation is relatively slow. More efficient implementations are
possible and strategies like those discussed in [12] and [14] can be employed to further
speed up the algorithm. Better strategies for initializing u and v may also enhance
the algorithm. We leave more extensive investigations of NPA to future work.

9 Experimental Studies

The goal of our experimental study was to examine differences between SVR models.
We used the CPLEX 6.6 optimization package to optimize three regression models:
ε-SVR, ν-SVR, and RH-SVR. Note that it is not possible to apply NPA to all three
models. First the difference between RH-SVR and ε-SVR is illustrated on a toy linear
problem. The data consist of (x, y): (0, 0), (1, 0.1), (2, 0.7), (2.5, 0.9), (3, 1.1) and
(5, 2) in separable cases of ε > ε0, and the point (1, 0.1) is replaced by (1, -0.4) in
inseparable cases of ε ≤ ε0 to make the figures legible. As shown in Figure 9(a,b),
ε-SVR produces undesirable results for large ε, and RH-SVR constructs the same
function for ε sufficiently large. For ε ≤ ε0, ε-SVR generates parallel lines with
different ε, and RH-SVR adjusts the lines by slight rotation as presented in Figure
9(c,d).

In Table 1, we compare RH-SVR, ε-SVR and ν-SVR on the Boston Housing problem.
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Fig. 9. Regression lines from (a) ε-SVR and (b) RH-SVR with distinct ε where ε > ε0;
regression lines from (c) ε-SVR and (d) RH-SVR where ε ≤ ε0.

Following the experimental design in [19] we used the RBF kernel with 2σ2 = 3.9 for
all three approaches, C = 500 ·` for ε-SVR and ν-SVR, and ε = 3.6 for RH-SVR. RH-
SVR, ε-SVR, and ν-SVR are computationally similar for good parameter choices. In
ε-SVR, the actual size of the ε tube is fixed. In RH-SVR, ε is the maximum allowable
tube width. Choosing ε is critical for ε-SVR but less so for RH-SVR.

Table 1
Testing Results for Boston Housing; MSE: average of mean squared errors of 25 testing
points over 100 trials; STD: standard deviation.

2ν 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

RH-SVR MSE 14.9 9.3 8.8 8.9 9.8 11.0 11.5 12.4 12.5

STD 22.9 7.6 6.9 6.4 7.2 7.7 8.8 9.7 10.5

ν 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ν-SVR MSE 9.6 8.9 9.5 10.8 10.9 11.0 11.2 11.1 11.2

STD 5.8 7.9 8.3 8.2 8.3 8.4 8.5 8.4 8.4

ε 0 1 2 3 4 5 6 7 8

ε-SVR MSE 11.2 10.8 9.5 10.3 11.6 13.6 15.6 17.2 19.9

STD 8.3 8.2 8.2 7.3 5.8 5.8 5.9 5.8 6.0

Table 2 lists the effective tube sizes, numbers of SVs, and numbers of errors. Here, the
errors we counted in experiments are those support vectors at upper bound 1

`ν
. Both

RH-SVR and ν-SVR can shrink or grow the tube according to desired robustness. But
ν-SVR has no upper ε bound. Unlike ν-SVR, the actual sizes of ε-tubes constructed
by RH-SVR do not vanish to 0 when increasing ν. From Theorem 6, this is to be
expected. In this particular experiment, the results show that RH-SVR tends to take
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larger values of ν to produce the same effective tube size as ν-SVR, thus RH-SVR has
correspondingly more support vectors and errors. Cross-referencing with the previous
table, the effective tube sizes for the functions that generalize well are similar. From
Section 6, we know that both ν-SVR and RH-SVR minimize objective functions
over the same set of constraints, i.e., the same reduced convex hulls, but the objective
functions are different on the terms concerning the response y. Hence in this example,
a smaller reduced convex hull is required for RH-SVR to achieve the same effective
tube as ν-SVR. By increasing ε, the number of support vectors used by RH-SVR can
be reduced.

Table 2
Testing Results for Boston Housing, actual tube size, number of SVs, and number of errors
(i.e., points with ui or vi = 1

`ν .)

2ν 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

RH-SVR ε̂ 2.86 2.03 1.66 1.53 1.34 1.10 0.72 0.77 0.72

SVs 0.44 0.70 0.68 0.71 0.82 0.89 0.92 0.92 0.96

Errors 0.05 0.00 0.24 0.24 0.19 0.36 0.64 0.80 0.88

ν 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ν-SVR ε 2.70 1.99 1.43 1.08 0.77 0.48 0.22 0.00 0.00

SVs 0.3 0.4 0.6 0.7 0.8 0.9 1.0 1.0 1.0

Errors 0.0 0.1 0.2 0.2 0.3 0.4 0.5 0.5 0.5

To probe the effects of ε on RH-SVR, different ε values were used and results are
provided in Table 3. From the table, ε = 3.6 is the best choice for the experiments on
Boston Housing data. The smaller ε is, the greater the convex hulls must be reduced.
With ε = 2.6, the best choice of 2ν is 0.5 while 2ν = 0.3 is the best with ε = 3.6.
We obtained poor results when taking ε = 2.6 and 2ν = 0.1 because in this case,
the convex hulls were not reduced enough to be separable, and hence the nearest-
point problem was not well-defined. Good solutions were obtained over a wide range
of appropriate parameter values. For example, RH-SVR achieved small MSE values
for 2ν in the range of [0.2, 0.5] and ε = 3.6 as ν-SVR performed similarly when
ν ∈ [0.1, 0.3]. Hence the method is as robust as ν-SVR in this sense.

The RH-SVR method was also tested on several data sets arising from Quantitative
Structure-Activity Relationships (QSAR) analysis. QSAR analysis plays an essential
role in the rational drug design process [8]. Problems encountered in this area are usu-
ally very difficult inference problems because the dimension of the input space is very
high while the available amount of training data is small. The datasets used in our ex-
periments were created in an ongoing NSF-funded Drug Design and Semi-supervised
Learning (DDASSL) project (See http://www.drugmining.com). We summarize the
datasets in Table 4. Results in Table 5 are obtained based on the leave-one-out pro-
cedure with model selection for choosing proper parameter values in each fold.
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Table 3
Boston Housing results with different ε values.

2ν 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ε=2.6 MSE 37.3 11.2 10.7 9.6 8.9 10.6 11.5 12.5 13.8

STD 72.3 7.6 7.3 7.4 8.4 9.1 9.3 9.8 10.8

ε=3.6 MSE 14.9 9.3 8.8 8.9 9.8 11.0 11.5 12.4 12.5

STD 22.9 7.6 6.9 6.4 7.2 7.7 8.8 9.7 10.5

ε=5.0 MSE 9.6 9.5 10.7 11.0 13.4 15.8 16.6 18.0 23.5

STD 5.1 6.7 7.3 7.7 8.4 9.7 10.3 11.7 11.8

Table 4
QSAR data sets

Dataset No. of Obs. No. of Vars. Preprocessed No. of Vars.

Blood/Brain Barrier 62 694 569

Cancer 46 769 362

Cholecystokinin 66 626 350

HIV 64 620 561

Caco2 27 715 713

Table 5
The experimental results with QSAR data sets

RH-SVR ν-SVR

Dataset Q2 std(Q2) Q2 std(Q2)

Blood/Brain Barrier 0.290 0.079 0.297 0.074

Cancer 0.331 0.171 0.248 0.15

Cholecystokinin 0.414 0.068 0.459 0.087

HIV 0.441 0.077 0.390 0.077

Caco2 0.371 0.083 0.424 0.069

The statistic Q2 is defined as the MSE normalized by the variance of the response.
We calculate the std(Q2) as the standard deviation of squared errors divided by the
variance of the response. The experiment is designed as follows: in each fold, one point
is held out, the remaining data are further divided into training set (80% of data)
and validation set (20% of data). Then we train the SVR machines on the training
data and tune the parameters based on the validation data. The model obtained with
the selected parameters is tested on the hold-out data point. Table 5 shows that RH-
SVR and ν-SVR perform similarly with parameters tuned for each method. Based on
our observation, both RH-SVR and ν-SVR prefer the fraction of SVs to be 20% as
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2ν = 0.2 in RH-SVR and ν = 0.2 in ν-SVR are selected in many folds. The selected
ε values in model selection for RH-SVR vary in different folds.

10 Discussion

In this work we showed that regression can be viewed as a classification problem
discriminating between the over and underestimates of the regression data in the
(x, y) space. By examining when ε-tubes exist, we showed formally that in the dual
space SVR can be regarded as a classification problem. Hard and soft ε-tubes are
constructed by separating the convex or reduced convex hulls respectively of the
training data with the response variable shifted up and down by ε. We proposed RH-
SVR based on choosing the soft max-margin plane between the two shifted datasets.
Like ν-SVM, RH-SVR shrinks the ε-tube. The max-margin determines how much the
tube shrinks. Domain knowledge can be incorporated into the RH-SVR parameters ε
and ν. The parameter C in ν-SVM and ε-SVR has been eliminated. Computational
results demonstrate that no one SVR formulation is superior for good parameter
choices. RH-SVR alone has a geometrically intuitive framework that allows users to
easily grasp the model and its parameters.

Considering regression as classification opens up many interesting possibilities for
analysis and algorithms. We showed how generalization error bounds for the classifi-
cation case could be generalized to the regression case. The objective of RH-SVR di-
rectly minimizes this error bound. Since the dual formulation of RH-SVR corresponds
geometrically to finding the closest points in the reduced convex hulls, RH-SVR can
be solved by nearest-point algorithms. We outlined a simple NPA for RH-SVR. Ini-
tial results for this NPA are promising but we leave optimizing the NPA to future
work. There may be possibilities of adapting other ideas from SV classification to
this SVR. Similarly, it is possible to construct new regression methods by applying
other descriptive algorithms to the augmented training data. Can the generalization
models such as the LOO-bound or the SPAN bound used for parameter optimization
in classification be extended to SVR? Can other classification methods be generalized
to regression using similar strategies? These are all open questions for future research.
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Appendix

A Separation of Convex Sets

This appendix is dedicated to the separation theorems that are used in constructing
the soft ε-tube for regression and deriving the nearest point algorithm. In order to
prove the main theorem, we need the following lemma.

Lemma 16 (Minimum distance from a point to a convex set) [3] Let S be a
nonempty, closed convex set in Rn, and p /∈ S. x̂ is the point in S closest to p if and
only if (p− x̂)′(x− x̂) ≤ 0, ∀x ∈ S.

Finding the closest points in two convex sets U and V can be stated as

min
z+, z−

1
2
||z+ − z−||2

s.t. z+ ∈ U , z− ∈ V .
(A.1)

The sets U and V in our cases are the convex hulls or reduced convex hulls of a finite
set of data points as in Eq.(7). Since the function 1

2
||z+ − z−||2 in problem (A.1) is

a continuous function on the compact set U × V , then by applying basic calculus,
we know c ∈ U and d ∈ V exist such that the infimum of the objective function
is attained at the two points. So formulation (A.1) is well-defined. In our case, the
U and V are strictly separable. It implies that c /∈ V and d /∈ U , or equivalently
||c− d|| > 0. The following theorem characterizes the closest points of U and V .

Theorem 17 (Separation of U and V) Let U and V be defined as in Eq.(7) with
U ∩ V = ∅, then (c ∈ U , d ∈ V) is the solution to Problem (A.1) if and only if
min {a′z | z ∈ U} ≥ a′c AND max {a′z | z ∈ V} ≤ a′d where a = c− d.

Proof: Without loss of generality, we only prove one of the conditions. Consider the
convex set U . From Eq.(7), U is a closed and convex set. (c,d) is the solution of
problem (A.1) if and only if c is the point in the polyhedron U closest to d. Since
d /∈ U , by the Lemma 16, (d− c)′(z− c) ≤ 0, ∀z ∈ U . Denoting a = c− d, we have
a′z ≥ a′c, ∀z ∈ U , which means min {a′z | z ∈ U} ≥ a′c. Similar arguments hold
true for the other linear program. 2
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