
Multiple-Threaded Nearest Point Algorithm
Operating Systems (CSCI-4210) --- A Project Report

Jinbo Bi bij2@rpi.edu
Department of Mathematical Sciences
Rensselaer Polytechnic Institute

Basic Idea

The nearest point algorithm (NPA) is used to find the two closest points in two
convex sets as shown in Figure 1. In this example, the convex sets denoted respectively
as and are the convex hull of the points 1 to 5, and the convex hull of the points 6
to 9. The NPA problem is stated as finding a
point from and a point from V such that
the two points are as close as possible. In
Figure 1, the u and are such two points.
The core algorithm of NPA can be found in [1,
2]. In this project, the NPA is implemented by
breaking it into three threads. Assume that
NPA can run on a parallel computing system,
this implementation is expected to run faster
than does the usual way. The first two threads
are each used to iterate through one of the
convex sets. The third thread is used for event
handling. When the program is running, every
time the user types in a character whose
function has been pre-specified in a particular
set of characters, an event will occur. No GUI
has been established for this implementation
by this moment. However, the event handling
is still carried out by an appropriate interface.

U V

U

ˆ v̂

Introduction

As a graduate student in the department of
mathematics, I’m interested in solving a family
of interesting data mining problems that can be formulated as mathematical optimization
problems. Particularly for this project, binary classification problems are investigated.
Given a bunch of sample points with some of them belonging to a class () and all
remaining points belonging to another class (V), the goal of classification is to find the
best decision rule to separate the two classes of points. The best decision boundary can be
constructed by finding the two closest points in the two convex hulls generated
respectively using the two sets of points. Thus, it is actually a NPA problem. Usually
solving this kind of problems, (if it has been formulated as a specific sort of optimization
problems), needs to use matrix decomposition techniques as done in solving classic
support vector machine approaches. It will be computationally very expensive and slow.
One way to improve it is to break down the optimization problem into some iterative
procedures in order to use fast iterative algorithms. Nearest point algorithm (NPA) is one

U

1

2
3

4

5

û

v̂

x

U

V

9

8

7

6

mailto:bij2@rpi.edu

of the iterative algorithms. Based on previous research, NPA can find a solution very fast.
The question of whether or not it is scalable on large data sets is left for further research.

In this project, an effort has been made to implement the NPA in a parallel way with
at least two threads running simultaneously although threading is not necessary for the
implementation of a NPA. We are not aware of any attempts on speeding up a NPA in
terms of its implementation as parallel computing based on the current literature. Hence
it will be a cool idea if the algorithm can be efficiently broken down into several threads
and each part can be parallel distributed. Although the current implementation may not
produce such an efficient decomposition, it is oriented towards this direction. Part of the
algorithm computation is not an issue related to OS, such as computing values of a kernel
function, and thus is omitted in this report. See [1, 2] for more complete description.

Algorithm and Data Structure
The algorithm contains the following steps:

1. Ask for initial data and parameters as required. This step includes giving the data
set used to run NPA, specifying the type of kernel function, providing the kernel
parameter and so on. At this moment, only training data is needed.

2. Initialize the starting points u and v based on the given data set and parameters.
3. Thread 1 starts with the class , i.e., check the optimality of u by iterating

through points 1 to 9 (for example if using the file “toytrain.txt” which has been
depicted in Figure 1), if the optimality is not satisfied, update u and v in turn.

U

(A reader from the OS area does not have to know a lot about member functions
such as “check_optimality”, “min_sort” and “update”. They are basically not
related to OS, but they are the fundamental codes for a NPA algorithm. These
functions will be called in the thread function named “Execute”.)

4. Thread 2 starts with the class , i.e., check the optimality of v by iterating
through points 1 to 9 (as in Figure 1). Then perform similar operations to those in
step 3.

V

5. Thread 3 is created to listen to any events if the user types in characters when both
previous threads are running, in other words, when the program is running.

6. All three threads need to cooperate with each other to carry out the task of
computing the closest points u and v. Specifications needed in the event thread
include:

a. If the character ‘u’ has been entered when the program is listening to
events, the program will create a new process to output a log file called
“npa1.log” and all intermediate results from Thread 1 are stored in the
“npa1.log” file.

b. If the character ‘v’ has been typed in when the program is listening to
events, the program will create a new process to output a log file called
“npa2.log” and all running results from Thread 2 are stored in the
“npa2.log” file. Notice that both a. and b. may not be immediately shown
up since the “notepad” command may take time to start up.

c. If the user types in “q”, the algorithm may stop running if both Thread 1
and Thread 2 finish running, otherwise abnormally quit from running.

7. If NPA program stops running in a regular way, which means it completes the
two NPA threads. The model obtained by the NPA is saved in a file specified by

the user, (the default outcome file name is “toy.mod”). Providing a default name
is just for convenience in debugging. In practical running, users can give the
outcome model file any names based on the training file name. Besides the model
file, the NPA program also produces two other log files, the “npa1.log” for
Thread 1, the “npa2.log” for Thread 2.

 Race condition can be avoided by defining a class and instanciating it with two

objects. The “vector” containers are used to contain data points after reading them in,
and store some intermediate matrices. Data points can be in a very high dimensional
space. It depends on specific problems. For example, Figure 1 shows a problem in two-
dimensional space. In practice, it is common to see thousands of variables for each point.
We specify the data format as: the first variable of each sample point is the identification
number. The second variable indicates the class which the point belongs to. We have two
classes in NPA, so this variable takes values of either +1 or -1. All variables after these
two variables are attributes or descriptors of each point. These attributes comprise the
various problem dimension.

Specifications and Description

In this project, two VC++ workspaces have been generated: one contains the NPA
main functioning program, which perform the NPA computation as described in [1, 2]
after correctly reading in data; the other one is a program for testing the models obtained
by the first program, which is auxiliary and is not necessarily included in this project.
The two workspaces are:

1) npa.dsw
2) npatest.dsw

Open them respectively. Compile and build executable program called npa.exe and
npatest.exe respectively. Several warnings may appear when compiling, and can be
ignored.

The NPA algorithm and its test program are implemented and debugged using visual C++
6.0 on a Windows 2000 platform.

1) npa.dsw includes the following codes:
header files: getin.h

 kernel.h
 npa.h

source files: getin.cpp
 kernel.cpp
 npa.cpp (NPA class)
 main.cpp

2) npatest.dsw includes the following codes:
header files: external header files (getin.h and kernel.h)
source files: getin.cpp
 kernel.cpp
 npatest.cpp

3) the class NPA is the crucial element of the entire program. Its fields and member
functions are listed as follows:

private:

 vector<double> u;
 vector<double> v;
 vector< vector<double> > kernel;
 double intercept;
 int M, start_class;

 member function initialize -- initializes the uu, uv, and vv
values in order to start running NPA.

 member function comput_value -- computes the function value
as specified in [1, 2] Algorithm 1 pl and ql.

 member function value_sort –- saves pl and ql values in the
“checker” vector, and then sorts those values and stores the indices in
xhat in the ascending order.

 member function check_optimality –- computes the formula

 and checks if the optimality has been satisfied.
li

p q−∑ li

 member function min_sort –- this function calls the functions
comput_value, value_sort, and check_optimality together to finish
optimality evaluation and identify a xhat, the point violating
optimality conditions.

 member function compute_norm –- computes the norm of a
vector, no matter for u, v or xhat.

 member function update -- if optimality is not met, it means
the current points u and v are not optimal yet, so update u or v using
the xhat found in min_sort.

 member function compute_b – computes the intercept term b
needed in the classification function because the function does not
only need u and v but also an offset b.

 member function Npa_Thread –- This is important for OS class,
which repeatedly calls “min_sort” and “update” functions based on the
specific situations to perform the NPA algorithm. This function will
be called when a thread is generated.

 member function NPA(const NPA& copy);
 class operator NPA& operator = (const NPA& rhs);

 public:
 char* logFile;

 class constructor NPA()

 class destructor ~NPA();

 member function HANDLE Execute –- this function creates a
thread and calls the function Npa_Thread().

 member function get_u –- interface to return u
 member function get_v –- interface to return v
 member function get_intercept –- interface to return b

The program provides the following functions:

1. Read in data, save as a matrix, (for big data set, it has to do chunking, which will
not be included in this project.)

2. Interact with users for information required for running NPA.
3. Main thread sets the mode. If mode =0, the program will only run a demo on a

toy data; otherwise if mode =1, it need users to put in corresponding data such as
the following:

Please input which data file you’d like to handle:
toytrain.txt
Please indicate how many iterations you'd like to run:
1
Please provide the percentage of points made up the nearest
points:
0.4
Please testify what kind of kernel you want to use:
2
Please supply kernel parameter value:
1.0
Please specify which file the result will be stored in:
toy.mod

4. Compute kernel matrix, and do whatever to prepare for running NPA.
5. Run NPA by starting two threads.
6. Create the third thread to handle special operations required by users, like “quit”

abnormally.
7. Output resulting models obtained by the two threads regardless of which thread

gets the solution, and output some information recorded during running, After
users type in characters (tackled by the third thread), output the log files.

8. Upon the model generation, run npatest.exe program to test the model on another
test data set. The npatest.exe needs several arguments, so the command line
would look like:
If only type in “npatest.exe” without any arguments, the program shows the help
information like

Usage: npatest model_in training_in test_in outfile kernel_type

An example is the following command line

npatest toy.mod toytrain.txt toytest.txt toy.out 2
It tests the model “toy.mod” on the data stored in the “toytest.txt” file, and results
will be saved in “toy.out”. The program uses polynomial kernel (indicated by the
number 2).
Remember the kernel_type must be consistent to the kernel type used in the
npa.exe program where the model is generated by training on data “toytrain.txt”.
Otherwise it produces a contradiction.

The sample results are illustrated in
toy.mod
npa1.log
npa2.log
which are included in the zip file.

This program is not really targeted towards CS people with basic CS knowledge, and it
requires more machine learning knowledge to understand the content. Howver any people
can use the program to solve a classification problem if they formulate their problem as a
NPA problem and store data in the designated format. It is not hard to know how to use
the program, whereas perhaps hard to understand how the algorithm works. The program
will have sort of a simple user interface although it won’t use GUI. After the program
starts over, it will ask users for some information such as what is the seed to generate
random numbers when initializing u and v, or some parameters to perform NPA, etc.
After all configurations are settled down, it starts iterations and output resultant variable
values for each iteration, in the meanwhile, listening to any action that user may take.

The zip file includes
report.pdf (this file, which serves as a README file)
Header files: getin.h, kernel.h, npa.h, npatest.h, Resource.h, StdAfx.h
Source files: getin.cpp, kernel.cpp, main.cpp, npa.cpp, npatest.cpp, StdAfx.cpp
Project files: npa.dsp, npatest.dsp
Workspaces: npa.dsw, npatest.dsw
Data files: toytrain.txt, toytest.txt
Sample output files: toy.mod, npa1.log, npa2.log

March 25, 2002

[1] J. Bi and K. P. Bennett, A Generic Nearest Point Algorithm for Solving Support
Vector Machines, Unpublished manuscript (2002).

[2] J. Bi and K. P. Bennett, A Geometric Approach to Support Vector Regression,
Neurocomputing, Special issue on Support Vector Machines (2003).

	Multiple-Threaded Nearest Point Algorithm
	Basic Idea
	Introduction
	Algorithm and Data Structure
	Specifications and Description

