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C
ardiovascular disease (CVD) is a global epidemic
that is the leading cause of death worldwide (17
million deaths per year) [8]. It is the single largest
contributor to “disability adjusted life years”

(DALYs): 10% of DALYs in low- and middle-income nations
and 18% of DALYs in high-income nations. Hence, the World
Health Organization and the Centers for Disease Control agree
that CVD is no longer an epidemic but a pandemic. In the
United States, CVD accounted for 38% of all deaths in 2002
[7] and was the primary or contributing cause in 60% of all
deaths. Coronary heart disease (CHD) accounts for more than
half of CVD deaths (roughly 7.2 million deaths worldwide
every year, and one of every five deaths in the United States),
and it is the single largest killer in the world. 

It is well known that early detection (along with prevention)
is an excellent way of controlling CHD. CHD can be detected
by measuring and scoring the regional and global motion of
the left ventricle (LV) of the heart. It typically results in wall-
motion abnormalities [i.e., local segments of the LV wall
move abnormally (move weakly, not at all, or out of sync with
the rest of the heart)], and sometimes motion in multiple
regions, or indeed the entire heart, is compromised. The LV
can be imaged in a number of ways. The most common
method is the echocardiogram, which is an ultrasound video of
different two-dimensional cross sections of the LV.

Unfortunately, echocardiograms are notoriously difficult to
interpret, even for the best of physicians. Inter-observer stud-
ies have shown that even world-class experts agree on their
diagnosis only 80% of the time [12], and intra-observer stud-
ies have shown a similar variation when the expert reads the
same case twice at widely different points in time. There is a
tremendous need for an automated “second-reader” system
that can provide objective diagnostic assistance, particularly to
the less-experienced cardiologist.

In this article, we address the task of building a computer-
aided diagnosis system that can automatically detect wall-
motion abnormalities from echocardiograms. We provide
some medical background on cardiac ultrasound and the stan-
dard methodology used by cardiologists to score wall-motion
abnormalities. We also describe our real-life dataset, which
consists of echocardiograms used by cardiologists at St.
Francis Heart Hospital to diagnose wall-motion abnormali-

ties. We then provide an overview of our proposed system,
which was built on top of an algorithm that detects and tracks
the inner and outer walls of the heart [3]–[6]. It consists of a
classifier that classifies the local region of the heart wall (and
the entire heart) as normal or abnormal based on the wall
motion. We also describe our methodology for feature selec-
tion and classification, followed by our experimental results.

Medical Background Knowledge

What Is Coronary Artery Disease?
The human heart is divided into four chambers: the left and
right atrium and the left and right ventricle. The LV is the cham-
ber responsible for pumping oxygenated blood to the entire
body. As a result, it is the largest and strongest of the four cham-
bers. Figure 1 shows the layout of the heart chambers in relation
to one another; the LV is in the lower right part of the figure.

The heart is fed by three major coronary arteries: the left
anterior descending (LAD), right coronary artery (RCA),
and the left circumflex coronary artery (LCX). All three of
these vessels feed the muscle surrounding the LV. Coronary
artery disease results from the development of plaque within
the artery, which usually deposits along the walls. When the
plaque restricts normal blood flow to an extreme extent the
patient will experience chest pain, known as angina. When
the blood flow to the heart muscle is reduced, the function
of that piece of muscle fed by the blocked artery will begin
to become impaired. This is known as ischemia. This func-
tional impairment can be seen from ultrasound images of
the heart, also called echocardiograms (echos).

One of the first effects of coronary artery disease is that the
motion of the heart wall during contraction will become
impaired. Accurate regional wall-motion analysis of the LV is an
essential component of interpreting echos to detect this effect.

Divisions of the Heart
There are many imaging modalities that have been used to
measure myocardial perfusion, left ventricular function, and
coronary anatomy for clinical management and research; for
this project we chose to use echocardiography. The Cardiac
Imaging Committee of the Council on Clinical Cardiology of
the American Heart Association has created a standardized
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recommendation for the orientation
of the heart, angle selection, and
names for cardiac planes and num-
ber of myocardial segments [1].
This is the standardization used in
this project. Echo images are col-
lected from four standard views:
apical 4 chamber (A4C), apical 2
chamber (A2C), parasternal long
axis (PLAX) or apical 3 chamber
(A3C), and parasternal short axis
(PSAX) (shown in Figure 2). The
planes used to cut the heart to dis-
play these standard views are dis-
played in Figure 3 from reference
[2]. The long-axis view extends
from the LV apex through the aortic
valve plane. The short-axis view is
perpendicular to the long-axis view
resulting in a circular view of the
LV. The four-chamber view is per-
pendicular to both the long- and
short-axis views and includes the
left and right ventricle and left and
right atrium. If one rotates the 4-
chamber view plane counterclock-
wise about 60◦ , the two-chamber
view is obtained, which shows the
LV and the left atrium.

The LV is divided into 17
myocardial segments. The short-axis
view that results in a circular view
of the LV can be taken at three loca-
tions: near the apex (apical), at the
middle (mid-cavity), or near the
base (basal). The most desirable
view is the mid-cavity cut. If one
lays these three resultant rings
against one another, all segments of
the heart are visible in relationship
to one another, as shown in Figure 4
(modified from reference [1]). The
LAD feeds segments 1, 2, 7, 8, 13,
14 and 17; the RCA feeds segments
3, 4, 9, 10 and 15; and the LCX
feeds segments 5, 6, 11, 12, and 16.

Understanding the Data
The data are based on standard adult
transthoracic B-mode ultrasound
images collected from the four stan-
dard views described previously.
Currently, we only utilize two of the
four possible views: A4C and A2C,
which show 12 of the 16 total seg-
ments [we ignore the apex (segment
17) since it is near impossible to
measure]. These 12 views are
enough to achieve our goal of classi-
fying hearts. Even though we have
images at different levels of stress
(resting, low-dose stress, peak-dose

Fig. 1. Major parts of heart labeled, including the four chambers of the human heart:
the left and right atrium, and the left and right ventricle.
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Fig. 2. Echocardiographic views for wall-motion evaluation. In the short-axis view, at the
base and midventribular levels, the left ventricle is divided into anterior septum (2,8) and
anterior free wall (1,7), lateral (6,12), posterior (5,11), inferior free wall (4,10), and posteri-
or septal (3,9) segments. These same wall segments are seen in apical views as indicat-
ed, plus the anterior (13), septal (14), inferior (15), and lateral (16) apical segments are
seen. Modified from reference [2] (segment numbers have been corrected to reflect
standard naming convention being used).
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stress, recovery), this work is based on images taken when the
patient was resting. The goal is to automatically provide an
initial score, or classification, to determine whether a heart is
normal or abnormal given the ultrasound.

The echo data was collected from St. Francis Heart
Hospital in Roslyn, New York. The data consist of 141

cases that will be used for training and 59 cases that are ear-
marked as the final test set; all of which were generated
using exercise stress. All the cases have been labeled at the
segment level by a group of trained cardiologists. The heart-
level classification labels can be obtained from the segment-
level labels by applying the following definition given to us
by the doctors: a heart is considered abnormal if two or
more segments are abnormal.

Preparation of the Data
Our application consists of two main parts: image processing
and classification. The echos are run through an algorithm
that automatically detects and tracks both the interior (endo-
cardial) and exterior (epicardial) borders of the LV [4], [6].
Motion interferences (e.g., probe motion, patient movement,
respiration, etc.) are compensated for by using global motion
estimation based on robust statistics outside the LV. This is
done so that only the heart’s motion is analyzed. Then numer-
ical feature vectors, which are extracted from the dual con-
tours tracked through time, form the basis for the regional
wall-motion classification.

Image Processing
The first step toward classification of the heart involves
automatic contour generation of the LV [5]. Ultrasound is
known to be noisier than other common medical imaging
modalities such as MRI or CT, and echos are even worse
due to the fast motion of the heart muscle and respiratory
interferences. The framework used by our algorithm is ideal
for tracking echo sequences since it exploits heteroscedastic
(i.e., location-dependent and anisotropic) measurement
uncertainties. The process can be divided into two steps:

border detection and border tracking.
Border detection involves localizing the
LV on multiple frames of the image
clip (shown in Figure 5 as a box drawn
around the LV), and then detecting the
LV’s shape within that box. Seventeen
control points are placed along the inte-
rior border of the LV to show where the
border was detected. These points are
then extended outward to find the exter-
nal (epicardial) border of the LV.

Border tracking involves tracking
both these contours together from one
frame to the next through the entire
movie clip. Motion interferences (e.g.,
probe motion, patient movement, respi-
ration, etc.) are compensated for by
using global motion estimation based
on robust statistics outside the LV. This
global motion estimation can be seen in
Figure 6 as a vertical line near the cen-
ter of the image. 

After detection and tracking, numeri-
cal features are computed from the dual
contours tracked through time. The fea-
tures extracted are both global (involv-
ing the whole LV) and local (involving
individual segments visible in the
image) and are based on velocity, thick-
ening, timing, volume changes, etc.
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Fig. 4. Display, on a circumferential polar plot, of the 17 myocardial segments and
the recommended nomenclature for tomographic imaging of the heart. Modified
from reference [1].

1. Basal Anterior
2. Basal Anteroseptal
3. Basal Inferoseptal
4. Basal Inferior
5. Basal Inferolateral
6. Basal Anterolateral

13. Aptical Anterior
14. Aptical Septal
15. Aptical Inferior
16. Aptical Lateral
17. Apex

  7. Mid Anterior
  8. Mid Anteroseptal
  9. Mid Inferoseptal
10. Mid Inferior
11. Mid Inferolateral
12. Mid Anterolateral

1

7

13

17

15

10

4

3
9

14

8
2

16

12
6

11

5

A4C

A3C

A2C

Left Ventricular Segmentation

Fig. 3. The three basic image planes used in transthoracic
echocardiography. The ventricles have been cut away to
show how these image planes intersect the left and  right
ventricles. Dashed lines indicated the image planes at the
great vessel and the atrial levels. From reference [2]. 
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Extracted Features
A number of features have been developed to characterize
cardiac motion in order to detect wall-motion abnormalities,
among them: global and local ejection fraction (EF) ratio,
radial displacement, circumferential strain, velocity, thick-
ness, thickening, timing, eigenmotion, curvature, and bend-
ing energy. Some of these features, including timing,
eigenmotion, curvature, local EF ratio, and bending energy,
are based only on the inner (endocardial) contour. Due to the
patient examination protocol, only the systole (i.e., contrac-
tion phase of the heart) is recorded for some patients. In
order for the features to be consistent, the systole is extracted
from each patient based on the cavity area change. For each
frame, the LV cavity area can be estimated accurately based
on the inner (endocardial) contour of that frame. The frame
corresponding to the maximal cavity area that is achieved at
the end of diastolic phase (expansion phase of the heart) is
the frame considered to be the beginning of systole. The
frame corresponding to the minimal cavity area (achieved at
the end of systolic phase) is the frame assumed to be the end
of systole. For the time being, all features are computed
based only on the systolic phase. However, the methods used
to calculate the features are generally applicable for the dias-
tolic phase as well.

The following list describes some of the many features.
➤ Timing-based features examine the synchronousness of the

cardiac motion; i.e., whether all the points along the LV
move consistently or not.

➤ Eigenmotion-based features determine the most significant
moving direction of a point and the amount of its motion
in that direction.

➤ Curvature-based features are mainly aimed at detecting
abnormalities at the apex. This is also useful in identifying
more general abnormalities associated with cardiac shapes.
If a segment is dead, it may still move because it is con-
nected to other segments, but we can observe that its shape
will largely remain unchanged during the cardiac cycles.
Curvature can capture this type of information.

➤ Local EF ratio features are aimed at
capturing local cardiac contraction
abnormalities.

➤ Bending energy features of the
contour, assuming that the provid-
ed contour is made of elastic
material and moving under ten-
sion, may be used to capture the
cardiac contraction strength of a
segment or the whole LV.

➤ Circumferential strain features, also
called fractional shortening, mea-
sure how much the contour
between any two control points
shrinks in the systolic phase.

We had a total of 192 local (i.e., cal-
culated per segment) and global (i.e.,
involving the whole LV, as shown in
any one view) features, all of which
were continuous. They included the
features mentioned above as well as
others not described here. As a general
rule, the global version of certain fea-
tures (e.g., radial displacement, radial

velocity, etc) can be calculated by taking the mean, or stan-
dard deviation, of the six segments’ respective feature values
from any one view.

Data Mining
The classification algorithm used in the system is based on a
novel feature selection technique, which is in turn based on
mathematical programming. As a result, we obtain a hyper-
plane-based classifier that only depends on a subset of numeri-
cal features extracted from the dual contours tracked through
time, and these are then used to provide classification for each
segment and the entire heart.

Classification and Feature Selection
One of the difficulties in constructing a classifier for this task
is the problem of feature selection. It is a well-known fact that
reducing the feature dependence of a classifier improves the
classifier’s generalization capability. However, the problem

of selecting an “optimal” minimum
subset of features from a large pool
(which is in the order of hundreds) of
potential original features is known to
be non-deterministic polynomial time
(NP)-hard. Recently, Mika et al. pro-
posed a novel mathematical program-
ming formulation for linear Fisher’s
discriminant (LFD) using kernels [16],
[15]. This new formulation included a
regularization term similar to that used
in the standard support vector machine
(SVM) formulation [17]. We will
make use of Mika’s formulation but
use a 1-norm instead of the 2-norm to
obtain solutions that are more sparse
and hence dependent on a smaller
number of features. The next section
describes the details of the approach.

Linear Fisher’s Discriminant
The general idea behind LFD is to find
the best subspace mapping such that it
captures the best separation between

Fig. 5. One frame from an A4C image clip with the box show-
ing the localized left ventricle, and the dots representing the
control points along the detected inner contour.

Fig. 6. One frame from an A4C image clip
with the outer and inner contour control
points shown. The vertical line near the
middle shows use of global motion com-
pensation, and the two squares denote
the centers of the individual contours.
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the classes. Our problem involves binary classification; i.e.,
there are only two classes: positive (abnormal heart), and neg-
ative (normal heart) {±}.

Let Ai ∈ Rd×l be a matrix containing the l training data
points on d-dimensional space and li the number of labeled
samples for class i, i ∈ {±}. LFD [11] is the projection vector
α, which maximizes,

J(α) = αTSBα

αTSWα
(1)

where

SB = (m+ − m−) (m+ − m−)T

SW =
∑

i∈{±}

1

li

(
Ai − mie

T
li

) (
Ai − mie

T
li

)

are the between and within class scatter matrices, respectively,
and mi = (1/li)Aieli is the mean of class wi and eli is an li
dimensional vector of ones. For (1) to be maximized, the
numerator should be large, which represents the inter-class
division (we want to push the classes as far apart as possible),
and the denominator should be small, which represents the
intra-class division (we want the points of any one class to be
as near to one another as possible).

Transforming the above problem into a convex quadratic
programming problem provides us some algorithmic advan-
tages. First, notice that if α is a solution to (1), then so is any
scalar multiple of it. Therefore, to avoid multiplicity of solu-
tions, we impose the constraint αTSB α = b2, which is equiva-
lent to αT(m+ − m−) = b where b is some arbitrary positive
scalar. Then, the optimization problem (1) becomes

minα∈Rd αTSWα

s.t.
αT(m+ − m−) = b

(2)

For binary classification problems the solution of this
problem is

α∗ = bS−1
W (m+ − m−)

(m+ − m−)T S−1
W (m+ − m−).

(3)

According to this expansion, since S−1
W is positive definite,

unless the difference of the class means along a given fea-
ture is zero, all features contribute to the final discriminant.
If a given feature in the training set is redundant, its contri-
bution to the final discriminant would be artificial and not

desirable. As a linear classifier, LFD is well suited to han-
dle features of this sort provided that they do not dominate
the feature set; i.e., the ratio of redundant to relevant fea-
tures is not significant. Although the contribution of a sin-
gle redundant feature to the final discriminant would be
negligible when several of these features are available at
the same time, the overall impact could be quite significant
leading to poor prediction accuracy. Apart from this
impact, in the context of LFD these undesirable features
also pose numerical constraints on the computation of S−1

W
especially when the number of training samples is limited.
Indeed, when the number of features, d is higher than the
number of training samples, l, SW becomes ill-conditioned
and its inverse does not exist. Hence, eliminating the irrele-
vant and redundant features may provide a two-fold boost
on the performance. 

In what follows we propose a sparse formulation of LFD.
The proposed approach incorporates a regularization con-
straint on the conventional algorithm and seeks to eliminate
those features with limited impact on the objective function.

Sparse Linear Fisher’s Discriminant
Via Linear Programming
We propose a formulation similar to the one used for 1-norm
SVM classifiers [9], where the 1-norm is introduced for both
measuring the classification error and regulation. The use of
the 1-norm instead of the 2-norm leads to linear programming
formulations where very sparse solutions can be obtained. A
sparse projection vector α implies that many input space fea-
tures do not play a role in determining the linear classifier. In
other words, 

αi = 0 ⇒ the classifier does not depend on feature i.

Our objective is to formulate an algorithm that can be seen as
an approximation to (1) and that provides a sparse projection
vector α. In order to achieve this, we add a regularization term
to the objective function of (2):

minα∈Rd ναTSWα + ‖α‖1

s.t.
αT(m+ − m−) = b

(4)

where ν is the trade-off between J(α) maximization and regu-
larization or sparsity of the projection vector α. The price to
pay for sparsity of the solution is that, unlike (2), there is no a
closed-form solution for the constrained quadratic in (4); fur-
thermore, the parameter ν introduced in (4) has to be chosen
by means of a tuning set that requires the problem to be
solved several times and that can be computationally
demanding. In order to address this issue we propose next a
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linear programming formulation that can be interpreted as an
approximation to (4) and that results in sparser solutions than
(4). Let’s consider the following matrix:

HT =
[

1√
l+

(
A+ − m+eT

l+

)T 1√
l−

(
A− − m−eT

l−

)]
.

From (1) we have that Sw = HTH, then 

αTSWα = αTHTHα

= (Hα)T(Hα)

= ‖Hα‖2
2. (5)

Hence the quadratic programming problem (4) can be rewrit-
ten as

minα∈Rd ν‖Hα‖2
2 + ‖α‖1

s.t.
αT(m+ − m−) = b.

(6)

We can now use the 1-norm instead of the 2-norm in the
objective function of (6) to obtain the following linear pro-
gramming formulation that can be solved more efficiently and
gives sparser solutions:

minα∈Rd ν‖Hα‖1 + ‖α‖1

s.t.
αT(m+ − m−) = b.

(7)

That this problem is indeed a linear program can be easily
seen from the equivalent formulation:

minα∈Rd νe ′s + e ′ t
s.t.

αT(m+ − m−) = b
−s ≤ Hα ≤ s
−t ≤ α ≤ t.

(8)

Next, we propose an algorithm based on (8) and (3) that pro-
vides accurate LFD classifiers depending on a minimal set of
features.

Algorithm 1 Sparse Linear Fisher Discriminant

Given the training dataset {A−, A+} and a set of values
N = {10−5, 10−4, . . . , 105} for the parameter ν do:

1) For each ν ∈ N calculate cross-validation performance
using the linear programming (8).

2) Let ν∗ the value for which (8) gives the best cross-
validation performance. Let’s call α̂ the obtained sparse
projection.

3) Select the subset F̂ of the feature set F defined by
f i ∈ F̂ ⇔ α̂i �= 0 or fi ∈ F̂ ⇔ |α̂i| ≥ tol; that is, select
the features corresponding to nonzero components of the
projection α̂.

4) Solve original quadratic programming problem (1) with
closed-form solution (3) considering only the feature
subset F̂ to obtain a final projection α∗ that depends on
only the “small” feature subset F̂.

Evaluation of Discovered Knowledge

Comparison to Other Algorithms
In order to empirically demonstrate the effectiveness of the
proposed approach, we compared our feature-selection algo-
rithm, sparse LFD (SLFD), to four other well-known classifica-
tion algorithms. The first algorithm is a very popular publicly
available implementation of SVM called SVMlight [13]. This
formulation does not incorporate feature selection and pro-
duces classifiers that often depend on all the input features. The
purpose of the comparison is to show that a feature-selection
method improves generalization performance on this dataset.
The second method included in our numerical comparisons is
the relevance vector machine (RVM) algorithm [14], which is
one of the most successful Bayesian methods for feature selec-
tion and sparse learning. It finds the relevance of features by
optimizing the model marginal likelihood, also known as the
evidence. The third approach consists of applying the standard
LFD algorithm [11] without feature selection. The last classifi-
cation approach used in our comparisons is the standard 1-
norm SVM (SVM1) [9], which, similar to our approach, relies
on the 1-norm regularization to obtain sparse classifiers. All the
classifiers were trained using 141 cases and were tested on 59
cases. For the methods that needed parameters to be tuned (i.e.,
our algorithm and SVMlight), the model parameters were
tuned by the means of leave-one-patient-out (LOPO) [10] cross
validation on the training set. Ten-fold cross validation was not
performed on this task because we wished to simulate a real-
world situation where one does not have access to the test cases
until the actual testing of the final classifier.

We have obtained many different answers from doctors as
to what they feel the cost of a false positive (FP) (wrongly
labeling the heart abnormal) or false negative (FN) (wrongly
labeling the heart normal) happens to be. If this system is used
as an initial reader, then too many FPs or FNs will cause the
doctors to shut down the system because it is too unreliable.
But as a validation system the main focus is to keep the FN
rate low. In general, a high FP rate means you are sending too
many patients for additional, more expensive tests, which
would lead to higher costs for health insurance. A high FN
rate could mean that a patient might go undiagnosed if the
doctor using the system is not well trained and also misses
potential abnormalities. For us, the “cost” of an FN is thus
higher than an FP. By focusing on keeping the FN rate low,
we lower the risk of missing abnormalities and leave the final
diagnosis to the expertise of the doctor. Taking this into
account, we decided that the best way to evaluate the classifier

Table 1. Areas under curve for the testing set and number
of features selected for the five methods: SLFD, SVMlight,
RVM, LFD, and SVM1. (Best results shown in bold.)

Algorithm AUC # of features

SLFD 89.6% 3

SVMlight 87.4% 79*

RVM 85.8% 13

LFD 87.4% 79*

SVM1 89.1% 8

*classifier uses all the features.
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performance is to measure the area under the curve (AUC) for
receiver operating characteristic (ROC).

For each algorithm, Table 1 shows the AUC for the testing set
and the number of features that the corresponding classifier
depends on. As shown in the table, our method obtained the
ROC with the largest area and depended on the fewest number
of features (only three) of any of the algorithms tested. This low
feature dependence is very important in our application since the
features used for classification have to be calculated in real time.

Classification Results
The three features selected by SLFD were as follows:
➤ a feature that measures motion along the significant direc-

tions of movement of the walls of the heart
➤ a feature that measures correlation between the estimated

area of the heart cavity and the distance between the walls
of the heart to the center of mass of the heart

➤ the estimated EF of the heart.
It is important to note that two of the features (EF feature

and the motion feature) were selected by all the classification
methods tested. The performance obtained with SVM1 was
the second best and was almost identical as the one obtained
by SLFD but using eight features compared to only three used
by SLFD. The ROC curve on the testing set for the final clas-
sifier is shown in Figure 7. The LOPO cross-validation perfor-
mance for the final model was seven FPs and 17 FNs out of 81
positives (abnormals) and 60 negatives (normals); i.e., 88.3%
of the normal hearts and 79.0% of the abnormal hearts were
correctly classified.

On the testing set we obtained three FPs and 6 FNs out of
39 positives (abnormals) and 20 negatives (normals); i.e.,
85.0% of the normal hearts and 84.6% of the abnormal hearts
were correctly classified. A three-dimensional (3-D) plot
depicting the final classifier and the test set is shown in
Figure 8. These clinical results were presented and published
at the American College of Cardiology meeting in March
2005 under the title “Clinical Evaluation of a Novel Automatic
Real-Time Myocardial Tracking and Wall Motion Scoring
Algorithm for Echocardiography Introduction.”

Conclusion and Future Work
In this article we addressed the task of building an objective
classification application for heart wall-motion analysis, based
on features calculated off of echocardiograms. Our novel fea-
ture selection technique results in a robust hyperplane-based
classifier that achieves the best performance in terms of AUC
and number of features selected when compared to three other
well-known classification algorithms.

The three features selected by our classifier (SLFD) are
all global features, and their limited number makes it easier
to explain the final classifier to physicians in order to get
their feedback. In the future, we plan on expanding our
classification to do segment-level classification for which
we would identify different levels of CHD severity (nor-
mal, hypokinetic, akinetic, dyskinetic and aneurysm),
incorporating the use of other standard echocardiography
views (e.g., A3C, PSAX, PLAX) and including images
from other levels of stress. We would also like to apply a
ranking algorithm to take advantage of multiclass scores
for classification. Comparisons of our proposed SLFD
algorithm to other publicly available datasets and medical
applications are also planned to further explore the poten-
tial of the algorithm.
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Fig. 7. ROC curve for the training set.

Fig. 8. Final hyperplane classifier in three dimensions: circles
represent normal hearts and stars represent abnormal hearts
in the test set.
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