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Abstract

When multiple views of data are available for a
set of subjects, co-clustering aims to identify sub-
ject clusters that agree across the different views.
We explore the problem of co-clustering when
the underlying clusters exist in different sub-
spaces of each view. We propose a proximal al-
ternating linearized minimization algorithm that
simultaneously decomposes multiple data matri-
ces into sparse row and columns vectors. This
approach is able to group subjects consistently
across the views and simultaneously identify the
subset of features in each view that are associated
with the clusters. The proposed algorithm can
globally converge to a critical point of the prob-
lem. A simulation study validates that the pro-
posed algorithm can identify the hypothesized
clusters and their associated features. Compar-
ison with several latest multi-view co-clustering
methods on benchmark datasets demonstrates the
superior performance of the proposed approach.

1. Introduction
Multi-view data is common in many scientific fields. A
disease subtype may be recognized using both clinical
symptoms (view 1) and genomic data (view 2) (Gelern-
ter et al., 2006). Because only a very small portion of
genetic variants contribute to a particular disease subtype,
feature selection is indispensible in order to derive disease
subtypes (clusters) that are characterized by specific clini-
cal symptoms and selected genetic markers. Cross-species
RNA analysis is used to detect clusters of genes that are
co-regularized at certain developmental stages across the
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species (Jiang et al., 2014). Each species corresponds to
a RNA data matrix (a view). The gene clusters consis-
tent across all species can only exist in subspaces of each
view (the specific set of stages when they are co-regulated).
However, Feature learning for multi-view consistent clus-
tering is an under-explored problem.

Existing multi-view data analyses include supervised/semi-
supervised co-training (Blum & Mitchell, 1998; Balcan
et al., 2005; Yu et al., 2011), unsupervised co-clustering
(Guan et al., 2011; Sohn & Xing, 2009; Van Mechelen
et al., 2004; Kumar & Daume III, 2011; Kumar et al., 2011;
Ji et al., 2012) and multi-view feature learning (White et al.,
2012; Wang et al., 2013), in all of which samples are char-
acterized or viewed in multiple ways, thus creating multiple
sets of input variables. Co-clustering commonly comprises
two subareas: (1) biclustering (Ji et al., 2012; Dhillon et al.,
2003; Shan & Banerjee, 2008), also called two-mode clus-
tering (Van Mechelen et al., 2004), simultaneously clusters
the rows and columns of a data matrix; (2) multi-view co-
clustering (Culp & Michailidis, 2009; Kumar & Daume III,
2011; Kumar et al., 2011; Chaudhuri et al., 2009; Cheng
et al., 2013; Cai et al., 2013; Liu et al., 2013; Sun et al.,
2014) seeks groupings that are consistent across different
views. The first type of co-clustering is similar to another
set of algorithms (Niu et al., 2010; 2012; Guan et al., 2011)
that search subspaces in the problem dimension, and each
of the subspaces corresponds to a view of the data and pro-
duces a different cluster solution. Biclustering and sub-
space searching essentially find subspaces to define distinct
clusters.

Our problem differs from the general multi-view feature
learning, such as in (Wang et al., 2013), which aims to clus-
ter subjects based on heterogeneous data, and it does not
enforce the selection separately in different views. The se-
lected features may hence come from a subset of the views
(e.g. from one view). If the clusters are obtained using only
features in one view, they are not truly multi-view consis-
tent clusters. Most similar to multi-view co-clustering, our
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problem seeks a grouping of subjects that agrees in the dif-
ferent views. However, existing multi-view co-clustering
methods assume that all given variables in each view are
equally useful to reveal an underlying partition. When clus-
ters exist in different subspaces, an underlying partition
consistent across all views may only be identified in the
different subspaces of each view.

Hence, we propose a novel sparse co-clustering approach
by simultaneously decomposing multiple data matrices into
products of sparse row and column vectors. This method
can be viewed as performing biclustering in each view to
identify both row clusters and column clusters simultane-
ously but the row clusters from the different views should
be the same. Figure 1 demonstrates the problem in two
views with two data matrices. If rows of a data matrix rep-
resent subjects and columns represent features, we identify
subject (row) clusters consistent across all the views and
variables that define the subject clusters from each view.

Figure 1. Sparse co-clustering: rows are grouped in the same way
across the two matrices. The subjects in each row cluster are ho-
mogeneous over a subset of variables from each of the views.

The main contributions of our work are summarized as
follows. (1) Unlike most existing multi-view data ana-
lytics, our method can find subspaces in individual views
so that a multi-view consistent grouping can be identified.
(2) A recently proposed multi-view co-clustering method
(Sun et al., 2014) uses sparse singular value decomposition
(SSVD) (Lee et al., 2010) and has no convergence guaran-
tee. However, a globally convergent algorithm is developed
to solve our formulation by proximal alternating linearized
minimization (Bolte et al., 2014). (3) Existing SSVD based
methods use the `1-norm to approximate the `0-norm in
forming the sparse decomposition (Sun et al., 2013; 2014).
We directly solve a formulation with the `0 penalty, which
is essential for clustering.

2. Multi-view low-rank matrix approximation
Given a single data matrix X of size n-by-d, a subgroup
of its rows and a subgroup of its columns can be simulta-
neously achieved by decomposing the matrix into a pair of
left and right vectors that are both sparse. Let u of size n
and v of size d be the left and right vector, respectively, re-
sulted from the decomposition. Their outer product forms

a sparse rank one approximation of the original matrix, i.e.,
X ≈ uvT . Then, rows in X corresponding to non-zero
components in u form a row subgroup and columns in X
corresponding to non-zero components in v form a column
subgroup. The resultant row and column clusters help to
define each other. Subsequent clusters can be obtained by a
sparse rank-one approximation of the deflated data matrix,
i.e., by repeatedly solving Eq(1) with an updated X:

min
u,v

‖X− uvT ‖2F

subject to ‖u‖0 ≤ su, ‖v‖0 ≤ sv,
(1)

where the objective function measures the approximation
error with a Frobenius norm of the difference matrix, and
‖ · ‖0 is the `0 vector norm that returns the number of non-
zeros in a vector. We assume the singular value is absorbed
by the singular vectors. The hyper-parameters su and sv
are pre-determined to enforce the sparsity of u and v, re-
spectively. To obtain subsequent singular vectors, we up-
date the matrix X by excluding subjects already identified
in a row cluster. (Other choices exist, such as deflating X
by X− uvT , which leads to overlapping row clusters.)

Now we extend this method to two or more data matrices
denoted by Xk of size n-by-dk, k = 1, · · · ,m. These m
data matrices characterize the same set of subjects from
m different views. We can obtain uk and vk for each
matrix Xk by finding their rank-one approximations sep-
arately, but it will not guarantee the row clusters specified,
respectively, by uk be consistent. To make them consis-
tent, it requires all uk, k = 1, · · · ,m, to have non-zero
entries at the same positions. Note that by requiring a
sparse common u across all views, consistent row clusters
can also be identified and the related optimization problem
may be easier to solve. However, it imposes a stringent
constraint to limit the search space only to those that sat-
isfy u1 = u2 = · · · = um, which can be difficult when
different kinds of data are used, such as real-valued data
in gene expression but discrete values in genomic markers,
and rules out many potential solutions that may include the
optimal row clusters. Another alternative is to minimize
the pairwise differences ||ui−uj ||, which suffers from the
same over-constrained problem as the exact values of the
difference are not concerned. Our problem only seeks the
indicators of whether or not a component of u is zero.

We propose to use a binary vector ω of size n that serves as
a common factor to link the different views. We multiply
each component of uk by the corresponding component of
ω, i.e., uki = uki ωi. In other words, we represent each vec-
tor uk by diag(ω)uk where diag(ω) is a diagonal matrix
with diagonal entries equal to ω. When ωi = 0, regard-
less the value of the i-th components of all uk’s, the i-th
row will be excluded from the subgroup in all views. We
hence require the sparsity of ω instead of individual u’s in
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the optimization problem as follows:

min
ω,uk,vk,k=1,··· ,m

m∑
k=1

‖Xk − diag(ω)ukvk
T ‖2F

subject to ‖ω‖0 ≤ sω, ‖vk‖0 ≤ svk ,
k = 1, · · · ,m,
ω ∈ Bn.

(2)

where Bn is the set that contains all binary vectors of
length n, sω and svk ’s are hyper-parameters that are pre-
determined to enforce sparsity of ω and vk’s. Note that
minimizing (2) is mathematically equivalent to minimizing∑m
k=1(‖Xk − diag(ω)ukvk

T ‖2F + λvk‖vk‖0) + λω‖ω‖0
where λω and λvk ’s correspond to the optimal values of La-
grange multipliers of Eq.(2). Although this kind of prob-
lems are nonconvex and nonsmooth minimization prob-
lems, recent advances in proximal algorithms (Bolte et al.,
2014; Attouch et al., 2010; 2013) allow us to derive an ef-
ficient algorithm to solve the proposed formulation.

3. A proximal alternating algorithm
The framework of proximal alternating linearized mini-
mization (PALM) (Bolte et al., 2014) has recently been
proposed to solve an optimization problem with multiple
blocks of variables, and the objective function is only re-
quired to be smooth at the term that uses all variables. Typ-
ical proximal projection methods (Bauschke & Combettes,
2011) require the gradient of the smooth part of the objec-
tive function to be Lipchitz continuous with respect to all
variables. In contrast, PALM only requires componentwise
Lipchitz continuity, i.e., Lipchitz continuous with respect
to a block of variables when others are fixed. The objective
function of Eq.(2) is in C2, i.e., second-order continuously
differentiable with respect to both u’s and v’s, and with re-
spect to ω when we relax it to a real-valued vector. The
regularizers based on the `0 norm are the nonsmooth parts
and they only use one of the blocks at a time.

PALM alternates between optimizing each block of the
variables ω, u’s and v’s. The central idea of PALM is to,
for each block of variables, perform one gradient step on
the smooth part, while a proximal step is taken on the non-
smooth part. To simplify the presentation, we denote the
objective function in Eq.(2) by h and the regularizers on ω
and v’s, respectively, by f and g’s. Let ωt, (uk)t and (vk)t

be the current iterates at iteration t. For instance, to opti-
mize ω, a linearized approximation of the objective func-
tion, which is the gradient step, is< ω−ωt,Oωh > where
Oωh is the partial derivatives of h with respect to ω. Then,
argmin{< ω − ωt,Oωh > +γωLω

2 ‖ω − ωt‖2 : ‖ω‖0 ≤
sω} is a well-defined proximal map for f where γω > 1 is
a constant and Lω is the Lipschitz modulis of Oωh. (Note
all partial derivatives of h are Lipschitz continuous.) With

similar notation, we now describe as follows the procedure
to update the variables in iteration t+ 1.

(1) Compute (uk)t+1 using ωt, (uk)t and (vk)t

As the update of u’s are independent from each other, each
(uk)(t+1) can be calculated separately. Similarly, let Oukh
be the partial derivatives of h at point (ωt, (uk)t, (vk)t

with respect to uk, and it can be calculated as:

Oukh = ωt �
(((

ωt � (uk)t
)
(vk)t

T −Xk
)

(vk)t
)
.

where � computes the element-wise product of two vec-
tors. The Lipschitz modulis of Oukh is calculated by
Luk = (vk)t

T
(vk)‖ωt�ωt‖2. Then we compute (uk)t+1

by solving the following optimization problem:

min
uk

< uk − (uk)t,Oukh > +
γuLuk

2
‖uk − (uk)t‖2.

where γu > 1 is a constant and note that there is no non-
smooth part due to no regularizer on u. This problem can
be easily proved to be equivalent to:

min
uk

γuLuk

2
‖uk −

(
(uk)t − 1

γuLuk

Oukh

)
‖2,

which has an analytical solution as:

(uk)t+1 = (uk)t − 1

γuLuk

Oukh (3)

(2) Compute (vk)t+1 using ωt, (uk)t+1 and (vk)t

Similarly, each vk can also be computed separately. We
compute the partial derivatives Ovkh and the Lipschitz
modulis Lvk as follows.

Ovkh =
((

ωt� (uk)t+1
)
(vk)t−Xk

)T(
ωt� (uk)t+1

)
.

and Lvk =
(
ωt� (uk)t+1

)T(
ωt� (uk)t+1

)
. In order to

obtain the update for vk, we solve the proximal map:

min
vk

< vk − (vk)t,Ovkh >+
γvLvk

2
‖vk − (vk)t‖2

subject to ‖vk‖0 ≤ svk .

Let δs(x) : Rd → R be an indicator function defined by:

δs(x) =

{
0 ‖x‖1 ≤ s
+∞ ‖x‖1 > s.

(4)

Then, the above minimization problem can be converted to:

min
vk

< vk − (vk)t,Ovkh >

+
γvLvk

2
‖vk − (vk)t‖2 + δs

vk
(vk).
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This problem can be proved to be equivalent to the follow-
ing problem:

min
vk

γvLvk

2
‖vk −

(
(vk)t − 1

γvLvk

Ovkh

)
‖2

+ δs
vk

(vk).

(5)

Let
(ṽk)t+1 = (vk)t − 1

γvLvk

Ovkh.

It can be shown that the optimal solution to Eq.(5) is the
vector that keeps the original values in (ṽk)t+1 at the po-
sitions whose absolute values are among the largest svk of
them. For instance, if svk is 3, we rank the components
in (ṽk)t+1 in descending order according to their absoute
values, and then choose the top three to maintain their val-
ues and set the rest to be 0. We denote the corresponding
threshold by α which is the minimum value among the svk
largest absolute values in (ṽk)t+1, and compute (vk)t+1 as
follows:

(vk)t+1
i =

{
(ṽk)t+1

i |(ṽk)t+1
i | ≥ α

0 |(ṽk)t+1
i | < α.

(6)

(3) Compute (ωk)t+1 using ωt, (uk)t+1 and (vk)t+1

We compute the partial derivatives Oωh and the Lipschitz
modulis Lω as follows:

Oωh =
∑
k

(((
ωt � (uk)t+1

)
(vk)t+1T −Xk

)
(vk)t+1

)
� (uk)t+1.

and Lω = ‖
∑
k

(
(vk)t+1T (vk)t+1

)
(uk)t+1�(uk)t+1‖2.

We solve the following optimization problem for ωt+1:

min
ω

< ω − ωt,Oωh > +
γωLω

2
‖ω − ωt‖2

subject to ‖ω‖0 ≤ sω.

By introducing the indicator function δ as in Eq. (4), this
problem can be converted to:

min
ω

< ω − ωt,Oωh > +
γωLω

2
‖ω − ωt‖2 + δsω(ω),

which can be shown is equivalent to:

min
ω

γωLω

2
‖ω −

(
(ω)t − 1

γωLω
Oωh

)
‖2 + δsω (ω).

Similar to how we update vk, we let

ω̃t+1 = ωt − 1

γωLω
Oωh

and β be the minimum value among the largest sω absolute
values in ω̃t+1. We compute ωt+1 as follows:

ωt+1
i =

{
ω̃t+1
i |ω̃t+1

i | ≥ β
0 |ω̃t+1

i | < β.
(7)

Summary. Algorithm 1 summarizes all the steps in our
algorithm. Row and column clusters will evolve from its
outputs on ω and vk. Precisely, we take rows correspond-
ing to non-zero entries in ω to form a row subgroup, and
take columns corresponding to non-zero entries vk to form
a column subgroup in the kth view. By repeating this pro-
cedure on updated data matrices where subjects already in
a row cluster are excluded, the desired number of subject
(row) clusterss can be obtained.

Algorithm 1 Multi-view rank one matrix approximation

Input: Xk:=1,··· ,m, sω and svk:=1,··· ,m

Output: ω, ui and vi for i = 1, · · · ,m
1. Initialize ω0, and (vk)0, (uk)0 for all k = 1, · · · ,m.
2. Compute (uk)t, ∀k = 1, · · · ,m according to Eq. (3).
3. Compute (vk)t, ∀k = 1, · · · ,m according to Eq. (6).
4. Compute ωt according to Eq. (7)
Repeat steps 2 - 4 until convergence (e.g., until ||ωt+1−
ωt|| ≤ ε, ||(uk)t+1 − (uk)t|| ≤ ε, and ||(vk)t+1 −
(vk)t|| ≤ ε.)

Computation Cost. Algorithm 1 is efficient and scalable.
At each iteration, only simple closed-form solutions need
to be computed for each block of variables. When calculat-
ing the updates for the m pairs of uk and vk, the algorithm
requires a computation cost of O(nmd). For updating ω,
the most costly steps are the calculation of partial deriva-
tives of h with respect to ω, which requires a computation
cost ofO(nmd). Overall, this algorithm takes computation
time of O(nmd), which is in the linear order of the prob-
lem dimensions. Moreover, notice that the calculation of
the update for uk and vk is independent from each other
among views. Hence, this algorithm is readily paralleliz-
able and can be distributed if more processors are available
to further reduce the computation time.

4. Convergence analysis
Based on the results of (Bolte et al., 2014; Attouch et al.,
2013), we prove that Algorithm 1 globally converges to a
critical point of Eq.(2). As how Algorithm 1 is derived,
it is easy to see that Eq.(2) is equivalent to minimizing an
overall objective function Φ(ω,uk,vk) = h(ω,uk,vk) +
δsω (‖ω‖0) +

∑
k δsvk (‖vk‖0). Theorem 1 characterizes

our main result of convergence property.

Theorem 1 Let z be the vector consisting of all variables
in Problem (2), and {zt} be a sequence generated by Al-
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gorithm 1. Then the sequence {zt} has finite length and
converges to a critical point of Φ.

The proof of Theorem 1 follows from the main result of
(Bolte et al., 2014) that shows if several key properties of
Φ are satisfied, then the conclusion holds . The following
two lemmas establish the properties.

Lemma 1 Φ is a semi-algebraic function, and hence sat-
isfies the Kurdyka-Lojasiewicz (KL) property. (Please see
Appendix A for the definitions).

Proof. It has been shown in (Bolte et al., 2014) that the `0
norm ‖x‖0 is semi-algebraic. Let d be the length of x, the
range of ‖x‖0 is [0, d], which is a semi-algebraic set. Ac-
cording to (Attouch et al., 2013), the indicator function of a
semi-algebraic set is semi-algebraic, and any composition
of semi-algebraic functions remain to be semi-algebraic.
Hence, all the δ functions in Φ, i.e., δsω and δuk , are semi-
algebraic. As function h is a real-valued polynomial func-
tion, it is semi-algebraic as well. According to the property
of semi-algebraic functions: finite sums of semi-algebraic
functions remain semi-algebraic, the function Φ, as the sum
of the three items, is a semi-algebraic.

In addition, it can be shown that Φ is a proper and lower
semicontinuous function. Then, based on Theorem 3 in
(Bolte et al., 2014): a proper, lower semicontinuous and
semi-algebraic function satisfies the KL property, so Φ sat-
isfies the KL property.

Lemma 2 The function Φ sastifies all of the following
properties:

1. infR(m+1)nd h < −∞, infRn δsω < −∞ and
infRdk δs

vk
< −∞, where dk is the number of fea-

tures in view k and d =
∑
dk.

2. Oωh, Oukh and Ovkh are Lipschitz continuous with
modulis Lω , Luk and Lvk , respectively.

3. there exists λ−/+ω , λ−/+
uk and λ−/+

vk such that

inf Lω ≥ λ−ω , inf Luk ≥ λ−
uk , inf Lvk ≥ λ−

vk

(8)

supLω ≤ λ+ω , supLuk ≤ λ+
uk , supLvk ≤ λ+

vk

(9)

4. The entire Oh is Lipschitz continuous on bounded sub-
sets of R(m+1)nd.

Proof. Property 1 is trivial due to the non-negativeness of
each item in our objective function Φ.

For Property 2, notice that

∇vkh(ω,uk,vk) = (ω � uk)T [(ω � uk)vk −Xk]

∇ukh(ω,uk,vk) = [diag(ω)(diag(ω)ukvk −Xk)vkT ]

∇ωh(ω,uk,vk) =
∑
i

[diag(ui)(diag(ui)ωvi −Xi)viT ]

which are all Lipschitz continuous with the respecitve Lip-
schitz modulis:

Lvk = ‖(ω � uk)T (ω � uk)‖F
Luk = ‖(vkvkT )(ω � ω)‖F
Lω =

∑
i

‖(viviT )(ui � ui)‖F .

To prove Property 3, we introduce an arbitrary positive con-
stant µ and define

L′s = max{Ls, µ},∀s = vk,uk,ω

This functions L′s is still some Lipschitz moduli of ∇hs,
and it is bounded from below by µ. Hence, we have λ−s =
µ for all s, and

inf{Ls} ≥ µ, ∀s = vk,uk,ω.

The upper bound is discussed below.

Property 4 is satisfied directly from the Mean Value The-
orem because h is in C2. If the subsets B ×

∏
iB

ni ×∏
iB

mi are bounded, we similarly implement the Mean
Value Theorem, and we obtain that sup{Ls} is bounded
from above if the generated sequence {zt} is bounded.

Based on the above properties and the KL property, apply-
ing the result of (Bolte et al., 2014) yields Theorem 1.

5. Experiments
We implemented our approach using Matlab and validated
it first on synthetic data that was simulated with known
row and column clusters. This simulation study was par-
ticularly designed to examine whether or not our algorithm
could reveal the underlying variables associated with the
clusters even when a high level of noise existed. Then we
evaluated our approach on two benchmark datasets with
known subject clusters but unknown feature clusters. Nor-
malized mutual information (NMI, ranging from 0 to 1)
calculates the mutual information between two cluster so-
lutions normalized by the cluster entropies. Since the true
subject (row) clusters were known in our datasets, we com-
puted NMI to measure the agreement between the true clus-
ters and the clusters obtained by each approach in compar-
ison. A higher NMI value indicated better performance.

We compared the proposed approach against several recent
and most relevant multi-view co-clustering methods:
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• Single view sparse SVD (Lee et al., 2010): We re-
ported the best performance among the results by run-
ning SSVD in individual views as a baseline.

• Co-regularized spectral (Kumar et al., 2011): This
method finds consistent row clusters across multiple
views by applying spectral clustering to each view to-
gether with a co-regularization factor applied to the
eigenvector representations of different views. We
used the pairwise co-regularized formulation in (Ku-
mar et al., 2011).

• Co-trained spectral (Kumar & Daume III, 2011):
This method also finds consistent row clusters based
on spectral clustering where eigenvector representa-
tions of each view are co-trained or modified by the
clustering results from other views.

• Multi-view canonical correlation analysis (CCA)
clustering (Chaudhuri et al., 2009): This method con-
structs lower-dimensional subspaces in each view us-
ing multiple views of data via CCA before clustering.

• Multi-view feature learning (FL) (Wang et al.,
2013): The method projects the concatenated feature
vectors to the cluster indicator matrix via a sparse pro-
jection matrix W where W is of size n ×K (K total
clusters), and imposes structural sparsity on W.

• Kernel addition and Kernel product: These two
baseline methods were formulated in (Kumar et al.,
2011) by summation or component-wise multiplica-
tion of two kernel matrices for use in spectral cluster-
ing. We used the same procedure as in (Kumar et al.,
2011) in our experiments.

5.1. Synthetic data

The synthetic dataset consists of two views and two pairs of
row and column clusters. This experiment was designed to
mimic the challenging real-life problem in disease classifi-
cation based on both genetic markers (view 1) and clinical
symptoms (view 2). We first created two subject clusters in
the genetic view and then used these clusters to create data
in the clinical view.

Genetic data was downloaded from the 1000 Genome
Project (Abecasis et al., 2012) and 1092 subjects were
genotyped with several million genetic markers in this
project. We randomly selected 1000 markers from chromo-
some 5 for use in our experiment. For each subject (row)
cluster, 10 markers (columns) were randomly chosen to be
associated. To assign subjects to a cluster, we assumed that
the minor allele at each locus was the risk variant. We as-
signed subjects to a cluster if they had over 8 risk variants
out of the 10 chosen markers. Subjects that did not belong
to any of these simulated clusters were treated as in a third

cluster. Hence, 247 and 167 subjects were assigned to sub-
ject cluster 1 and cluster 2, respectively and 678 were in
the remaining cluster.

To create the subject clusters in the clinical view (view 2),
we introduced random noise to clinical features so that the
associated clinical features may have different levels of as-
sociation with the simulated subject clusters. The consis-
tency of the subject clusters between this view and the ge-
netic view varied according to the noise level. We used a
parameter e to indicate the noise level. Denote rji the num-
ber of risk variants associated with cluster j that subject i
had, so 0 ≤ rji ≤ 10. If rji ∗ e + N(0, 1) > 7.5 ∗ e, we
assigned subject i to cluster j in the clinical view. In addi-
tion to the two subject clusters that had their counterparts
in the genetic view, two additional subject subgroups were
created in this view to make the simulated data even more
difficult and realistic. The two additional subject clusters
each included 200 subjects that were randomly selected.

After the subject clusters were created for the clinical view,
we simulated 10 clinical features. A subject was assigned a
value of 0 or 1 for each of the features according to a prob-
ability. Cluster 1 and cluster 2 each was associated with
3 features in the clinical view. Subjects in each simulated
subject subgroup obtained the value of 1 with probabilities
of 0.6, 0.5, 0.4, respectively for the three designated fea-
tures. Each of the two additional subgroups in this view
was associated with two features, and subjects in each of
these two clusters obtained the value of 1 on the respective
two features, with probabilities of 0.6 and 0.5, respectively.
A subject obtained the value of 1 with a probability of 0.1
on any other features.

To evaluate how the proposed method performs when
the noise level varies, we created four datasets in the
clinical view (view 2), which were generated with e =
1, 0.8, 0.6, 0.4, respectively. Note that when e = 1, the two
simulated subject clusters are the most consistent across the
two views. Decreased e values lead to a higher level of dis-
agreement between the two views.

All of the compared methods were used to obtain three sub-
ject clusters, and Table 1 provides the NMI values. The
proposed method has the greatest NMI value over all of the
four datasets. Along with the decreasing e, NMI values ob-
tained by the proposed approach decrease as expected, but
it can still recover the true subject clusters consistent be-
tween the two views. All other methods performed poorly
with similar NMI values on this difficult dataset. We also
experimented with different kinds of kernels (e.g., Gaus-
sian and linear) for those co-clustering methods that are
based on a kernel. It may be partially because the kernel
matrices were calculated using all features in either of the
views. The poor performance may reflect the fact that 98%
of the 1000 genetic markers were not relevant to the sub-
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Table 1. NMI comparisons between different approaches with dif-
ferent effects e.

e = 1.0 e = 0.8 e = 0.6 e = 0.4

Biclustering via SSVD 0.0821 0.1798 0.2432 0.2286
Co-regularized Spectral 0.2549 0.2477 0.2338 0.2306
Co-training Spectral 0.2062 0.1796 0.2331 0.2378
Multi-view CCA 0.1669 0.1398 0.1097 0.1559
Multi-view FL 0.1569 0.1576 0.1532 0.1211
Kernel addition 0.2587 0.2295 0.2350 0.2566
Kernel product 0.1917 0.2432 0.2302 0.2310
Proposed method 0.6237 0.6226 0.6125 0.6099

ject clusters. It may require further investigation about why
these methods varied little on their performance when the
noise level varied significantly. It is also important to point
out that merging the variables from both views into a clus-
ter analysis led to the worst result as shown in the row of
Multi-view FL, which as we observed, was because most
features were selected only from the genetic view. The ge-
netic view with 1000 features clearly outweighed the clini-
cal view. The resultant clusters differed only on the genetic
markers, many of them were not the ones used in synthe-
sizing the subject clusters.

Table 2. The number of features identified by the proposed
method as associated with the two simulated subject clusters. TF
is the number of True Features that specify a subject cluster. TPF
(True Positive Features) and FPF (False Positive Features) are the
numbers of features that correctly and incorrectly identified, re-
spectively.

View 1 (genetic) View 2 (clinical)
TF TPF FPF TF TPF FPF

cluster 1

e = 1

10

9 1

3

3 0
e = 0.8 9 1 3 0
e = 0.6 9 1 3 0
e = 0.4 10 0 3 0

cluster 2

e = 1

10

10 0

3

3 0
e = 0.8 10 0 3 0
e = 0.6 10 0 3 0
e = 0.4 10 0 3 0

As a significant advantage of the proposed method, the fea-
tures that specify the subject clusters can be simultaneously
identified during the clustering process. All other meth-
ods could not identify or select among the given variables
except Multi-view FL which selected many incorrect fea-
tures. We calculated the number of variables that were cor-
rectly and incorrectly identified by the proposed approach.
The results are summarized in Table 2, which shows that
our approach correctly identified true associated features in
both views (10 in view 1 and 3 in view 2 for each sub-
ject cluster) with a very low false discovery rate. The false
discovery rate was considered low given there were 1000
genetic variables.

5.2. Real-world benchmark data

Two real-world benchmark datasets with two or more
views of data were used in our experiments. We give brief
description of each dataset as follows.

• UCI Handwritten digits dataset: We downloaded
the handwritten digits data from the UCI repository.
The dataset consisted of 2000 examples in six views.
We used the 76 Fourier coefficients of each image as
view 1, and 240 pixel averages in 2 × 3 image win-
dows as view 2 to report performance. This dataset
was previously used to evaluate two recent multi-view
clustering methods (Kumar et al., 2011) and (Kumar
& Daume III, 2011) which chose two different views
of data from ours for evaluation.

• Crowd-sourcing dataset: This dataset was down-
loaded from a study of Crowd-sourcing Big Data
(http://web.eecs.umich.edu/∼mozafari/projects.html)
(Mozafari et al., 2012). There were 584 images
characterized from two views in the dataset. The first
view consisted of 15,369 features that were extracted
from each of the images. The second view comprised
108 features that were labels given by 27 labelers to
each image to indicate the facial expression of the
person in the image: neutral, happy, angry or sad.

Table 3. NMI values of different approaches on the two bench-
mark datasets. Numbers in parentheses are standard deviations.

Handwritten Crowd-sourcing
Biclustering via SSVD 0.541 (0.010) 0.409 (0.021)
Co-regularized Spectral 0.823 (0.007) 0.375 (0.024)
Co-training Spectral 0.562 (0.023) 0.133 (0.023)
Multi-view CCA 0.603 (0.106) 0.045 (0.027)
Multi-view FL 0.475 (0.008) 0.373 (0.023)
Kernel addition 0.820 (0.008) 0.274 (0.024)
Kernel product 0.814 (0.014) 0.248 (0.035)
Proposed method 0.876 (0.006) 0.428 (0.013)

Table 3 summarizes the NMI values of all methods on the
benchmark datasets. On the Handwritten digits data, all
multi-view clustering methods, except Multi-view FL, per-
formed better than the single view clustering method. Our
approach provided the best performance that was followed
closely by the Co-regularized Spectral method. It is in-
teresting to see that the two Kernel baseline methods per-
formed pretty well on this dataset. It is probably because
many features from both views were useful for cluster anal-
ysis as shown by our method that selected more than half
of the features from each view. There were totally 6 views
of data in this dataset. We experimented with adding more
views and found that the multi-view clustering methods did
not always improve performance with more views. When
we added in 216 profile coefficients of each image as view 3
for instance, the performance of all methods dropped (e.g.,
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our approach reported an NMI of 0.841.) It is likely that
some of the views provide noisy or redundant information
for the classification of digits.

On the Crowd-sourcing dataset, we observed one of the
views (the labeler view) was significantly more useful than
the other view (the image-feature view) for correctly group-
ing the images. The image features in view 1 appeared
to be very noisy, so all other methods were unable to im-
prove the NMI performance from the single-view biclus-
tering that just used the labeler labels. The feature concate-
nation based method, Multi-view FL, performed relatively
well because it mostly selected the features from view 2.
Our method was the only one that was able to improve per-
formance by utilizing the two views. We also noticed that
the co-training based method modified the eigenvector rep-
resentations of each view based on the clustering results in
the other view. Hence, the wrong clustering solution in the
image-feature view created undesirable effect on the data
representation in the labeler view. Overall, this co-training-
based method performed poorly on this dataset.

To tune the hyper-parameters of our approach, we experi-
mented with various methods to determine sω , and sv of
each view. Empirically, we observed good performance
when the parameter sv is set to the number of selected fea-
tures whose percentage of accumulated latent in principle
component analysis (PCA) is over 90%. The initial values
of vector v also affects the clustering performance. Al-
though our algorithm is guaranteed to converge to a criti-
cal point, different initial point may lead to different local
minimizers. We found that if we set the initial vector v pro-
portionally with the first moment of PCA, our method was
able to perform better than those with the initial vectors of
all-ones or random-ones. For the chosen parameter values,
we ran multiple trials (i.e., each trial used randomly 80% of
the data) and reported mean and standard deviation (shown
in parentheses) of NMI (Table 3).

6. Related work
We compare our approach with a few most relevant multi-
view co-clustering methods. In (Cai et al., 2013), single-
view K-means was first represented by a matrix approxi-
mation problem, then a binary matrix was used to link dif-
ferent views. This method aligns with our idea but it used a
standard alternating optimization and did not aim to select
any features. In (Tang et al., 2009; Liu et al., 2013), a linked
matrix factorization (LMF) or nonnegative matrix factor-
ization method was proposed to fuse information from mul-
tiple graphs. Both methods decompose a data/adjacency
matrix into the product of two or more matrices where one
of the matrices is shared or comparable across all views.
They also require the decomposed matrices to be sparse.
The resultant optimization problem requires a gradient de-

scent or quasi-Newton method to optimize at each alter-
nating step. We argue that the requirement of the same
representation across all views (simialr to requiring all u’s
to be the same in our model) is a over-stringent constraint
that limits the search space from the best clustering solu-
tion. The time complexity of those methods is high. For
instance, the method in (Tang et al., 2009) has complexity
of around O(md(N + nd)) where N represents the num-
ber of nonzero entries averaged over all adjacency matrices.
We can clearly see that our approach is significantly faster.
(Kumar et al., 2011) imposes regularization conditions to
encourage pairwise similarities of subjects under the eigen-
vector representation to be similar across all the views. Our
multi-view extension of low-rank approximation can be ex-
tended to eigenvector space/representation in a similar idea
to Eq.(2). It would be interesting to further compare these
methods to reveal their advantages/disadvantages.

7. Conclusion
In this paper, we have proposed a multi-view sparse clus-
tering approach based on matrix decomposition of multiple
data matrices simultaneously into sparse singular vectors.
This approach links different views of data by a binary vec-
tor that is used to enforce the row clusters from all views to
be consistent. Surprisingly, the resultant optimization prob-
lem is efficiently solvable using only closed-form formu-
las in proximal alternating minimization steps. To the best
of our knowledge, our work is among the first approaches
that extend sparse matrix decomposition to multi-view data
with rigorous convergence analysis. As matrix decomposi-
tion methods are the fundamental tools for many learning
tasks, the capability of extending them to learn jointly from
multiple views of data will enhance many applications not
only in co-clustering. For instance, unsupervised dimen-
sion reduction, such as PCA, can directly benefit from the
proposed multi-view matrix decomposition approach (e.g.,
PCA from multi-view SVD).

There are a few directions for future work. It is possible
to extend the proposed approach to the case when miss-
ing values are present in any of the views. A simple idea
is to recover the missing values in one view based on in-
formation from other views. Theoretical analysis of co-
clustering in general has not been fully explored. Con-
sistency analysis of multi-view SVD-based or low-rank-
matrix-approximation-based co-clustering will provide in-
sights into the rate of convergence as the sample size in-
creases. If partial data is labeled, generalization of the pro-
posed framework to the semi-supervised setting will also be
important. Although our algorithm is computationally ef-
ficient, more empirical evaluations on large-scale datasets
might be needed to examine its speed and scalability.
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Appendix A: related definitions
Definition 1 (Semi-algebraic sets and functions) A subset S of Rd is a real semi-algebraic set if there exists a finite number
of real polynomial functions gij , hij : Rd → R such that

S =

p⋃
j=1

q⋂
i=1

{u ∈ Rd : gij(u) = 0 and hij(u) < 0}.

Moreover, a function h is called semi-algebraic if its graph

{(u, t) ∈ Rd+1 : h(u) = t}

is a semi-algebraic subset of Rd+1.

Semi-algebraic sets are stable under the operations of finite union, finite intersections, complementation and Cartesian
product. The following are the semi-functions or the property of semi-functions that are used in the main text:

- Indicator function of semi-algebraic sets.
- Finite sums and product of semi-algebraic functions.
- Composition of semi-algebraic functions.
- Real polynomial functions.

For any subset S ∈ Rd and any point x ∈ Rd, we define the distance from x to S as follows:

dist(x, S) := inf{‖y − x‖ : y ∈ S}.

when S ∈ ∅, we have dist(x, S) = 0 fro all x. Let η ∈ (0,+∞] and Φη be the class of all concave and continuous
functions ψ : [0, η) → R+ that satisfy the following conditions: (1) φ(0) = 0; (2) ψ is C1 on (0, η) and continuous at 0;
(3) for all s ∈ (0, η) : ψ′(s) > 0.

Definition 2 (Kurdyka-Lojasiewicz property) Let σ : R→ (−∞,+∞] be a proper and lower semicontinuous.

(i) The function σ is said to have the Kurdyka-Lojasiewicz (KL) property at ū ∈ dom∂σ := {u ∈ Rd : ∂σ 6= ∅} if there
exists η ∈ (0,+∞], a neighborhood U of ū and a function ψ ∈ Φη , such that for all

u ∈ U ∩ [σ(ū) < σ(u) < σ(ū) + η],

the following equality holds
ψ′(σ(u)− σ(ū))dist(0, ∂σ(u)) ≥ 1.

(ii) If σ satisfy KL property at each point of dom ∂σ then σ is called KL function.
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