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ABSTRACT 
 

Background: With millisecond-level resolution, electroencephalographic (EEG) recording 
provides a sensitive tool to assay neural dynamics of human cognition. However, selection of 
EEG features used to answer experimental questions is typically determined a priori. The utility 
of machine learning was investigated as a computational framework for extracting the most 
relevant features from EEG data empirically.  
 
Methods: Schizophrenia (SZ; n=40) and healthy community (HC; n=12) subjects completed a 
Sternberg Working Memory Task (SWMT) during EEG recording. EEG was analyzed to extract 
5 frequency components (theta1, theta2, alpha, beta, gamma) at 4 processing stages (baseline, 
encoding, retention, retrieval) and 3 scalp sites (frontal-Fz, central-Cz, occipital-Oz) separately 
for correctly and incorrectly answered trials. The 1-norm support vector machine (SVM) method 
was used to build EEG classifiers of SWMT trial accuracy (correct vs. incorrect; Model 1) and 
diagnosis (HC vs. SZ; Model 2). External validity of SVM models was examined in relation to 
neuropsychological test performance and diagnostic classification using conventional 
regression-based analyses.  
 
Results: SWMT performance was significantly reduced in SZ (p < .001). Model 1 correctly 
classified trial accuracy at 84% in HC, and at 74% when cross-validated in SZ data. Frontal 
gamma at encoding and central theta at retention provided highest weightings, accounting for 
76% of variance in SWMT scores and 42% variance in neuropsychological test performance 
across samples. Model 2 identified frontal theta at baseline and frontal alpha during retrieval as 
primary classifiers of diagnosis, providing 87% classification accuracy as a discriminant 
function.  
 
Conclusions: EEG features derived by SVM are consistent with literature reports of gamma’s 
role in memory encoding, engagement of theta during memory retention, and increased resting 
low-frequency activity in schizophrenia. Tests of model performance and cross-validation 
support the stability and generalizability of results, and utility of SVM as an analytic approach for 
EEG feature selection.  
 
 
Keywords: EEG, gamma frequency, support vector machine (SVM), machine learning, 
Sternberg task, working memory, schizophrenia 
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INTRODUCTION 

Electroencephalographic (EEG) recording, when combined with experimental tasks, can 

provide powerful methodology for studying neural dynamics of human cognition. EEG data is 

dimensional and complex, based on a time series of events sampled with high temporal 

resolution and distributed spatially across multiple scalp locations. Given that research-grade 

EEG systems are capable of sampling at 1000 samples per second and higher, a simple 10-

minute experiment could feasibly produce 600,000 discrete data points per channel of acquired 

data even before considering spatial characteristics or signal extraction methods (e.g., 

amplitude, spectral power, coherence) that further add to possible number of variables 

produced. Analysis of such data requires many decisions about the time points and signal 

extraction methods used to best characterize the psychophysiological phenomena under 

investigation. Without standardized procedures for EEG experimentation or data extraction 

across laboratories, how are these decisions to be made? It seems that in most cases, 

investigators defer to methods of prior studies for guidance on new studies. While this approach 

may provide important replication of prior results and incrementally advance knowledge, it may 

also limit EEG analyses to a relatively small portion of the data collected, overlook important 

features of data not previously discovered, and constrains science to a confirmatory and 

deductive, rather than data inductive, position.  

The primary measure of EEG activity used in psychophysiological research is the event-

related potential (ERP). ERPs are defined by stereotyped patterns of voltage change time-

locked to stimulus events and are quantified by peak amplitudes measured in averaged 

waveforms. ERP analysis may therefore focus narrowly on a time window containing a specific 

peak and leave a large portion of the EEG record discarded from further analysis. However, in 

addition to the event-related activity driven exogenously by stimulus events, these data contain 

neural activity generated endogenously that is not captured by averaged waveforms, as well as 

activity during pre-stimulus and inter-trial intervals that may reveal important differences in how 
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the brain prepares for and carries out task-related processes. The importance of pre-stimulus 

activity, for example, is illustrated in work relating the amplitude of ERPs to resting EEG 

recorded in a passive state prior to the experiment (T. W. Lee, Yu, Wu, & Chen, 2011) and in 

demonstrations of how ERP amplitudes can be altered experimentally by modulating pre-

stimulus activity through non-invasive neural stimulation (Keeser et al., 2011). Accordingly, 

individual differences in task-related ERP measures, as well as group-wise differences, could be 

influenced by features of neural oscillatory activity that are inadvertently excluded from 

conventional ERP analysis. Increased use of time-frequency analysis over the past 10 years 

(Makeig, Debener, Onton, & Delorme, 2004; Roach & Mathalon, 2008), and associated 

measures of coherence and phase synchrony, further extend the range of features that can be 

extracted from standard ERP experiments and the number of variables that can potentially be 

submitted to statistical analysis. Given the many sources on information that can be gleaned 

through various signal processing approaches, there is increased need for computational 

frameworks capable of mining large datasets to identify features most relevant to questions 

asked of EEG data.  

Machine learning encompasses a body of statistical approaches that can be used to 

discover knowledge from data through mathematical modeling, wherein pattern recognition is 

optimized by allowing the program to adjust actions accordingly to new information. Machine 

learning methods are becoming more commonly used in medical sciences, outperforming 

classical regression approaches when applied to prediction and diagnostic classification 

decisions (Khosla et al., 2010; Singal et al., 2013). The Support Vector Machine (SVM) 

approach, in particular, has proven useful for clinical classification problems based on brain 

imaging data (Orru, Pettersson-Yeo, Marquand, Sartori, & Mechelli, 2012). SVM provides 

individual-level classification and, therefore, can be applied to questions pertaining to diagnosis, 

prediction of treatment response, and progression to illness based on preclinical indicators. 

Furthermore, because SVM is inherently multivariate, it is an appropriate method for separating 
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unique from redundant sources of variance in spatially distributed, yet variably dependent, 

patterns of brain activity.  

As a method of EEG feature selection, SVM could provide a powerful tool for reducing 

large data arrays of scalp locations, frequency bands, and temporal windows to those most 

pertinent to a classification question. For clinical purposes, this approach could be used to build 

classifiers of known diagnostic categories based on latent patterns of EEG activity, to refine 

classifiers iteratively through cross-validation, and ultimately to apply validated classifiers to new 

clinical samples. In experimental research, these methods can be used to identify the EEG 

features most related to task behavior, thereby allowing the researcher to empirically develop 

neural models of human behavior without a priori knowledge of task-related activity. 

The current study aimed to demonstrate the utility of SVM as a data inductive solution 

for EEG feature selection. The sample consisted of individuals with schizophrenia and healthy 

community members who performed a Sternberg working memory task during EEG recording. 

The Sternberg task can be analyzed over stages of encoding, retaining, and retrieving 

information from short-term memory, each involving different sources and components of brain 

activity, with all contributing to successful task performance. Therefore, multiple spectral-

frequency, temporal, and spatial characteristics must be considered simultaneously in order to 

answer questions about patterns of optimal task-related brain activity and differences in 

schizophrenia. Questions asked of these seem most amenable to empirical approaches of 

feature selection as (a) the number of variables that could be conceivably extracted from these 

data far exceed the number of comparisons that would be advisable if tested independently, and 

(b) the dynamics of EEG, involving changes and interactions in sources of brain activity that co-

vary with individual differences in task performance, can only be resolved in multivariate space 

where hierarchical relationships within and between features are compared over repeated 

observations. SVM may provide an appropriate, albeit novel, data reduction and classification 

approach for this type of analytic problem. 
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Using a supervised learning approach, given that information about task performance 

and diagnostic group membership is known, what EEG features would SVM be expected to 

identify? Working memory is a core domain of neurocognitive impairment in individuals with 

schizophrenia, found across various task versions administered in auditory and visual modalities 

(Forbes, Carrick, McIntosh, & Lawrie, 2009; J. Lee & Park, 2005). Working memory requires 

network-level activation and coordination of neural activity between pre-frontal cortical and 

cortical association areas involved in sensory and attentional processes (Daskalakis et al., 

2008; Intaite, Koivisto, & Castelo-Branco, 2014; Wang, 2010). The cortical distribution of neural 

activity during working memory performance has been studied extensively using EEG recording 

(Boonstra, Powell, Mehrkanoon, & Breakspear, 2013; Herrmann, Senkowski, & Rottger, 2004; 

Hsieh, Ekstrom, & Ranganath, 2011), demonstrating that optimal behavioral performance can 

be predicted on the basis of neural dynamics (Klimesch, 1997, 1999). Although these 

interrelations are complex, and may interact differently depending on memory load and 

individual differences in performance, task-related changes in oscillatory activity in theta, alpha, 

and gamma frequencies have been consistently reported (Roux & Uhlhaas, 2014). Theta 

frequency (e.g., 4-8Hz) activity is associated with hippocampal-cortical communication during 

encoding (Tesche & Karhu, 2000) and increases with higher memory load (Boonstra, et al., 

2013). In a model based on the interrelationship of theta and alpha, performance is suggested 

to be optimal when pre-trial baseline EEG contains low tonic theta but high phasic alpha, and 

when encoding is accompanied by event-related increases in theta with reductions in alpha 

(Klimesch, 1999). A shift to alpha frequency (e.g., 8-12Hz) is then associated with subsequent 

memory retention and retrieval processes (Herrmann, et al., 2004) involving thalamo-cortical 

networks (Hindriks & van Putten, 2013). Gamma frequency (e.g., > 30Hz) activity is generally 

associated with integrative multi-modal sensory processes and, in memory tasks, appears to 

couple in-phase with theta activity (Kirihara, Rissling, Swerdlow, Braff, & Light, 2012). As with 

theta, event-related increases in gamma are normally observed with higher memory load 
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(Howard et al., 2003; Meltzer et al., 2008). While related in phase, gamma and theta activity 

have been associated with distinct functional roles in memory processing, with gamma 

supporting short-term maintenance and theta supporting the organization of sequentially 

ordered information into memory (Roux & Uhlhaas, 2014). Importantly, while up regulation of 

gamma may indicate the recruitment of additional cognitive resources required to meet higher 

task demands, individuals with schizophrenia appear to have a limited capacity to modulate 

gamma in this way (Basar-Eroglu, Brand, Hildebrandt, Karolina Kedzior, et al., 2007; Schmiedt, 

Brand, Hildebrandt, & Basar-Eroglu, 2005).  

In addition to features embedded in task-related activity, it is also important to consider 

the possibility that neural activity unrelated to demands of the task, but perhaps reflecting traits 

of illness, can also affect performance in schizophrenia. For instance, resting state EEG in 

schizophrenia is commonly characterized by abnormal elevations in theta and alpha, which 

persist during experimental conditions where suppression of this activity normally occurs (Hong, 

Summerfelt, Mitchell, O'Donnell, & Thaker, 2012). Based on the previously described neural 

dynamics model of memory (Klimesch, 1999), high levels of tonic (i.e., task independent) theta 

and failure to down regulate alpha during encoding would predictably result in impaired memory 

function. Taken together, these findings provide basis for predicting that differences in EEG 

activity during Sternberg task performance will be characterized by elevated low-frequency 

activity at the pre-stimulus baseline period and by reductions in event-related theta and gamma 

activity during encoding in schizophrenia. Alternatively, optimal performance should be 

predicted by increased theta and gamma during encoding, and alpha activity at the retrieval 

stage. Given these predictions, the primary question pertaining to SVM-based analysis is 

whether these same features emerge as most critical to Sternberg performance and diagnostic 

differences when tested within a relatively large array (n=60) of EEG features.  
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METHOD 

Participants 

 Forty individuals meeting DSM-IV-TR criteria for schizophrenia (SZ) and 12 healthy 

comparison (HC) participants were enrolled in a registered clinical trial (identifier: 

NCT00923078, https://clinicaltrials.gov) at time of this analysis. For purposes of the current 

analysis, only data collected at study intake will be presented. The study was conducted under 

oversight of VA Connecticut Healthcare System (VACHS) Human Studies Subcommittee (HHS 

protocol # 01245) and Yale University Human Investigation Committee (HIC protocol # 

1003006388) institutional review boards. All participants provided written informed consent prior 

to initiating any study procedures and were compensated $75 for data collected at study intake 

assessment. Recruitment of HC participants was conducted according to match (age, gender, 

race) with SZ participants. Sample descriptive statistics are presented in Table 1.  

Inclusion was limited to individuals aged 18 and 70, native English speaking, with stable 

housing for minimum of 30 days. In addition, SZ sample members had minimum of 30 days 

since discharge from last hospitalization, 30 days since last change in psychiatric medications, 

and were receiving mental health services through VACHS or Yale affiliated outpatient facilities. 

Individuals were excluded based on current (past 30 days) diagnosis of alcohol or substance 

abuse disorders, history of brain trauma or neurological disease, mental retardation or 

premorbid intelligence < 70, and auditory or visual impairment that would interfere with study 

procedures. In addition, any current or past DSM-IV Axis I diagnosis was exclusionary for HC 

sample enrollment.  

Clinical Assessment Measures 

All participants underwent a clinical interview to obtain treatment, substance use, 

medical, legal, employment, and psychosocial background information. Diagnosis of SZ sample 

participants was confirmed using the Structured Clinical Interview for DSM-IV-TR (SCID-I/P; 

First, Spitzer, Gibbon Miriam, & Williams, 2002), administered by a licensed clinical 
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psychologist. The Mini International Neuropsychiatric Interview (M.I.N.I; Sheehan et al., 1998) 

was administered to healthy volunteers to screen for psychiatric conditions that would be 

exclusionary. The Wechsler Test of Adult Reading (WTAR; Wechsler, 2001) was administered 

to all participants to obtain an estimate of premorbid intellectual endowment and the MATRICS 

Consensus Cognitive Battery (MCCB;  Nuechterlein et al., 2008) was used to test current 

cognitive ability across multiple domains. Age- and gender-corrected t-scores for MCCB 

Working Memory Composite and Continuous Performance Test–Identical pairs (CPT-IP) 

subtest were used in the current analysis to cross-validate SVM-derived models of EEG activity 

related to working memory.  

EEG Data Collection Procedures 

Participants were seated in front of a 24” LCD monitor (1920x1200 pixels, 75 Hz refresh 

rate) at a viewing distance of 100 cm in a dimly lit room. EEG was recorded using a 64-channel 

BioSemi ActiveTwo (BioSemi B.V., Amsterdam, Netherlands) bio-amplifier and electrode 

system with sensors located according to the 10-20 system. Additional electrodes were placed 

bilaterally at mastoids (reference), the outer canthi of both eyes (horizontal electrooculogram; 

HEOG), and above and below the right orbit (vertical electrooculogram; VEOG). Continuous 

EEG was monitored online in ActiView V6.05 and acquired at a 1024 Hz sampling rate with a 

bandpass filter setting of 0.16-100 Hz. The Sternberg task was administered using NBS 

Presentation software (Neurobehavioral Systems, Inc., Albany, CA), with behavioral responses 

captured using two buttons of a Cedrus RB-834 response pad (Cedrus Corporation, San Pedro, 

CA). Total EEG set up time was approximately 30 minutes, and the Sternberg task was 

administered in three blocks of interspersed between blocks of two additional auditory ERP 

tasks (not included in current report).  

Sternberg Working Memory Task   

A version of the Sternberg working memory task (SWMT), modified from Rajhavachari 

and colleagues (2001), was used in the present study. Stimuli consisted of sequentially 
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presented letters (200ms duration, 1200ms ISI), spanning sets of 4-8 letters each, randomly 

generated from an array of 12 letters. For each trial the stimulus set was followed by a 3200ms 

retention period that terminated with a response probe letter. Participants were instructed to 

press one of two response pad buttons, using right or left index finger, to indicate whether the 

probe letter was or was not presented in the preceding set. The response probe remained 

present for the duration of the response window, up to 3500ms, and terminated at time of button 

press. Auditory feedback was given to indicate correct, incorrect, or time-out (after 2000ms) on 

each trial. Feedback was followed by 1000ms of black screen and a fixation “+” cross for 

another 1000ms preceding the first stimuli of the next set. A total of 90 trials was administered 

over three blocks of 30 trials, each block lasting approximately 8 minutes. 

EEG Signal Processing  

Data analysis was conducted using BrainVision Analyzer software v2.0 (Brain Products, 

Munich, Germany). SWMT EEG data was re-referenced offline to the average mastoid, 

broadband filtered from 1-70 Hz (12 dB/oct) with a notch filter at 60 Hz, and segmented 

according to four stages of processing (Figure 1); pre-stimulus baseline (500 - 1200ms relative 

to fixation), encoding (-200 - 8000ms relative to fixation), retention (-3400 - 800ms relative to 

probe), and retrieval (-200 - 800ms relative to probe). The analysis window selected for the 

encoding stage spanned the first 5 letters (or all 4 when span = 4) of each trial. This window 

was selected to optimize the amount of information that could be consistently extracted across 

trials varying in length based on span.  

Following segmentation, ocular artifact correction was applied (Gratton, Coles, & 

Donchin, 1983) and segments containing activity +75V at electrodes Fz, Cz, and Oz were 

excluded. Time-frequency extraction was applied to single trial data using Morlet continuous 

wavelet transform (parameter c = 3.8) over 20 frequency steps from 4-50 Hz. Data at encoding 

and retrieval stages was averaged to extract event-related spectral perturbations (ERSP), 

elicited in response letter memory and probe stimuli, respectively. Encoding stage frequency 
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extraction was baseline normalized to a window of -200 to -50ms relative to fixation cross, while 

retrieval was normalized to a window of -200 to -50ms relative to response probe onset. The 

same wavelet transform was applied to EEG data at pre-stimulus baseline and retention stages 

without normalization. Time-frequency data was output in the form of squared wavelet 

coefficients (V2) binned and averaged according to response accuracy (correct vs. incorrect), 

and exported in five frequency bands at each of the four stages of processing: Theta 1 (θ1), 

centered at 4.00 Hz (range: 3.12 - 4.88); Theta 2 (θ2), centered at 6.42 Hz (range: 5.01 - 7.83); 

Alpha (α), centered at 11.26 Hz (range: 8.79 - 13.73); Beta (β), centered at 18.53 Hz (range: 

14.46 - 22.59); Gamma (γ), centered at 40.32 Hz (range: 31.48 - 49.16). Time-frequency values 

were exported for statistical analysis based in the following windows: pre-stimulus baseline (500 

- 1200ms relative to fixation); encoding (1000 - 7000ms relative to fixation); retention (-3000 - 

0ms relative to probe); and retrieval (0 - 600ms relative to probe). All statistical analyses were 

conducted on spectral power measured at three midline electrode locations: Frontal (Fz), 

Central (Cz), and Occipital (Oz). 

Machine Learning Feature Selection 

From a machine learning point of view, our analysis is a variable selection problem that 

aimed to identify the EEG features most relevant to SWMT performance and diagnostic group 

differences. Variable selection methods are often divided along two lines: filter and wrapper 

methods (Kohavi & John, 1997). The filter approach of selecting variables serves as a 

preprocessing step to the model construction. The main disadvantage of the filter approach is 

that it ignores the effects of the selected variable subset on the performance of the classification 

algorithm. The wrapper method searches the optimal variable subsets using the estimated 

classification accuracy, as the measure of goodness, when the subset of variables is used in 

classification. Thus, the variable selection is being “wrapped around” a particular classification 

algorithm. Wrapper methods typically outperform filter methods (Guyon & Elisseeff, 2003). 
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For the current analysis variable selection was conducted using a wrapper method that 

is wrapped around the so-called 1-norm SVM (Bi, Bennett, Embrechts, Breneman, & Song, 

2003). SVM is a supervised learning method which has the ability to weigh input features 

according to their relevance to the classification target, as determined through the learning 

process. Most SVMs, including the one implemented in this study, construct a linear classifier 

that predicts, by thresholding the classifier real-valued output, whether new cases of data will 

fall into one of two categories. The classifier used in the current analysis was based on a linear 

function of the form of 𝒘𝑇𝐱 + 𝑏, where w is the weight vector to be determined, x is the input 

vector representing EEG features and 𝒘𝑇𝐱  represents the dot product between the two vectors. 

It obtains the best model coefficients in w by minimizing the following regularized risk function: 

∑|𝑤𝑗|

𝑑

𝑗=1

+ 𝐶∑𝜀𝑖

𝑛

𝑖=1

 

where d represents the number of variables (i.e., EEG features) in total, n represents the 

number of records collected in the training set, and 𝜀𝑖 = max⁡{0, 1 − 𝑦𝑖(𝒘
𝑇𝐱𝑖 + 𝑏)} denotes the 

so-called hinge loss to measure the training error (Vapnik & Vapnik, 1998), where 𝑦𝑖 represents 

the class label, such as “correct response” versus “incorrect response” of the record i that is 

numerically characterized by an input vector 𝐱𝑖 (i.e., the vector of features extracted from that 

record).  

A record consisting of 60 features of EEG data was extracted for each participant, 

including five frequency bands (theta 1, theta 2, alpha, beta, and gamma), three scalp locations 

(frontal, Fz; central, Cz; occipital, Oz), and four information processing stages (pre-stimulus 

baseline, encoding, retention, and retrieval). Features were binned separately based on trial 

accuracy and assigned a binary label indicating whether trials received correct (+1) or incorrect 

(-1) responses. Accordingly, EEG features receiving positive valence weightings can be 

interpreted as more highly predictive of correct trial performance, with those receiving negative 
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valence predictive of incorrect performance. The SVM algorithm was applied in two models: (1) 

to classify correct vs. incorrect trial performance within each sample, referred to hereafter as 

Model 1, and (2) to classify between SZ and HC groups across correct and incorrect trials, 

referred to as Model 2. 

Although the current analysis was based on a small study (12 HC and 40 SZ), a large 

number of EEG features (60) were used to represent each case. This circumstance poses risk 

for over-fitting, meaning that the resultant classifier could achieve good accuracy during training 

but poor validation accuracy. According to statistical learning theory (Vapnik & Vapnik, 1998), 

regularization is the most effective way to control over-fitting. SVM methods optimize a 

regularized loss function for the best classifier where either the two-norm regularizer ||𝑤||
2
=

∑ 𝑤𝑗
2𝑑

𝑗=1  or one-norm regularizer ‖𝑤‖1 = ∑ |𝑤𝑗|
𝑑
𝑗=1 ⁡is used. In the current implementation, the 1-

norm regularizer was chosen because this regularizer enforces sparsity of the weight vector w, 

meaning many entries of w will be zeros. More precisely, although 60 features were used in the 

SVM classifier training, when the classifier is built by SVM, only 3~10 features were actually 

used by the classifier because other features received zero weights in the model. 

The parameter C in the 1-norm SVM was tuned in a 3-fold cross validation process 

where the respective data set was evenly split into 3 disjoint subsets. At each fold, we tested on 

a subset of the data the classifier obtained by SVM from the remaining data. Receiver operating 

characteristics (ROC) curves were used to examine the performance of the classifiers. 

Specifically, the area under the curve (AUC) was reported. We average the AUC values over 

the three folds for each choice of C in a range from 0.1 to 10 with a step size of 0.1. The value 

of C that produced the best cross validation performance was used to train the final classifier 

from all records. The cross validation performance for SVM with the chosen C value was also 

reported. In addition to AUC values, precision, recall, and F1 score were computed. 
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 The analysis of Model 2 presented an unbalance classification problem due to far fewer 

HCs (n=12) than SZs (n=40). Therefore, a commonly used procedure in SVM was adopted to 

balance the sample size. Specifically, the analysis penalized errors that occurred in the HC 

samples 3 times more than the errors in the SZ samples. This created the similar effect as up-

sampling HC three times. Mathematically, this procedure corresponded to revising the 

regularized loss function as follows: 

∑|𝑤𝑗|

𝑑

𝑗=1

+ 𝐶 (3 ∑ 𝜀𝑖
𝑖∈{𝐻𝑁}

+ ∑ 𝜀𝑖
𝑖∈{𝑆𝑍}

) 

RESULTS 

Behavioral Data 

Group comparison on SWMT behavioral data revealed overall lower accuracy in SZ than 

HC (Table 1). As a group, working memory performance was impaired in SZ participants based 

on MCCB WM composite score, but visual attention was within normal range based on the 

CPT-IP. Groups did not differ in basic demographic composition. SZ participants were estimated 

to have average range of IQ but, overall, scored lower than HC.  

Model 1: Classification of SWMT Performance Accuracy 

Healthy Normal Sample 

SVM Model 1 identified frontal (Fz) gamma activity during encoding and occipital (Oz) 

theta 2 during retrieval as the primary EEG features associated with SWMT accuracy in the HC 

sample (Table 2). Additional features retained in the model had weightings of .10 or less and 

were not regarded as meaningful for further analysis. The negative valence of feature weights 

indicated that higher values for each preceded incorrect behavioral responses. Model 

classification accuracy was 84% and all additional performance statistics (F1 score = 0.96, 

precision = 0.92, recall = 1.0, estimated AUC of ROC = 0.98), suggested excellent model fit and 

stability. Cross-validation of this model applied to SZ data yielded lower, yet acceptable model, 
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classification accuracy (74%) and performance statistics (F1 score = 0.77, precision = 0.68, 

recall = 0.9, estimated AUC of ROC = 0.84).  Accordingly, primary features determining SWMT 

performance in HC also applied to SZ; however, an overall decrease in model performance 

suggested that other or additional features were explanatory for SZ.  

To further assess the stability of SVM Model 1 based on HC data, the analysis was 

repeated with features entered separately by stage of WM processing (i.e., baseline, encoding, 

retention, retrieval). This analysis was conducted to determine whether experimenter decisions 

regarding method of feature entry (i.e., 60 features entered simultaneously vs. 15 features 

entered into 4 separate models) would substantially influence the outcome of feature selection. 

Overall, the two approaches converged on the same features (Table 3). As observed with 

simultaneous entry of 60 EEG features, frontal gamma during encoding was the feature most 

highly weighted in predicting SWMT accuracy. Notably, the only two features identified at the 

encoding stage with non-zero weightings both involved gamma activity, the second feature 

being centrally distributed gamma, and together predicted SWMT trial performance with 96% 

accuracy. Retrieval stage features also predicted SWMT with high accuracy (88%) based 

primarily on occipital activity in gamma and theta 2 ranges (Table 3). In this case, the ordering 

of features differed slightly from the model constructed by simultaneous entry in that theta 2, 

rather than gamma, was most highly weighted. Furthermore, modeling data independently 

according to WM stage identified features that were evidently suppressed by the primary 

features of the original model. No feature representing the pre-trial baseline stage entered the 

original model when applied to HC data; however, a contribution of baseline activity accounted 

for almost entirely by central theta (feature weight = -1.13), in association with inaccurate 

performance, was identified when modeled independently. Finally, the contribution of retention 

stage activity to performance was best characterized by central theta 1, both when features 

were modeled simultaneously (Table 2, 3rd ranked feature) and independently according to WM 

stage.  
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Schizophrenia Sample 

Many more features entered the model with non-zero weighting In the SZ sample data 

(Table 4), with central and frontal gamma during encoding identified as the primary classifiers of 

SWMT accuracy. As observed in the HC sample data, the valence of coefficients indicated that 

higher values for these features preceded incorrect behavioral responses. Interestingly, beta 

activity during retrieval was also identified as a predictor of trial accuracy but with a positive 

coefficient, indicating that higher activity preceded correct behavioral responses. Theta 1 during 

retention and theta 1 and gamma activity during retrieval entered as negative predictors of trial 

accuracy with weightings above .5. Overall classification accuracy was 80% and model 

performance statistics (F1 score = 0.80, precision = 0.78, recall = 0.83, estimated AUC of ROC 

= 0.88) suggested good fit and stability. Importantly, although SVM modeled directly on SZ data 

performed slightly better than when parameters extracted from HC Model 1 were applied to SZ 

data (i.e., F1 scores of 0.80 and 0.77, respectively), gamma activity at encoding received the 

highest weightings in both cases.  

Model 2: Classification of Diagnostic Status 

 Features selected by SVM models used to classify diagnostic status (SZ labeled +1 and 

HC labeled -1) based on correct and incorrect behavioral responses are presented in Tables 5 

and 6, respectively. Overall classification accuracy of 79% was achieved by EEG features 

selected from correct response trials, with higher values of frontal and central theta at baseline 

associated with SZ group membership (Table 5). Gamma activity during retrieval and encoding 

stages also entered the model but with relatively low weightings. Performance statistics of this 

diagnostic classification model were acceptable (F1 score = 0.87, precision = 0.77, recall = 1, 

estimated AUC of ROC = 0.77). SVM modeled on incorrect trials (Table 6) identified frontal 

alpha at retrieval as the highest weighted feature, with a near-zero contribution of central 

gamma during encoding. The valence of coefficients indicated that higher values were 

associated with HC group membership. Performance statistics of this diagnostic classification 
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model using incorrect trial data were exactly identical to those of the other model using correct 

trial data. Taken together, these findings are interpreted to suggest that SZ is generally 

distinguished from HC by elevations of low-frequency (theta 1) activity at pre-trial baseline, and 

evidence less engagement of alpha during retrieval than HC, particularly when WM load 

exceeds capacity (i.e., incorrect responses). 

Concurrent and External Validity 

SVM Model 1 

As a test of concurrent validity based on classification method, EEG features selected by 

SVM Model 1 in HC data (Table 2) were submitted to stepwise linear regression as predictors of 

SWMT total score in the full sample of HC and SZ participants (N=52). The model was highly 

statistically significant (F (4, 47) = 37.67, p < 0.0005, R = 0.87) and explained 76% of the variance 

in SWMT score (Figure 2). Central theta 1 activity during retention in correct trials entered as 

the first step, frontal gamma activity during encoding in correct trials as the second step, frontal 

gamma activity during encoding in incorrect trials as the third step, and central theta 1 activity 

during retention in incorrect trials as the fourth and final step (Table 7). Obtained beta and 

partial correlation coefficients suggested that when participants answered incorrectly, 

presumably challenged by higher WM load, performance was associated with increases in 

frontal gamma during encoding and central theta 1 during retention (beta = 0.38 and 0.39, 

partial r = 0.51 and 0.48, respectively), while lower activation of these features was required on 

trials answered correctly (beta = -0.44 and -0.55, partial r = -0.62 and -0.61, respectively). The 

same EEG features were retained, with exactly the same model coefficients, when the 

regression analysis was repeated by replacing the predictors with the 1st ranked feature of each 

WM stage (Table 3).   

 To examine external validity of the EEG features derived by SVM, the same regression 

model was repeated to predict MCCB WM Composite (Figure 3) and CPT-IP (Figure 4) scores 

in separate analysis. MCCB WM Composite score was predicted (F(2, 49) = 17.39, p < 0.0005, R 
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= 0.64) with 42% of variance explained by two features; frontal gamma activity during encoding 

in correct trials (R2 = 0.31, F change(1, 50) = 23.92, significant F change < 0.0005) and central 

theta 1 activity during retention in correct trials (R2 = 0.42, R2 change = 0.09, F change(1, 49) = 

7.67, significant F change = 0.008). The direction of association was consistent with previous 

models, with frontal gamma at encoding (beta = -0.59, partial r = -0.61) and central theta 1 at 

retention (beta = -0.30, partial r = -0.37) associated negatively with working memory test 

performance. The CPT-IP was selected as an additional cross-validation measure due to 

dependence of this task on visual encoding and retrieval processes similar to the SWMT. CPT-

IP performance was predicted with 39% of variance explained (F(3, 48) = 10.15, p < 0.0005, R = 

0.62) based on three features; frontal gamma activity at encoding in correct trials as the first 

step (R2 = 0.19, F change(1, 50) = 11.54, significant F change = 0.001), central theta 1 activity at 

retention in correct trials as the second step (R2 = 30, R2 change = 0.11, F change(1, 49) = 7.90, 

significant F change = 0.007), and occipital gamma activity at retrieval in incorrect trials as the 

third step (R2 = 39, R2 change = 0.09, F change(1, 48) = 6.89, significant F change = 0.012). 

Consistent with prior models, beta and partial correlations for frontal gamma during encoding 

and central delta during retention in correct trials were negatively associated with CPT-IP AGT 

(beta = -0.45 and -0.32, partial r = -0.50 and -0.37, respectively) while occipital gamma during 

retrieval in incorrect trials entered with positive coefficients (beta = 0.30, partial correlation = 

0.35). These results confirmed that EEG features modeled on SWMT performance are 

generalizable with respect to neuropsychological measures of working memory and visual 

attention.  

SVM Model 2 

 To cross-validate the diagnostic classification accuracy of SVM Model 2, derived 

features (Tables 5 and 6), were submitted to discriminant function analyses of diagnostic 

membership (i.e., HC vs. SZ) using stepwise entry. The overall Wilk's lambda, Λ = 0.59, χ2(df = 

4) = 25.67, p < 0.0001, indicated that there was a significant group-wise difference by diagnosis 
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across four retained EEG features, with group centroids of 1.43 and -.48 for HC and SZ, 

respectively. The correlation structure of the discriminant function (Table 8) indicates that HC 

was classified with higher frontal alpha at retrieval and central gamma at encoding on incorrect 

trials, while SZ was associated with higher frontal theta 1 at baseline and central gamma at 

retrieval on correct trials. Overall diagnostic classification accuracy in the full sample was 87% 

(sensitivity 90%, specificity 77%) with positive predicative power (SZ diagnosis) of 92% and 

negative predictive power of 71% probability. Leave-one-out cross-validation of this model 

replicated classifications with 83% accuracy.   

 

DISCUSSION 

The primary aim of the current study was to evaluate the utility of machine learning 

methodology, specifically SVM, as a novel approach of EEG feature selection. EEG data 

involves many more variables than can be feasibility evaluated using conventional between-

groups statistical contrasts, a problem that requires experimenter decisions guiding a priori 

selection of features submitted to hypothesis testing. In doing so, questions remain as to 

whether the selected features, among an extensive range of possibilities, are indeed those most 

critical to the questions asked of the data. Machine learning approaches, in contrast, offer the 

benefit of considering all data and empirically determining the most relevant features from all 

possible solutions. In this way, machine learning solutions represent a paradigm shift from 

rationally deductive to data inductive methodology.  

The current study employed machine learning classification to identify (1) EEG features 

predictive of SWMT accuracy in healthy adults, (2) EEG features predictive of SWMT accuracy 

in schizophrenia, and (3) controlling for SWMT accuracy, EEG features that distinguished 

healthy from schizophrenia group status. Using 1-norm SVM classification, and 60 features 

based on SWMT stage (4; baseline, encode, retain, retrieve), EEG frequency band (5; theta 1, 

theta 2, alpha, beta, gamma), and electrode site (3; Fz, Cz, Oz), frontal gamma-band activity at 
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encoding was identified as the primary classifier of trial accuracy (Tables 2 & 3), while frontal-

central gamma also contributed substantially to classifiers constructed by diagnostic status 

(Table 8). In addition, the presence of low-frequency activity during the pre-stimulus baseline 

and activation of alpha during memory retrieval were identified as important diagnostic 

differences (Tables 5 & 8). In each case model performance was assessed by cross-validation 

and determined to adequately fit the data based on several metrics (i.e., F1-score, precision, 

recall, and estimated area under the ROC curve). Importantly, the EEG features identified by 

SVM seem both plausible and generalizable given prior literature reports regarding the role of 

gamma and alpha activity in working memory function and commonly higher low frequency 

activity in resting EEG of individuals with schizophrenia.  

Published reports describe an upward modulation of gamma activity in response to 

higher working memory load in healthy participants, and an overall attenuation of gamma with a 

failure to modulate at higher memory loads in schizophrenia (Basar-Eroglu, Brand, Hildebrandt, 

Kedzior, et al., 2007). Our data partially support this finding but with an important difference in 

interpretation. As shown in Figure 5, significant upward modulation of frontal gamma in incorrect 

relative to correct trials is evident in schizophrenia and healthy samples alike. When tested 

statistically, encoding gamma was found to be significantly increased in incorrect relative to 

correct trials for both groups (paired-samples t tests; HC, t(11) = 5.37, p < 0.0005; SZ, t(39) = 

7.01, p < 0.0005); however, the strength of this upward modulation was significantly greater in 

healthy participants (multivariate tests; a significant Correct-Incorrect x Group interaction effect, 

Wilk's Λ = 0.86, F(1, 50) = 8.46, p = 0.005). However, of note, gamma modulation with accuracy 

appears to be evident by the time the first stimulus of the memory set is presented (i.e., by 1200 

ms). Therefore, current results are not interpreted purely in context of a memory load effect. 

Rather, given that differences in gamma preceding correct and incorrect trials are already 

present and persist in the early stage of encoding, elevations of gamma may reflect changes in 

cognitive preparedness that occur from trial to trial. This interpretation is not entirely inconsistent 
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with prior findings associating upward modulation of gamma at increased memory load with 

better working memory function. We suggest that the early presence of increased gamma 

preceding incorrect trials could indicate that gamma has already elevated to peak level, limiting 

the ability to further increase gamma with encoding of new information and, thereby, reducing 

trial accuracy. Further examination of reasons for elevated gamma preceding incorrect trials is 

beyond the scope of the current analysis, but possible explanations could include the extended 

maintenance of information, or perhaps cognitive response to error feedback, from the 

preceding trial. Pertinent to the current analysis, it would appear that individual differences in the 

overall magnitude of encoding gamma, found to be greater in healthy than schizophrenia 

groups, is better represented in incorrect than correct trials and, for this reason, activity 

preceding incorrect trials was found most predictive of SWMT performance in both groups. 

Consistent with prior findings (Basar-Eroglu, Brand, Hildebrandt, Karolina Kedzior, et al., 2007; 

Schmiedt, et al., 2005), it does appear that working memory impairment in schizophrenia does 

relate, in part, to a restriction of range in the ability to upregulate gamma in response to 

cognitive challenge.   

Furthermore, SVM also identified central gamma activity during encoding as the most 

highly weighted feature predicting SWMT performance in schizophrenia, suggesting gamma 

activity extended over greater cortical areas than in healthy participants. Studies of postmortem 

brain tissue have provided strong evidence that the GABAergic system of left DLPFC is 

impaired in schizophrenia (Benes, McSparren, Bird, SanGiovanni, & Vincent, 1991; David A. 

Lewis, Curley, Glausier, & Volk, 2012; D. A. Lewis & Gonzalez-Burgos, 2008). GABAergic 

interneurons appear to be crucial elements in the generation of synchronous neuronal activity in 

the gamma bands of EEG (Hajos et al., 2004; Klausberger et al., 2003; McBain & Fisahn, 2001; 

Traub et al., 2001; Whittington & Traub, 2003). Results of phase locking and coherence 

analyses in schizophrenia patients further suggest that neuronal network functioning is impaired 

due to a failure of neuronal synchrony in gamma frequency band (Spencer et al., 2003). Based 
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on present and previous studies, we speculate that extension of gamma activity from frontal to 

central cortical areas in patients may be compensatory in response to inefficiency of frontal 

activity generated in the DLPFC (Chen et al., 2014; David A. Lewis, et al., 2012). 

Data-driven approaches for EEG feature selection would seem particularly useful, if not 

essential, when working with complex cognitive experiments that entail several stages of 

information processing, as well as for common experiments that can nonetheless be analyzed 

based on spectral decomposition of EEG in multi-channel recordings of spatially disparate 

events. Although 1-norm SVM classification was selected for the current study, this is by no 

means the only approach to consider and research in this area could be expanded by 

comparing and optimizing other machine learning approaches for use with EEG data. Graphical 

models, which take into account some network correlations, or Gaussian Process regression, 

which can identify nonlinear relationships in the data, may be other promising approaches. A 

future direction for analysis based on SVM is to develop new machine learning methods that 

can optimize simultaneous modeling of the spatial and temporal distribution of the EEG 

features, to better account for change in EEG frequency amplitude at different scalp locations 

over time. Feature selection using such spatial-temporal modeling will become more precise by 

accommodating single-trial data and larger electrode arrays.  

The current study was limited in terms of sample size, particularly of healthy community 

participants and, therefore, models derived may not be optimized for the broad range of abilities 

represented in the population at large. Our objective in analyzing the current data set was 

primarily to demonstrate how SVM could be applied to data analytic questions that involve many 

potential dependent measures. As an analytic solution for big data problems, the performance 

of SVM improves with larger and, presumably, more stable datasets inclusive of the full range of 

possible values on the parameters involved. Nevertheless, cross-validation of the features 

selected by SVM with regard to external measures of working memory performance and 

diagnostic classification by discriminant function suggested that the derived models performed 
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well within the constraints of the current sample. EEG data modeled on SWMT performance in 

healthy participants explained 76% of variance in task performance across samples and 

demonstrated a linear relationship that appeared a good fit for schizophrenia data over the full 

range of performance (Figure 2). Of note, healthy participants generally responded to at least 70 

of 90 trials correctly, representing 78% accuracy. Individuals with schizophrenia who performed 

in this range also exhibited neural activity in the average to above-average range (i.e., standard 

score values of 0 and above) relative to the sample distribution, while EEG values were 

generally within 1 standard deviation below average for those performing below 78% accuracy. 

With larger samples, contributing to better overall normative estimates, it would be conceivable 

to construct neurophysiological test batteries comparable to standard neuropsychological tests 

that provide individual measures of performance on multiple domains based on precise 

measures of neural activity. This information could inform treatment selection and outcome 

measurement of interventions targeting cognitive impairment through computer-based training 

as well as task-related neurofeedback methods (Mishra & Gazzaley, 2014; Thomas, Vinod, & 

Guan, 2013).  

CONCLUSIONS 

In summary, we conclude that SVM successfully identified EEG features associated with 

working memory performance that are consistent with, and rationally predicted, based on prior 

literature. Selected features highlight the roles of gamma activity during encoding and theta 

during memory retention as EEG components contributing similarly to Sternberg performance in 

both healthy and schizophrenia study samples. Importantly, these same features explained 

substantial portions of variance in working memory and visual attention ability when assessed 

by standardized neuropsychological tests, lending support to the external validity of these 

findings. Furthermore, SVM produced a diagnostic classifier achieving 87% accuracy in 

distinguishing individuals with schizophrenia. Gamma activity during encoding remained to be a 

primary feature distinguishing groups, with lower alpha during retrieval and increased theta 
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during pre-stimulus baseline as additional features characterizing schizophrenia. These results, 

based only on data collected using the Sternberg task, compare favorably with another recent 

example of SVM applied to P300 and mismatch negativity task data, where nearly 85% 

classification accuracy was achieved (Laton et al., 2014), as well as to prior efforts to enhance 

diagnostic classification using multiple EEG experiments and traditional regression approaches 

(Johannesen, O'Donnell, Shekhar, McGrew, & Hetrick, 2013). Taken together, machine learning 

approaches, such as SVM, show considerable potential as an adjunctive analytic strategy for 

data reduction and feature selection of complex EEG datasets.  
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