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Bi-convex Optimization to Learn Classifiers from
Multiple Biomedical Annotations

Xin Wang and Jinbo Bi

Abstract—The problem of constructing classifiers from multiple annotators who provide inconsistent training labels is important and
occurs in many application domains. Many existing methods focus on the understanding and learning of the crowd behaviors. Several
probabilistic algorithms consider the construction of classifiers for specific tasks using consensus of multiple labelers annotations.
These methods impose a prior on the consensus and develop an expectation-maximization algorithm based on logistic regression loss.
We extend the discussion to the hinge loss commonly used by support vector machines. Our formulations form bi-convex programs that
construct classifiers and estimate the reliability of each labeler simultaneously. Each labeler is associated with a reliability parameter,
which can be a constant, or class-dependent, or varies for different examples. The hinge loss is modified by replacing the true labels by
the weighted combination of labelers’ labels with reliabilities as weights. Statistical justification is discussed to motivate the use of linear
combination of labels. In parallel to the expectation-maximization algorithm for logistic based methods, efficient alternating algorithms
are developed to solve the proposed bi-convex programs. Experimental results on benchmark datasets and three real-world biomedical
problems demonstrate that the proposed methods either outperform or are competitive to the state of the art.

Index Terms—Biconvex optimization, classifier training, multiple annotators, learning from crowds
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1 INTRODUCTION

Learning from multiple labelers who provide inconsis-
tent annotations to the training data is an emerging ma-
chine learning problem. Recent technological innovations
have created easily accessible crowdsourcing platforms such
as Amazon Mechanical Turk (AMT)1 and Crowdflower2,
through which tasks such as text or image annotations can
be assigned to enormous online annotators at affordable
prices. These crowdsourcing methods largely reduce the
economic and time costs associated with massive anno-
tating tasks. However, they have imposed great technical
challenges in deriving and modeling ground truth in many
cases. For instance, to diagnose cancer, although a biopsy
provides ground truth, the procedure is complicated and
combines with discomforts. Hence, series of X-ray images
can instead be read and annotated by multiple radiologists
to facilitate the diagnosis. An early work in cancer research
reported the problem that different radiologists have dif-
ferent reliabilities of recognizing a lesion in the same diag-
nostic image [1]. Since one expert’s expertise may be biased
and/or incomplete, integration of knowledge from multiple
experts is necessary to build accountable and reliable cancer
informatics systems. Learning from multiple annotators has
become necessary and beneficial in a variety of fields. In
the bioinformatics field, nature language processing (NLP)
tasks have been performed by AMT workers to extract
knowledge from biological and medical documents [2], [3],
[4]. A recent work [5] recruited non-expert AMT workers to
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annotate CT images with little prior training and then had to
use integration such as majority voting strategies to detect
polyps (colon cancer).

The traditional learning task constructs a classifier map-
ping from input features to ground truth labels, which
becomes difficult in the scenarios where ground truth la-
bels are unknown and need to be estimated from multiple
annotators of different expertise. Fig. 1 illustrates the learn-
ing problem using an example of heart motion analysis.
Multiple radiologists annotate a set of echocardiograms in
terms of whether an image shows abnormal heart motion.
The labels from these radiologists do not agree. The goal is
to train a classifier that utilizes the inconsistent radiologist
annotations to predict unseen images. The echocardiograms
are very difficult to interpret even for the best physicians
[6]. Inter-observer studies showed that even world-class
experts only agreed on 80% of their diagnoses. The learning
problem described in Fig. 1 is especially difficult when
radiologists’ expertise and reliability are unknown.

Several methods have been proposed in the recent ma-
chine learning literature to learn models from crowds, or
more precisely, from crowdsourced labels [7]. These meth-
ods typically impose a probabilistic model on the labeling
process, such as Bernoulli model or Gaussian model on the
true labels [8], or two-coin model for annotators [9], [10],
and then use an expectation-maximization (EM) process to
build logistic regression classifiers. Two recent works [11],
[12] also propose convex formulations based on logistic
regression, but the true classifier is estimated by taking an
average effect of the classifiers trained with each labeler,
which may be impacted significantly by malicious labelers
or spammers. There has been limited effort in extending
support vector machines (SVM) to build classifiers from
crowd-annotated data. It has been shown that SVM may
bear some advantages over logistic regression when data
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Fig. 1: Classifier training from multiple annotators. Echocar-
diograms of n subjects are annotated by m radiologists, and
the ground truth for each image is unknown. A classifier is
constructed to map an image to its ground truth label that
is estimated from the different radiologist labels.

follows certain distribution such as multivariate or mixture
of distributions, and SVM methods may require less features
than logistic regression to achieve a better or equivalent
classification accuracy [13], [14], [15].

In this paper, we propose a bi-convex optimization ap-
proach that performs simultaneously three tasks: (1) assess
how good each labeler is, (2) estimate the true labels, and
(3) build a classifier using approximate true labels estimated
from the multiple labels. The key step is to modify the hinge
loss used in the SVM where the unknown true labels are
replaced by their estimates. In the proposed approach, we
associate each labeler with a reliability factor. Three learning
models, each forming a bi-convex program, are derived
by making the hinge loss reflect three different kinds of
assumptions on the labeler reliability. The proposed meth-
ods follow a general principle that the labels from a more
reliable labeler should contribute more to the construction
of the classifier. If a labeler has a constant reliability factor, it
represents an overall performance of the labeler for the task.
For binary classification tasks, if a labeler has a predispo-
sition to one class than the other, his/her reliability differs
between the distinct classes, which brings a more complex
reliability structure. The most complex one assumes that the
labeler reliability varies on individual examples if the labeler
is not equally competent to annotate different examples.

2 RELATED WORKS

Many existing methods for learning from crowds focus on
modeling of an annotation process and estimating error
rates for the labelers independent of any classifiers. The
early statistical methods [1], [16], [17] on error rate estima-
tion for repeated but conflicting test results, and the recent
work on learning crowd behaviors [18], [19], [20], are good
examples. The latest work in this direction ranks annotators
to identify spammers [21], uses Multinomial probabilistic
models to quantify the competency of each labeler [22], and
parameterizes labeler expertise or reliabilities as well as the
difficulty of an annotation task to model human annotation
more accurately [23], [24], [25]. Moreover, in the work of [26]

and [27], reliabilities are estimated from gold standard tasks
and then used in a weighted combination for new labeling
tasks. Another method in [28] models the labelers using a
stochastic model and select examples to teach the labelers
via a greedy algorithm. These methods study the problem of
optimizing the task assignment in a crowdsourcing system.
We adopt the similar strategy as [26] and [27] to aggregate
the inconsistent labels assigned by multiple labelers, but the
labeler reliabilities are jointly estimated with a classifier.

Recently the interest of learning from crowds has in-
creased to directly build classifiers from multi-labeler data.
Repeated labeling methods [29], [30] identify the labels that
should be reacquired from some labelers in order to improve
classification performance or data quality. A recent theoret-
ical work [31], however, argues that the repeated labeling
negatively impacts the relative size of the training sample.
Another set of approaches [32], [33] assume the existence
of prior knowledge relating the different labelers, and the
prior is used to identify the samples for each labeler that are
appropriate to be used in the classifier estimation. Several
methods [7], [8], [9], [10], [11], [12], [34], [35], however,
neither assume that labels can be reacquired, nor assume
existence of any prior on labeler relations. These approaches
rely on certain data distribution, such as Bernoulli model
on the true binary labels or Gaussian model on the true
continuous labels [8] or two-coin model on the process of
how an annotator provides a label [9], [10], and then develop
a posterior solution with logistic regression and use an EM
algorithm to estimate the model parameters.

Among the methods that build a classifier and estimate
labelers’ error rates simultaneously, the models of [11], [12]
and [8] are the most similar to our work. In [11], [12], a linear
classifier with coefficients wj is built for each individual
labeler j based on his/her own annotation using logistic
regression and the final classifier with a coefficient vector
w is obtained by enforcing a regularization term, that is
either

∑
j ||wj − w||2 in [11] or

∑
j,k ||wj − wk||2 where

j, k denotes the indexes of the classifiers constructed from
an individual labeler’s annotation [12]. The final classifier
(w) is hence constructed by taking an average effect of
individual labeler’s classifiers rather than by minimizing the
final classifier’s own loss on the training data. This classifier
may collapse if there are many malicious labelers due to the
kind of majority voting effect. In [8], it is assumed that a
labeler’s competence may vary when annotating different
sample points, so a classifier is built for each labeler to
parameterize his/her reliability on an example. Then the
final classifier is built by modeling the reliabilities of the dif-
ferent labelers in a logistic regression based EM algorithm.
Unlike this method, we impose no specific distributions
but more general and intuitive assumptions on the labelers’
reliabilities.

In one of our recent works [36], we propose a strategy
to model simultaneously two sources of labeling ambiguity:
(1) the one caused by the inconsistent labels from multi-
ple annotators; (2) and the ambiguity that a class label is
associated with a bag of input instances rather than each
instance. The second labeling ambiguity is often referred
to as the multiple instance learning problem where a bag
is labeled as positive as long as one of its instances shows
evidence to be positive. We first modify the hinge loss to
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take a consensus of different labelers’ labels, which is, in
spirit, the same as the first model in this current paper - the
constant reliability model. Then the work in [36] focuses on
the extension of that model to multiple instance learning.
In this paper, however, we focus on solving the multiple
labeler learning problem by reforming the early constant
reliability model and proposing two other more advanced
new formulations.

3 THE PROPOSED FORMULATIONS

We derive the learning formulations in this section. Let
X = {x1,x2, ...,xn} comprise the n examples, where
xi ∈ Rd, and is annotated with multiple versions of the
label {y1i , y2i , · · · , ymi }. We focus on the case of binary clas-
sification where yji ∈ {−1, 1}, j ∈ {1, 2, ...,m}. Suppose
that the true label of xi is yi and we consider linear models
of the form x>w + b where w is the weight vector and b is
the offset to be determined for the classifier. We derive our
models by modifying the hinge loss [1 − yi(x>i w + b)]+ =
max{0, 1 − yi(x>i w + b)} where we replace the unknown
true label yi by a linear combination of yji .

The use of a linear combination of yji as an approximate
of yi is rooted from a probabilistic understanding of the
learning problem. For instance, in the model with constant
labeler reliability derived in the next section, the essential
motivation is that the true (unobserved) label yi is a linear
combination of yji ’s that are i.i.d. sampled from the hidden
true yi, taking a Gaussian form yji ∼ N (yi, σ

2
j ) where yi is

the mean and σ2
j is the precision. Then the a posteriori distri-

bution of yi given all the observed labels follows N (µi, σ
2
i ),

where µi =
∑

j σ
2
j y

j
i /

∑
j σ

2
j , and σ2

i =
∑

j σ
2
j . So one can

see a posteriori mean is a weighted linear combination of all
observed labels, and the weights sum to 1.

3.1 The model with constant labeler reliability
We approximate an example’s true label yi by a weighted
combination of each labeler’s labels, e.g., yi '

∑m
j=1 rjy

j
i

and each labeler j is associated with a reliability factor rj
where 0 ≤ rj ≤ 1. If the reliability factors of all labelers
are equal, this combination amounts to the majority voting.
If we require additionally

∑
j rj = 1, we approximate yi

by a convex combination of labelers’ opinions. We believe
these combinations may all be reasonable, and the most
appropriate one may be problem-specific. If the weighted
consensus of all labelers

∑
j rjy

j
i > 0, the example i is more

likely to be in the class of y = 1; or otherwise, it likely has a
true label of y = −1.

We modify the hinge loss by replacing the true labels
yi by the weighted consensus, which yields a bi-convex
function [1 − (

∑
j rjy

j
i )(x>i w + b)]+ (convex with respect

to (w, b) for fixed r and convex with respect to r for fixed
(w, b)). When the consistency is high among the labels
given by different labelers, especially by reliable labelers, the
magnitude of

∑
j rjy

j
i tends to be large regardless of its sign,

showing high annotation confidence for xi. Minimizing
the modified loss leads to a classifier that works hard to
correctly classify xi. When the labeling consistency is low
among reliable labelers for some examples, the assignment
of them to either class can be a vague guess. The linear

combination of labels will lead to a small value in magni-
tude due to the cancellation effect of the mixed +1 and −1
labels. The modified loss then reports a low value on such
cases, which hence does not emphasize the classification
performance on these examples. This justifies the validity
of the modified loss.

By adding a regularization term ||w||2 to the empirical
loss, we minimize the following optimization problem

min
w,b,r

λ||w||2 +
∑

i[1− (
∑

j rjy
j
i )(x>i w + b)]+

s.t.
∑

j rj = 1, rj ≥ 0,
i = 1, 2, ..., n, j = 1, 2, ...,m.

(1)

The constraints on r are affine, which formulate the convex
combinations of labelers’ opinions and enforce competition
among the labelers by limiting the sum of their reliabilities
to a constant 1. It is easy to verify that Problem (1) is a case of
bi-convex optimization because the objective function is bi-
convex and constraints are affine. To translate the problem
into a canonical form, the modified loss is translated into
constraints (

∑
j rjy

j
i )(x>i w + b) ≥ 1 − ξi for each example

i where the slack variables ξi ≥ 0, and both r and (w, b) are
variables to be determined in the following optimization
problem

min
w,b,ξ,r

λ||w||2 +
∑

i ξi

s.t. (
∑

j rjy
j
i )(w>xi + b) ≥ 1− ξi,∑

j rj = 1, rj ≥ 0, ξi ≥ 0,
i = 1, 2, ..., n, j = 1, 2, ...,m.

(2)

Problem (2) is also a quadratically constrained quadratic
optimization problem but with one of its constraints bi-
convex.

For binary classification, if the training data is balanced
in the distribution of either class (e.g., close to even numbers
of positive and negative examples), the proposed model
with constant reliability is often sufficient to estimate a
labeler’s overall reliability. This is sometimes referred to
as a one-mode model. The labelers with higher reliabilities
are expected to be assigned with larger weights by solving
Problem (2). However, this one-mode model will hardly take
care of the situation when labelers have different labeling ac-
curacies with respect to the positive or negative class labels.
In practice, when the problem data is very unbalanced, the
true positive rate and true negative rate will be important
factors to reflect the real performance. A model considering
a labeler’s class-dependent reliability will be needed.

3.2 The model with class-dependent labeler reliability
A labeler’s reliability may naturally be class dependent. For
instance, online annotators may have different accuracies in
labeling documents with respect to different topics relying
on whether they are more familiar with some topics than
others. If a labeler tends to always label examples to the +1
class, his positive predictive value (PPV) (the percentage of
examples labeled by the labeler as positive that are actually
positive) may be low but his negative predictive value
(NPV) (the percentage of examples labeled by the labeler
as negative that are actually negative) can be high.

We extend the model discussed in Section 3.1 to
class-dependent reliability factors. The model still esti-
mates the true labels by the weighted combination of
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each labeler’s labels. However, two parameters αj ≥ 0
and βj ≥ 0 are needed to estimate the j-th labeler’s
PPV and NPV, respectively. We set the true labels yi '∑m

j=1 α
(1+yj

i )/2
j β

(1−yj
i )/2

j yji . If labeler j gives yji = +1, αj

should be used as the corresponding weight for yji , and

β
(1−yj

i )/2
j is degraded to 1. If yji = −1, βj should be used in

the combination. Unlike the constant reliability model, we
now require

∑
j αj = 1 and

∑
j βj = 1, that can enforce

competition among labelers. When the two parameters are
used in the modified hinge loss, we optimize the following
optimization problem for the best class-dependent reliabili-
ties and classifier

min
w,b,ξ,r

λ||w||2 +
∑
i

[1− (
m∑
j=1

α
1+y

j
i

2
j β

1−y
j
i

2
j yji )(w>xi + b)]+

s.t.
∑
j

αj = 1,
∑
j

βj = 1, (3)

αj ≥ 0, βj ≥ 0,

i = 1, 2, ..., n, j = 1, 2, ...,m.

Bi-convexity still holds for Problem (3) since αj and βj are
not used at the same time for each yji in the constraints given
the values of yji are already known. The same optimization
algorithm used to solve Problem (1) can be applied to
solve Problem (3). Problem (3) can also be translated into
a canonical form by utilizing slack variables ξ to represent
the hinge losses, and the resultant optimization problem is
written as follows:

min
w,b,ξ,r

λ||w||2 +
∑
i

ξi

s.t. (
m∑
j=1

α
(1+yj

i )/2
j β

(1−yj
i )/2

j yji )(w>xi + b) ≥ 1− ξi,∑
j

αj = 1,
∑
j

βj = 1, (4)

ξi ≥ 0, αj ≥ 0, βj ≥ 0,

i = 1, 2, ..., n, j = 1, 2, ...,m.

This two-mode model, is similar in spirit, to the two-coin
model used in [9], [10], where a labeler’s expertise was also
described by two factors, sensitivity and specificity. In [9],
[10], labelers’ expertise, true labels and the classifier were
learnt with an EM algorithm based on logistic regression.
However, we observe that this prior model can become
numerically unstable when a large number of laberlers are
present [36]. The two-coin model updates the estimated
ground truth denoted by µ, a probability of the true label
being +1, based on the multiplications of sensitivities and
specificities, denoted by 0 ≤ αj ≤ 1 and 0 ≤ βj ≤ 1 for la-
beler j respectively (with a little mixed use of notation). The
products Πm

j=1αj and Πm
j=1βj , assuming there are m label-

ers, become extremely small with large m. Consequently, µ
becomes oscillating between 0 and 1 since the two products
are used in the numerator and denominator of the updating
formula for µ.

The proposed model is instead scalable and reliable to
deal with a large number of labelers. By selecting high-
quality labelers for use in the combination, redundant la-
belers may be excluded and sparsity has been observed in

the estimated reliabilities when a large number of labelers
are included. Our empirical results show that, for both
the models with constant reliabilities and class-dependent
reliabilities, the true labels can be sufficiently estimated from
few labelers and information from other labelers might be
redundant. Our models could automatically select labelers
whose labels are valid to make accurate estimates of the
ground truth and exclude correlated or redundant labelers.

3.3 The model with sample-specific labeler reliability
If a labeler is not equally competent to annotate all sample
subjects, his/her reliability r will become a factor relying on
individual samples x and hence becomes a function of x as
r(x). Such an issue often takes place in real life applications.
Radiologists may not have the equal reliability dealing with
high-quality images versus images of different kinds of
noise. Few previous studies examined this practical diffi-
culty. The methods in [8], [34] built a classifier x>wj +bj for
each labeler j based on his/her own annotation, and defined
rj(x) as a sigmoid translation (1 + exp(−(x>wj + bj)))

−1

of the linear classifier. The probability of observing yji was
p(yji ) = (1 − rj(x)|y

j
i−yi|rj(x)1−|y

j
i−yi|. Due to the use of

sigmoid functions and absolute values in the exponent, it
has created complex optimization problems.

We will use the functional distance from each xi to the
separation boundary (x>wj + bj = 0) that is computed
from a labeler j’s annotation to determine the labeler’s
confidence on labeling xi relative to other labelers. The far-
ther from the separation boundary, the more confident the
labeler annotates the example. Hence, the reliability function
rj(xi) = |x>i wj + bj |/

∑
j |x>i wj + bj |. The denominator

is used to compute the jth labeler’s confidence relative to
other labelers’ confidence. The individual labelers’ classi-
fiers can be built by minimizing standard hinge loss defined
as ηji = [1−yji (x>i wj +bj)]+. Since these classifiers are used
to determine reliabilities, they should be constructed more
or less accurately (i.e., close to the final classifier determined
by w), which motivates to impose an additional regularizer
R(w,wj) =

∑
j ||w −wj ||2 assuming the final classifier is

a more accurate estimate of the true classifier. Importantly,
this regularizer will enforce individual labeler’s classifiers
to have similar ||wj ||. Because rj(xi) is defined through a
functional distance from xi to the boundary, the similarity
among different ||wj || will render that rj(xi) is largely
proportional to the geometric (Euclidean) distance from the
point to the boundary.

We define the modified hinge loss ξi = [1 −
(
∑

j
(|x>i wj+bj |∑
j(|x>i wj+bj |

yji )(x>i w + b)]+ and the additional con-

straint for ξi would be (
∑

j
(|x>i wj+bj |∑
j(|x>i wj+bj |

yji )(x>i w + b) ≥
1− ξi. The modified hinge loss appears complex. However,
it can be re-organized through simple algebraic calcula-
tions by moving the denominator in rj(xi) to the right-
hand side. After re-organization, this constraint becomes∑

j |x>i wj + bj |(yji (x>i w + b) − (1 − ξi)) ≥ 0. The use
of the absolute value of x>i wj + bj can complicate the
optimization problem. Hence, we replace the absolute value
by the upper bound uji ≥ 0 that satisfies the constraints:
−uji ≤ x>i wj + bj ≤ uji for all i = 1, · · · , n and
j = 1, · · · ,m. Overall, we search for the best classifier (w, b)
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and the most accurate reliability estimate based on (wj , bj)
by optimizing the following problem:

min
w,b,ξ,wj ,bj ,η,u

λ1||w||2 + λ2
∑
j
||w −wj ||2

+
∑
i
ξi +

∑
i

∑
j
ηji +

∑
i

∑
j
uji

s.t.
∑
j
uji (y

j
i (x>i w + b)− (1− ξi)) ≥ 0,

−uji ≤ x>i wj + bj ≤ uji ,
yji (x>i wj + bj) ≥ 1− ηji ,
ξi ≥ 0, ηji ≥ 0, uji ≥ 0,

i = 1, 2, ..., n, j = 1, 2, ...,m.

(5)

Problem (5) has a convex objective function, a bi-affine
constraint (the first constraint) and all other constraints are
affine. This problem is also a bi-convex program. We can
group the variables into two groups: one group is related to
the final classifier including variables w, b, ξ, and the other
group is related to individual classifiers including variables
wj , bj ,ηj ,u. When fixing one group of the variables, Prob-
lem (5) becomes a convex quadratic program in terms of the
other group of variables.

Besides the regularizer that enforces the similarity be-
tween individual wj ’s and the final classifier’s w, an addi-
tional regularizer ||wj ||2 can be directly applied to individ-
ual wj . We will also evaluate an alternative formulation by
revising the objective function in Problem (5) to

min
w,b,ξ,wj ,bj ,η,u

λ1||w||2 + λ2
∑
j

||w −wj ||2 (6)

+ λ3
∑
j

||wj ||2 +
∑
i

ξi +
∑
i

∑
j

ηji

+
∑
i

∑
j

uji

where the same constaints in Problem (5) apply.
Besides the prior methods in [8], [34], the methods in

[11], [12] also estimate a labeler’s reliability by building
a classifier (wj , bj) from the labeler’s own annotations.
However, the final classifier (w, b) was built by minimizing∑

j ||w −wj ||, and hence w is estimated as the centroid of
all wj ’s, and thus suffering from significant outlier labelers.

4 THE OPTIMIZATION ALGORITHM

In this section, we present an effective algorithm to solve
the proposed Problems (1), (3), (5) and (6) respectively.
We adopt the alternating optimization approach for each
problem where we alternate between solving for the final
classifier and solving for the parameters related to reliability
iteratively until the algorithm converges. Because the three
proposed problems are all bi-convex as discussed in the
last section, the subproblems formulated for solving each
group of variables is convex. To solve the subproblems in
(1) and (3), we used their equivalent formulations (2) and
(4) by introducing slack variables. Algorithm 1 summarizes
the algorithmic procedure for each of the problems. For
illustration convenience, we list the procedure for each of
the problems together in Algorithm 1.

The initialization choices listed in Algorithm 1 are be-
lieved to follow the most common sense. For instance,
without prior knowledge, we may assume that all labelers

Algorithm 1 Alternating Optimization Algorithm for the
Proposed Bi-convex Programs

Input: λ’s, X, yj , j = 1, · · · ,m, and a tolerance ε.
Initialize: let k denote the current number of iterations,
and k is initialized to 0. Let Θ denote the set of all
variables needed to be optimized.
For the constant reliability model, set r(0) = 1/m. For the
class-dependent reliability model, set α(0) = 1/m and
β(0) = 1/m. For the sample-specific reliability model, set
(w

(0)
j , b

(0)
j ) to the SVM classifiers that are built from each

labeler’s labels, j = 1, · · · ,m.
repeat

Step 1:
For Problem (1), solve Problem (2) for (w(k), b(k)) and ξ
with fixed r(k−1).
For Problem (3), solve Problem (4) for (w(k), b(k)) and ξ
with fixed α(k−1) and β(k−1).
For Problem (5) and (6), solve for (w(k), b(k)) and ξ with
fixed (w(k−1)

j , b
(k−1)
j ), η(k−1)

j , and u
(k−1)
j .

Step 2:
For Problem (1), solve Problem (2) for r(k) and ξ with
fixed (w(k), b(k)).
For Problem (3), solve Problem (4) for α(k) and β(k)

with fixed (w(k), b(k)).
For Problem (5) and (6), solve for (w(k)

j , b(k)j ), η(k)
j , and

u
(k)
j with fixed (w(k), b(k)) and ξ(k).

until ||Θ(k) −Θ(k−1)||2 ≤ ε.
Output: (w, b), and r, (or (α,β), or (wj , bj)).

are equally competent (with equal initial r, α and β) and let
the algorithm determine and update the reliability factors
based on sample data. We also empirically notice that the
algorithm is insensitive to initial values in the sense that it
gives the same solution when we perturb the listed initial
values by random white noise.

We point out a small derivation difference in solving the
three problems. Problems (1) and (3) can be solved using
the same split of working variables, that is the algorithm
optimizes either (w, b) or r (or (α,β)) in an alternating
step. The slack variables ξi in Problems (2) and (4) are
only used to update the hinge loss in Problems (1) and
(3), respectively, at each step and hence they are included
in both the working groups of variables. For the sample-
specific reliability model, the modified hinge loss is not
bi-convex by its literal form. We have reformulated the
problem using the first constraint in Problems (5) and (6).
In this situation, we group the variables ξi with the final
classifier parameters (w, b).

According to the convergence analysis in [37], [38], the
alternating Algorithm 1 used for solving our programs (1),
(3), (5) and (6) converges to a set of fixed points which in
general includes global minimizers, local minimizers and
the saddle points. Due to the bi-convexity, the fixed points
of our programs do not include saddle points [38].

We give a brief discussion on the complexity of Algo-
rithm 1 using Problems (1) and (3). To optimize for (w, b),
Algorithm 1 solves a quadratic program similar to SVM. To
solve for r (or (α,β)), Algorithm 1 solves a linear program.
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Effective algorithms such as Dantzig’s simplex method, or
later interior point methods have been developed for these
programs. In our implementation, we used the CPLEX soft-
ware to solve them with choices of simplex-based methods.
Rigorous bounds on the number of operations required
by these methods have been established. For instance, the
complexity of solving the linear program is in order of d2`
with a constant where d is the number of variables and `
is the number of constraints in the program. We observe
that Algorithm 1 typically stops within 10 iterations, so the
overall complexity of Algorithm 1 is a constant (e.g., 10)
multipying the sum of the complexity of solving the linear
and quadratic programs.

5 EXPERIMENTS

The proposed methods were tested on five benchmark
datasets at first. Four of them are commonly used in
evaluating machine learning algorithms. These datasets are
all for binary classification and come with ground truth
labels, but they are not labeled by multiple annotators.
We created synthetic labelers for these datasets. The fifth
benchmark dataset is the facial expression dataset where
each face shot image was labeled by multiple real online
workers. Besides the benchmark datasets, we also tested
the proposed methods on three real-world problems of
analyzing biomedical images. The first problem was to
detect breast cancer in digitized mammographic images.
The other two problems aimed respectively to detect Heart
Wall Motion Abnormality (HWMA) using features extracted
from echocardiogrmas and to diagnose Alzheimer’s disease
using features extracted from magnetic resonance imaging
(MRI).

Our methods were compared against four recently-
published methods, all of which construct classifiers: Two-
coin model [10], EMGaussian model and EMBernoulli
model [8], and a convex model [11]. The classifier trained
with ground truth labels was supposed to achieve the best
performance whereas the majority voting approach served
as our baseline. The proposed methods Model with Constant
Reliability, Model with Class-Dependent Reliability and Model
with Sample-Dependent Reliability were respectively referred
to as MCR, MCDR and MSDR.

Ten-fold cross validation (CV) was used to run all algo-
rithms on each of the datasets with the same stratified CV
split. For the proposed methods and the convex method in
[11], we tuned their regularization parameters within the
training data in the first CV fold using another internal
three-fold CV for each dataset and then fixed the parameters
for the nine remaining CV folds. We selected the parame-
ters that obtained the best performance from the range of
[10−3,10−2,· · · ,103].

5.1 Benchmark datasets

In this section, we provide the details on the experimental
procedure and results obtained on the benchmark datasets.

5.1.1 UCI datasets with synthetic annotators
We used four datasets including Cleveland, Glass, Iono-
sphere and Pima, which were downloaded from UCI Ma-

TABLE 1: Details of the UCI benchmark datasets with syn-
thetic labelers

Dataset Cases(positive) Features
Cleveland 303 (139) 13
Glass 214 (163) 9
Ionosphere 351 (126) 33
Pima 768 (268) 8

chine Learning Repository3. Table 1 has the details about
these datasets. The datasets were preprocessed for perform-
ing binary classification. Although all these datasets had no
multiple versions of labels from real labelers, they were
frequently used by many previous multi-labeler learning
methods, including the three methods in [9], [10], [8] that
we compared in this paper. The rational was to have ground
truth labels and known labeler reliabilities to test against the
algorithms.

Since it was not straightforward to create synthesized
labelers according to the pre-specified PPV’s and NPV’s, we
created the labelers based on the pre-fixed sensitivities and
specificities. The labelers were created following the same
procedure used in [10]. We first specified two parameters
for each labeler, the sensitivity α and specificity β. Five
synthetic labelers were created for each of the four datasets.
Their sensitivities and specificities were pre-defined as
[0.6,0.6, 0.5, 0.7, 0.2] and [0.6, 0.6, 0.5, 0.2, 0.7], respectively.
The third labeler’s performance was close to a random
guess. The first two labelers were given equal sensitivity
and specificity, while the last two labelers were prejudicial
in the sense that one of them had higher sensitivity and the
other one had the exactly opposite parameter values.

Once the parameters were specified for a labeler, a ran-
dom number was generated uniformly from [0, 1] for each
example. When the true label was +1 (or −1), if the random
number was not bigger than the labeler’s α (or β), this
labeler chose the original label; or otherwise, (s)he flipped
the sign of the label. After the labelers were created, their
PPV’s and NPV’s were calculated.

In order to simulate the case where labelers have differ-
ent levels of reliability on different examples, we randomly
selected 50% of the data samples and ran k-means cluster
analysis to group them into five subgroups. Then we made
each of the five simulated labelers particularly accurate in
annotating one of the subgroups, respectively, with no over-
lapping. Their labels coincided with the golden truth on the
subgroup which they were assigned to. For the rest of data
samples not belonging to the subgroup that was assigned to
a labeler, the labeler will presume the same sensitivity and
specificity levels used in the early experiments.

Fig. 2 shows the Receiver Operating Characteristic
(ROC) curves achieved by all the methods in comparison on
the four datasets with five simulated labelers. The ROC was
plotted by merging all the validation data from the 10 folds
of the CV. From the ROC plots, we found that the MSDR
model with Eq.(6) generally achieved superior performance
over the other models by learning the varying expertise
jointly with estimating the true labels. Among the other

3. https://archive.ics.uci.edu/ml/datasets.html
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(a) Cleveland (b) Glass

(c) Ionosphere (d) Pima

Fig. 2: ROC curves on Cleveland, Glass, Ionosphere and Pima datasets with five simulated labelers (where two of them
were simulated as good labelers, the third labeler was close to a random guess, the forth one was more accurate in labeling
positive examples than negative ones and the last labeler was on the opposite of the forth one.).

models, MCDR as an extension of the MCR model, which
estimated labelers’ weights based on the PPV and NPV,
consistently achieved better performance than the MCR
model that only used one parameter to capture the labeling
accuracy. Compared to the method in [9], [10] which also
built a two-coin model (with two parameters), the MCDR
model could also achieve a slightly better performance in
general.

5.1.2 Facial expression recognition dataset
The facial expression dataset was previously used to study
crowdsourcing behavior [39]. The original dataset contained
585 head-shots of 20 users. For each user, images were
collected in which the user could be looking at 4 directions:
straight, left, right and up, and the user could present
4 different kinds of facial expression: neutral, happy, sad
and angry. The images were labeled with respect to the
4 types of facial expression by totally 27 online labelers
at the Amazon Mechanical Turk. Because not all labelers
labeled each image, on average, each image was labeled by
9 labelers. The previous study reported a labeling accuracy
of only 63.3% using majority voting among labelers. Hence,
the task of building a good feature-based classifier is very
challenging.

We selected 220 images with the users looking straight,
left and right without wearing sunglasses and performed
experiments to classify, based on the image features, if an
image contained a happy face. Twenty-four labelers were
involved in labeling the 220 images. True positive labels
were associated with 55 of the images, and the rest were
labeled by −1. We set the missing labels to 0, which would
automatically be ignored by any of the comparison meth-
ods. We segmented the region of an image containing a
human face into 6×6 blocks. Local Binary Pattern (LBP)
features [40] were extracted from each block and we aligned
all these features together (2088 of them) to represent an
image. We applied principal component analysis to reduce
the dimensions to 120 that explained ≥ 95 % of the total
data variance.

The area under the ROC curve (AUC) of each classifier
was reported and summarized into Table 2 (the first col-
umn), where we used the actual labels of each image col-
lected from online workers. Due to the difficulty of the prob-
lem itself and the significant amount of missing labels, all
methods achieved modest AUC values. Our models MCDR,
MSDR (both Eqs.(5) and (6)) and the Bernoulli model were
among the best methods with MSDR models performing
slightly better. All multi-labeler methods outperformed the
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majority voting baseline.
To test how the compared methods perform as the num-

ber of annotators increased, we also created more synthetic
labelers following the same procedure as mentioned in Sec-
tion 5.1.1. We set 30% of the labelers to have sensitivities and
specificities around [0.6, 0.6], 30% around [0.5, 0.5] (random
guess), 20% around [0.8, 0.2] while the rest 20% with [0.2,
0.8]. The results were also reported in Table 2 (from the
second to the last columns) which clearly show that the
difference in performance was magnified. The two MSDR
models improved the performance by 3% to 13% over the
other multi-labeler learning methods in these experiments.
We also ran an experiment with 1000 synthesized labelers
(results not shown in Table 2). We observed that the two-
coin model of [10] had extremely worse performance (AUC
= 0.55) than other models (e.g., the best MCDR AUC = 0.73),
which shows that this model may perform poorly with a
large number of annotators. Besides, the convex model of
[11] did not work well either since this model suffered a
lot from the synthesized annotators with lower accuracies
(AUC = 0.57).

Fig. 3 shows the average run time for an iteration of
each method versus the number of annotators. All methods
required longer time as the number of annotators increased.
The two proposed models MCR and MCDR were more
scalable since their run time curves were flatter than others
and time costs were lower. It is partially because increasing
the number of annotators only affects the optimization of
the sub-problem, i.e., solving Problem (1) and (2) for r(k)

and α(k),β(k) when the classifier parameters are fixed. This
sub-problem is a simple linear program and easily scalable
with a large number of labelers. Given the two formulations
of MSDR had similar run time, Fig. 3 reports the run time
for MSDR with Eq.(5) only. The MSDR model was timely
consuming in comparison with other models that also built
individual labelers’ classifiers, which may require the devel-
opment of a more efficient optimization algorithm and we
leave it for future work.

TABLE 2: AUC comparision on the facial expression dataset
when the number of labelers increases.

Methods 24† 40‡ 60‡ 80‡ 100‡ 200‡

MCR 0.66 0.58 0.58 0.57 0.59 0.66
MCDR 0.68 0.68 0.60 0.60 0.62 0.70
MSDR (Eq. (5)) 0.70 0.68 0.68 0.63 0.67 0.73
MSDR (Eq. (6)) 0.71 0.68 0.67 0.63 0.70 0.73
Two-coin model 0.68 0.64 0.59 0.59 0.64 0.63
Gaussian model 0.66 0.61 0.61 0.56 0.61 0.59
Bernoulli model 0.67 0.65 0.65 0.63 0.61 0.66
Convex model 0.66 0.63 0.61 0.60 0.61 0.61
Majority voting 0.62 0.60 0.56 0.58 0.57 0.59
† Real annotators
‡ Synthetic annotators

5.2 Biomedical Image Analysis

To diagnose a complex disease, a diagnostic image is often
interpreted by multiple radiologists to enhance the diagnos-
tic accuracy. In this section, we describe how the proposed

Fig. 3: Average runtime per iteration for every method on
facial expression datasets.

methods can help with cancer detection, heart abnormal-
ity detection and Alzheimer’s disease analysis based on
features that were extracted from a variety of imaging
modalities, including mammographic images, ultrasound
clips or MRI scans of brain. The mammographic images and
echocardiograms were annotated by multiple radiologists.
The MRI dataset of Alzheimer’s disease contained records
for multiple visits and a doctor’s annotation was supplied in
each visit. The final reading of the images was also provided
and served as the ground truth labels for a patient. We used
the diagnoses in the different visits as multiple annotations
or created synthetic labelers to provide multiple versions of
annotations.

5.2.1 Detecting breast cancer in mammographic images
In this dataset, 75 mammograms were collected from real
patients, of which the ground truth labels were obtained
from biopsy which annotated whether the mammographic
image contained a lesion. There were 28 positive samples
(having a lesion) and 47 negative samples. Each sample
image was represented by 8 attributes and was associated
with the labels assigned by three radiologists. We created
5 more synthetic labelers by leveraging the ground truth
labels. The labelers were synthesized with sensitivities [0.60,
0.50, 0.50, 0.20, 0.70] and specificities [0.60, 0.50, 0.50, 0.70,
0.20], which controlled the accuracies of the labelers in terms
of annotating either a positive or negative example.

We drew the ROC curves of the classifiers constructed
by the different methods in comparison together with the
AUC statistic in Fig. 4. According to the AUC values,
MSDR model (Eq.(6)) performed better than all the other
multi-labeler learning algorithms. MCR achieved the lowest
performance among the multi-labeler models but still out-
performed the majority voting baseline. The two-coin model
and MCDR performed similarly probably because both used
two reliability parameters. Among the three models that
used sample-specific reliabilities, our model was the best
(beter than EMGaussian, EMBernoulli, and the early convex
model).

Fig. 5 (5a, 5b and 5c) shows the estimated reliability
factors and compares them against the true labels or the
simulated labeler performance. The first three labelers repre-
sent the radiologists. From Figs. 5a, 5b and 5c, we observed
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(a) Estimate r (Mammography data) (b) Estimate α (Mammography data) (c) Estimate β (Mammography data)

(d) Estimate r (HWMA data) (e) Estimate α (HWMA data) (f) Estimate β (HWMA data)

(g) {w, b} vs {wj , bj} (Mammographic images,
MSDR (Eq. 5))

(h) {w, b} vs {wj , bj} (Mammographic images,
MSDR (Eq. 6))

(i) {w, b} vs {wj , bj} (HWMA data, MSDR (Eq. 5)) (j) {w, b} vs {wj , bj} (HWMA data, MSDR (Eq. 6))

Fig. 5: The figure shows the various parameters learned on Mammography and HWMA datasets. Sub-figures (a), (b), (c)
and (g) are drawn for Mammography dataset, while (d), (e), (f) and (h) belong to HWMA dataset. Further, (a) and (d) show
the estimated reliabilities by MCR against the true labeler accuracies; (b), (c) and (e), (f) show the estimated α and β by
MCDR against the synthesized PPV and NPV; (g), (h), (i) and (j) show the ROC curves of the two final classifiers and each
labeler’s classifier obtained by MSDR.

that the MCR and MCDR models are able to sketch a
general picture of the varying labeler expertise that is close
to the true values/trend. For the MSDR model that builds
a final classifier jointly with individual labelers’ classifiers,
the ROC plot in Figs. 5g and 5h show performance for
the classifiers constructed by the two MSDR models. The

final classifier clearly outperformed the classifiers built from
any individual labeler’s data. Our models created shrinkage
effects that produced sparse r (or sparse α and β). As
discussed early on, this shrinkage effect shows that true
labels can be estimated from few reliable labelers for the
tested datasets.
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Fig. 4: ROC comparison on the mammography dataset.

Fig. 6: Left: an ultrasound image of Apical 4 Chamber (A4C)
view; right: the 6 heart segments seen from the A4C view.

5.2.2 Heart wall motion analysis
The Heart Wall Motion Abnormality (HWMA) detection
dataset contained the features extracted from the images
of the wall motion of left ventricles in 222 heart cases.
The wall of left ventricle is medically segmented into 16
segments. Fig. 6 shows 6 of the 16 wall segments seen from
the apical 4 chamber (A4C) view of an ultrasound clip.
For each segment, 25 features were extracted. The feature
extraction process was described in more detail in [6]. For
each heart case and each segment, the ratings are provided
by 5 doctors as the level of severity ranking from 1 to 5,
besides, 0 would stand for the missing ratings. We assume
that if the ratings are greater or equal to 2 then the label
can be set as +1, which means there exists abnormality,
otherwise the label is -1. Additionally, at the heart level,
if two or more segments of one heart have been claimed as
abnormal, the heart-level label would be +1, which means
the heart overall has abnormality, otherwise it is -1.

In this experiment, among all these 16 segments, the data
extracted from segment 14 were more balanced than the
other ones. We used this set of data to test our methods.
Because only two cases from this dataset missed radiolo-
gists’ ratings, there were total 220 examples. Since there was
no ground truth available for the data, it is reasonable to
make the majority voted labels from the 5 real doctors be
the ground truth, and then we randomly selected three real
doctors and created 5 synthetic labelers using the same set-

Fig. 7: ROC comparison on HWMA dataset

tings for varying sensitivities and specificities as in Section
5.1.1. Fig. 7 shows that the two proposed MSDR methods
achieved the superior performance over the other methods.

Similarly, we also illustrated the reliability factors re-
ported by the proposed models MCR and MCDR, which
were included in Figs. 5 (5d, 5e and 5f). The real radiologists
were shown as the first three annotators. We observed
that the proposed models excluded most of the synthetic
annotators whose labels were not in good quality. The labels
from three radiologists were already sufficient to train the
classifier well. Figs. 5i and 5j show the classifiers trained
by the MSDR model and each annotator’s labels, where
we can see that the three radiologists had similar labeling
expertise and they were much better than synthetic labelers.
The MSDR model combined the expertise of good labelers
and thus achieved the best performance.

5.2.3 MRI-based Alzheimer’s disease analysis

We tested the proposed models on the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) dataset4. In the ADNI
project, the collected data such as MRI and PET images of
participants are used as the predictors to predict the pro-
gression of disease. The data we used contained 3063 MRI
images taken from 882 participants including Alzheimer’s
disease (AD) patients, mild cognitive impairment (MCI)
subjects and elderly controls. The participants were in-
cluded in two ADNI study phases, ADNI GO and ADNI2.
Fig. 8 shows an example of a participant’s brain MRI image
in the axial view. A participant had multiple MRI scans
collected as he/she had several follow-up visits and the MRI
scans were taken at each visit.

We used each MRI image as an example and constructed
the classifier to predict the diagnosis of AD or MCI based
on the features extracted from MRI images. Among all the
3063 MRI images, there were 833 normal cases (labeled
by -1) whereas the remaining images are for AD or MCI
patients (labeled by +1). Each MRI image was preprocessed
by FreeSurfer5 and represented by 307 features. The features
can be categorized into 5 types: cortical thickness average,

4. The ADNI website: http://adni.loni.usc.edu/
5. http://adni.loni.usc.edu/methods/mri-analysis/
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Fig. 8: An example image of an MRI scan along the axial
view

cortical thickness standard deviation, volume of cortical par-
cellation, volume of white matter parcellation and surface
area.

In our first set of experiments, we extracted the data for
147 patients who completed (all) four visits at the month 3,
6, 12 and 24, respectively, and then we used the diagnoses
for the first three visits as annotated labels so we had three
different versions of the label. We used the diagnoses for
the forth visit as the ground truth as it gave the latest stage
of AD and MCI. Among all the compared methods, the
classifier trained with the ground truth served the oracle
model with the best performance of an AUC value of 0.64.
The classifier trained with majority voted labels served
as the baseline (AUC=0.58). The other methods achieved
similar performance in general. The MCDR and MSDR
models performed slightly better than others. (However, the
difference became more significant when we increased the
number of labelers as shown below). The three annotations
at the month 3, 6, 12) served as good labelers with accuracies
of [0.9, 0.93, 0.97] where the last labeler was the best. The
relative labeling accuracy was reflected in the estimated
reliabilities by the MCR model. For instance, r=[0.2, 0, 0.8]
indicated that the last labeler itself plays significant role
in predicting the final diagnosis. We observed the similar
labeler selection in the MCDR model given α=[0, 0.1, 0.9]
and β=[0, 0, 1].

TABLE 3: AUC comparision on the ADNI dataset when the
number of synthetic labelers increases.

Methods 40 60 80 100 500 1000
MCR 0.63 0.68 0.71 0.74 0.73 0.78
MCDR 0.66 0.72 0.74 0.76 0.76 0.81
Two-coin model 0.66 0.70 0.70 0.72 0.71 0.70
Gaussian model 0.61 0.69 0.65 0.67 0.74 0.76
Bernoulli model 0.61 0.63 0.64 0.69 0.75 0.78
Convex model 0.65 0.66 0.65 0.65 0.68 0.70
Majority voting 0.61 0.63 0.63 0.60 0.65 0.67

In the second set of experiments, we created [40, 60, 80,
100, 500, 1000] synthetic labelers in the same way as the
description in the experiments with the facial expression
dataset. Because the MCR and MCDR models were more
scalable to large datasets than the MSDR models, we further
tested the MCR and MCDR models on the ADNI dataset

Fig. 9: Average runtime per iteration for every method on
ADNI dataset. The x-axis indicates the number of labelers
used in the experiments.

using all 3063 images. The AUC values for the different
methods were summarized into Table 3. The results in the
table show that the MCDR model had achieved a superior
performance when we increased the number of labelers.
We also recorded the averaged run time of one iteration
for these methods. The comparison of the run time in Fig.
9 shows that the two-coin model required the lowest run
time across all the experiments with different numbers of
labelers. When the number of labelers was relatively small,
the MCR and MCDR had larger time costs than the other
models. However, the two proposed models were more
scalable to the number of labelers as we can see the run time
curves were more flat. The convex model of [11] became
more time consuming than the MCR and MCDR models
when the number of labeler increased to 500 and 1000.

6 CONCLUSION

We have studied the multi-labeler learning problem that
constructs classifiers from crowdsourcing labels and pro-
posed three novel and unique formulations that all form
bi-convex programs. By approximating the true labels with
a weighted consensus of all labelers’ opinions with the
labeler reliabilities as the weights, we are able to modify
the hinge loss function to become bi-affine with respect to
the classifier parameters and the reliability factors of label-
ers. We employed three very general assumptions on the
labeler reliability, including constant, class-dependent, and
example-specific labeler reliability. The bi-convex programs
can be effectively optimized by the widely-used alternating
optimization algorithm, and outperform the state of the art
in empirical tests.

Future extension of this work can examine the bi-
convexity of the models more thoroughly, and explore some
global optimization algorithms such as the one in [2] that
can find a global minimizer for a bi-convex program al-
though these algorithms are significantly more complex.
It is also worthy examining the varying reliability scores
estimated by the third model, which may prove potential
utility in real-world applications, for example, to group
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the crowdsourcing labelers according to their labeling re-
liabilities and behaviours. The datasets used in our experi-
ments are relatively small. For many large datasets having
inconsistent labels collected from crowdsourcing platforms
such as AMT, they provide no input features but raw data
examples, such as plain texts or images. Extracting mean-
ingful features (input variables) from those datasets needs
significant efforts, which goes beyond our goal of study in
this work. Moreover, many of these datasets may provide
no ground truth that can be used in model evaluation. Our
future work will also include searching for larger datasets
that are suitable for objectively and systematicly testing the
proposed models.
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