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ABSTRACT

We devise a boosting approach to classification and regres-
sion based on column generation using a mixture of ker-
nels. Traditional kernel methods construct models based on
a single positive semi-definite kernel with the type of ker-
nel predefined and kernel parameters chosen according to
cross-validation performance. Our approach creates models
that are mixtures of a library of kernel models, and our al-
gorithm automatically determines kernels to be used in the
final model. The 1-norm and 2-norm regularization meth-
ods are employed to restrict the ensemble of kernel models.
The proposed method produces sparser solutions, and thus
significantly reduces the testing time. By extending the col-
umn generation (CG) optimization which existed for linear
programs with 1-norm regularization to quadratic programs
with 2-norm regularization, we are able to solve many learn-
ing formulations by leveraging various algorithms for con-
structing single kernel models. By giving different priorities
to columns to be generated, we are able to scale CG boost-
ing to large datasets. Experimental results on benchmark
data are included to demonstrate its effectiveness.

Categories and Subject Descriptors:
1.5.2 [Pattern Recognition]: Design Methodology—classifier
design and evaluation

General Terms: Algorithms, Design

Keywords: Kernel methods, Boosting, Column generation

1. INTRODUCTION

Kernel-based algorithms have proven to be very effective
for solving inference problems in many applications. By in-
troducing a positive semi-definite kernel K, nonlinear mod-
els can be created using linear learning algorithms such as
in support vector machines (SVM), kernel ridge regression,
kernel logistic regression, etc. The idea is to map data into
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a feature space, and construct optimal linear functions in
the feature space that correspond to nonlinear functions in
the original space. The key property is that the resulting
model can be expressed as a kernel expansion. For example,
the decision boundary f obtained by SVM classification is
expressed as

f(x) = Zj o; K(x,%;), (1)
where « is the model coefficients and x; is the ;" train-
ing input vector. Here (x1,91), (X2,¥2), -, (X¢,ye) are the
training examples drawn i.i.d. from an underlying distribu-
tion. In such kernel methods, the choice of kernel mapping
is of crucial importance. Usually, the choice of kernel is de-
termined by predefining the type of kernel (e.g, RBF, and
polynomial kernels), and tuning the kernel parameters using
cross-validation performance. Cross-validation is expensive
and the resulting kernel is not guaranteed to be an excellent
choice. Recent work [9, 6, 4, 12, 5, 2] has attempted to de-
sign kernels that adapt to the data of a particular task to
be solved. For example, Lanckriet et al. [9] and Crammer
et al. [5] proposed the use of a linear combination of ker-
nels K =5 » HpKp from a family of various kernel functions
K,. To ensure the positive semi-definiteness, the combina-
tion coefficients p, are either simply required to be non-
negative or determined in the way such that the composite
kernel is positive semi-definite, for instance, by solving a
semi-definite program as in [9] or by boosting as in [5]. The
decision boundary f thus becomes

16 = oy (30, moku(xxy) - @)

In our approach, we do not make an effort to form a new
kernel or a kernel matrix (the Gram matrix induced by a
kernel on the training data). We construct models that are
a mixture of models, each based on one kernel choice from a
library of kernels. Our algorithm automatically determines
the kernels to be used in the mixture model. The decision
boundary represented by this approach is

160 =30 3 alKylxx)) )

Previous kernel methods have employed similar strategies
to improve generalization and reduce training and prediction
computational costs. MARKING [1] optimized a heteroge-
neous kernel using a gradient descent algorithm in function
space. GSVC and POKER [14, 13] grew mixtures of kernel



functions from a family of RBF kernels, but they were de-
signed to be used only with weighted least squares SVMs.
The proposed approach can be used in conjunction with any
linear or quadratic generalized SVM formulations.

In this article, we devise algorithms that boost on ker-
nel columns via column generation (CG) techniques. Our
goal is to develop approaches to construct inference models
that make use of various geometries of the feature spaces
introduced by a family of kernels other than the less expres-
sive feature space induced by a single kernel. The 1-norm
and 2-norm regularization methods can be employed to re-
strict the capacity of mixture models of form (3). We expect
the resulting solution of mixture models to be more sparse
than models with composite kernels. The CG-based tech-
niques are adopted to obtain sparsity. We extend LPBoost,
a CG boosting algorithm originally proposed for linear pro-
grams (LPs) [7], to quadratic programs (QPs). Our algo-
rithm therefore becomes more general and is suitable for
constructing a much larger variety of inference models.

We outline this paper now. In Section 2, we discuss the
proposed mixture-of-kernels model and describe its charac-
teristics. Section 3 extends LPBoost to QPs that use 2-norm
regularization. Various CG-based algorithms are presented
in Section 4 including classification and regression SVMs.
Then in Section 5, we address some computational issues en-
countered when applying CG-based boosting methods, and
then experimental results on benchmark data are presented
to demonstrate the performance of the proposed method.
Section 6 concludes this paper.

2. MIXTURE OF KERNELS

In this section, we discuss the characteristics of the mixture-
of-kernels method and compare it with other approaches.

2.1 Approximation capability

Models (3) that are based on a mixture of kernels are
not necessarily equivalent to models (2) based on a com-
posite kernel. Rewriting a composite kernel model (2) as
f(x) =32, 22, aippKp(xi,x), we can see it is equivalent to a
mixture-of-kernels model (3) with af = a;up. The opposite
is not necessarily true, however, since given any composite
kernel model (2), for any two kernels K, and K, the ratio
af /ol is fixed to pp/pq, for all i (assuming pg # 0 without
loss of generality). Note that for a mixture-of-kernels model
(3), we do not have this restriction.

It follows that a mixture model of form (3) can poten-
tially give a larger hypothesis space than a model that uses
either a single kernel or a composite kernel. The hypothesis
space tends to be more expressive, i.e., a mixture-of-kernels
model can better approximate target functions of practi-
cal problems. Although models using a single RBF kernel
are known to be capable of approximating any continuous
functions in the limit, these single-kernel models can give
very poor approximations for many target functions. For
example, suppose the target function can be expressed as a
linear combination of several RBF kernels of different band-
widths. If we approximate it using a single RBF kernel
(with a fixed bandwidth), then many basis functions have
to be used. This leads to a dense and poor approximation,
which is also difficult to learn. Therefore, using a single RBF
kernel, we may have to use much more training data than
necessary to learn a target function that can be better ap-
proximated by a mixture model with different kernels. Due

to the better approximation capability, a mixture model (3)
tends to give sparser solutions which have two important
consequences: the generalization performance tends to be
improved since it is much easier to learn a sparse model due
to the Occam’s Razor principle (which says that the simplest
solution is likely to be the best solution among all possible
alternatives); the scalability is enhanced since sparse models
require both less training and less testing time.

2.2 Connection to RBF nets

Consider the case of sets of RBF functions (kernels), we
discuss the relationship among different basis expansion mod-
els, such as models obtained by SVMs, our approach and
RBF nets [3]. In basis expansion methods [8], the model
takes a form of f(x) = > «a;¢;(x), where each function
¢; is a basis function of a form exp(—||x — ¢?||*/o;). In
RBF networks, the centers ¢ and the bandwidths ¢ of the
basis functions are heuristically determined using unsuper-
vised techniques. Therefore to construct the decision rule,
one has to estimate: 1. the number of RBF centers; 2. the
estimates of the centers; 3. the linear model parameter o,
and 4. the bandwidth parameter o. Compared with RBF
networks, the benefits of using SVMs have been studied [17,
16]. The first three sets of parameters can be automatically
determined by SVMs when learning support vectors. The
last parameter is usually obtained by cross-validation tun-
ing. Classic SVMs, however, use only a single parameter
o, which means that all centers (support vectors) are asso-
ciated with a single choice of . Contrary to SVMs, RBF
networks estimate a different o for every center c of the RBF
basis. More generally, the bandwidth ¢ can be different on
different directions. Our model has a flexibility in between
SVMs and RBF networks. Our model still benefits from the
SVM-like algorithms, so parameters except ¢ can be learned
by solving an optimization problem. In addition, our model
allows the RBF basis positioned at different centers (support
vectors) to associate with different bandwidths.

2.3 Regularization

To achieve good generalization performance, it is impor-
tant to introduce appropriate regularization conditions on
the model class. For a mixture model of form (3), the natural
extension to the reproducing kernel Hilbert space (RKHS)
regularization, commonly used by single-kernel methods such
as SVMs, is to use the following generalized RKHS regular-
ization R(f):

R(f) = ZP Z” o o Kp (%4, %;),

This regularization condition, however, requires positive
semi-definiteness of the kernel matrix K. This requirement
can be removed by introducing other regularization condi-
tions that are equally suitable for capacity control [10]. In
particular, we consider penalizing the 1-norm or 2-norm of
a. These regularization methods are more generally ap-
plicable since they do not require the kernel matrix to be
positive semi-definite. This can be an important advantage
for certain applications. Moreover, it is well known that the
1-norm regularization ||a||1 = Y |a;| leads to sparse solu-
tions, which as we have explained earlier, is very desirable.

The mixture-of-kernels method investigated in this work
has interesting properties concerning its learning and ap-
proximation behaviors. Due to the space limitation, these
theoretical issues will be addressed elsewhere. This paper fo-



cuses on algorithmic design issues such as achieving sparsity
of the solutions and the scalability to large-scale problems.

3. COLUMN GENERATION FOR QP

The column generation techniques have been widely used
for solving large-scale LPs or difficult integer programs since
the 1950s [11]. In the primal space, the CG method solves
LPs restricted on a subset of variables «, which means not
all columns of the kernel matrix are generated at once and
used to construct the function f. More columns are gener-
ated and added to the problem to achieve optimality. In the
dual space, the columns in the primal problem correspond
to the constraints in the dual problem. When a column
is not included in the primal, the corresponding constraint
does not appear in the dual. If a constraint absent from the
dual problem is violated by the solution to the restricted
problem, this constraint (a column in the primal) needs to
be included in the restricted problem in order to obtain op-
timality. We first briefly review the existing LPBoost with
1-norm regularization. Then we extend CG techniques to
QPs with 2-norm regularization so that may successful for-
mulations, such as classic SVMs, ridge regression, etc. can
also benefit from CG techniques.

For notational convenience, we re-index the columns in
different kernels to form a single multi-kernel. Given a li-
brary of kernels § = {Ki, Ka,---,Kp}, a Gram matrix
K? can be calculated for each kernel in S on sample data
with the column K, (-, x;) corresponding to the j*" training
example. Let us line up all these kernel matrices together
K = [K' K? ... KP], and let index j run through the
columns and index ¢ run along the rows. Hence K;. denotes
the i*" row of K, and K.; denotes the 7" column. There
are d = ¢ X P columns in total.

3.1 LP formulation

If the hypothesis K.;ja; based on a single column of the
matrix K is regarded as a weak model or base classifier, we
can rewrite the LPBoost using our notations and following
the statement in [7]:

minge ;o +C Y&
s.t. injKijaj +&2>1, 6 >0, 7::17"'7£7 (4)
Qa 207 .7:17 7d7

where C' > 0 is the regularization parameter. The dual of
LP (4) is

maxy Zle U;
s.t. Zle ulle” § 1, ] == 1, e ,d, (5)
0<wu;<C, i=1,---,¢.

These problems are referred to as the master problems.
The CG method solves LPs by incrementally selecting a
subset of columns from the simplex tableau and optimiz-
ing the tableau restricted on the subset of variables (each
corresponding to a selected column). After a primal-dual
solution (d,é, 1) to the restricted problem is obtained, we
solve

7 = max ZZ Uiy Kij, (6)

where j runs over all columns of K. If 7 < 1, the solution
to the restricted problem is already optimal to the master
problems. If 7 > 1, then the solution to (6) provides a
column to be included in the restricted problem.

3.2 QP formulation
Using the 2-norm regularization approach, constructing a

model as in LP (4) corresponds to solving this QP:

ming ¢ %Z?zl % —&—C’Zle &
s.t. ylZJKl]aJ"'ngL 51207 i=1,---,¢ (7)
Qj 207 ‘7:17 7d'

The Lagrangian dual function is the following:

d ‘ d
L=y af+0Y &~ uily 3 Kija; +& — 1)
j=1 i=1 j=1
—2isidi — 2ty
where u;, s; and t; are nonnegative Lagrange multipliers.
Taking the derivative of the Lagrangian function with re-
spect to the primal variables yields
bt oy — 2 uiyiKe =t

oL . Al — S
8_57;' C U; = Sj.

(®)

Substituting (8) into the Lagrangian yields the dual problem
as follows:

max, ming Zle i — % Z;l:l a3
s.t. Vi wiyiKy <aj, j=1,---,d,  (9)
0<u; <C, i=1,--- 0.

The CG method partitions the variables a; into two sets,
the working set W that is used to build the model and the re-
maining set denoted as N that is eliminated from the model
as the corresponding columns are not generated. Each CG
step optimizes a subproblem over the working set W of vari-
ables and then selects a column from N based on the current
solution to add to W. The «; in N can be interpreted as
a; = 0. Once a solution a"” to the restricted problem is ob-
tained, & = (&' a® = 0) is feasible to the master QP (7).
The following theorem examines when an optimal solution
to the master problem is obtained in the CG procedure.

THEOREM 3.1  (OPTIMALITY OF QP CG). Let (&, &, 1)
be the primal-dual solution to the current restricted prob-
lems. If for all j € N, >, 4y:Ki; < 0, then (&, &, 1) is
optimal to the corresponding master primal (7) and dual (9).

Proor. By the KKT conditions, to show the optimality,
we need to confirm primal feasibility, dual feasibility and
the equality of primal and dual objectives. Recall how we
define & = (" o =0), so (&,£) is feasible for QP (7).
The primal objective must be equal to the dual objective
since a; = 0, V j € N. Now the key issue is dual feasibil-
ity. Since (a",£,1) is optimal for the restricted problem,
it satisfies all constraints of the restricted dual problem, in-
cluding >, @y Kij; < oy, j € W. Hence the dual feasibility
is validated if . 4y:Kij <o; =0, je N. O

Any column that violates dual feasibility can be added. For
LPs, a common heuristic is to choose the column K.; that
maximizes ), u;y:K;; over all j € N. Similar to LPBoost,
the CG boosting for QPs can also use the magnitude of
the violation to pick the kernel column or kernel basis func-
tion. In other words, the column K.; with the maximal
score ZZ u;y; K;; will be included in the restricted problem.

REMARK 3.1 (COLUMN GENERATION WHEN « > 0). Let
(&, &, 1) be the solution to the restricted QP (7) and (9), and



W, N be the current working and non-working sets. Solve
¢
T = max

JEN i=
and let the solution be K ;. If 7 < 0, the optimality is
achieved; otherwise, the solution K ; is a column for inclu-
ston in the primal problem and also provides a constraint to
be added to the dual problem.

| iyiKaj, (10)

After a column has been generated, we can either solve the
updated primal problem or the updated dual problem. The
original LPBoost [7] solves the dual problem at each iter-
ation. From the optimization point of view, it is not clear
which problem, the primal or the dual, will be solved with
cheaper computational cost. Since the current solution at
each CG iteration is primal feasible to the updated problem,
no cost is needed to find the first feasible solution for the
updated primal. Due to this advantage, we solve the pri-
mal problem in our implementation. For LPs, the tableau is
optimized starting from the current solution after the new
column is generated. For QPs, we set the initial guess of so-
lution for the updated primal to the current solution. There-
fore solving each restricted primal can be cheap in CG al-
gorithms. Since we extend the CG boosting for LPs to QPs
(7), we name the family of CG approaches CG-Boost.

4. VARIANTS OF CG-BOOST

We have extended the CG optimization for LPs to QPs for
constructing models in the form of ), af K, (x,x;), @ > 0.
However, typical kernel methods do not require the model
parameters a > 0. Moreover, the model may contain an off-
set term b, i.e., Y of K,(x;,x)+b. We investigate these var-
ious models here and devise variants of CG-Boost, including
those suitable for classification and regression SVMs. Note
that this general approach can be applied to other support
vector methods including novelty detection and v-SVMs.

4.1 Add offset »

If the decision boundary model or the regression model
has an offset b, we need to discuss two cases. First, if the
variable b is regularized, an ¢ vector of ones can be added
to the kernel matrix to correspond to b. The CG-Boost will
be exactly the same as for the model without an explicit
b except for the constant column added to the mixture of
kernels. Second, if b is not regularized, then there exists an
extra equality constraint > ;uiy; = 0 in the dual problem
(5) or (9). In the later case, we use b in the initial restricted
problem and always keep b in the working set W. Thus the
equality constraint always presents in the restricted dual
problem. To evaluate the dual feasibility and assure opti-
mality, we still just proceed as in Remark 3.1.

4.2 Remove bound constraints

The lower bound constraint on model parameters a > 0 is
not a necessary condition to use the CG approach. Remov-
ing the lower bound from QP (7), we obtain the problem:

mina ¢ 3 Z?:l G +CY &
s.t. injKi]-aj—o—&zl, 51207121,,Z
(11)
The corresponding dual can be obtained through Lagrangian
duality analysis as usually done for SVMs. In the resulting
dual, the inequality constraints in (9) become equality con-
straints, i.e., a; = >, u;y:Kij. Usually we substitute them

into the Lagrangian and eliminate the primal variables from
the dual. The dual objective becomes

14 1 d 2
Zi:l i = 2 j=1 (ZluzyzK”) ’

In CG optimization iterations, the dual feasibility is the key
to verifying optimality. To evaluate the dual feasibility of
(11), the equality constraints should hold for all j. For the
columns in the working set W, the corresponding constraints
are satisfied by the current solution. For the columns K.;
that do not appear in the current restricted problem, the
corresponding a;; = 0. Therefore if >, uiy:Ki; =0, V j €
N, the current solution is optimal for the master problem.
Optimality can be verified by the following method:

REMARK 4.1 (COLUMN GENERATION FOR « FREE). Let
(&, &, 1) be the solution to the current restricted QP (7) and
(9) without bound constraints on o, and W, N be the cur-
rent working and non-working sets. Solve

Y4 ~
= X Ui Kij
T=max |3, diyiKy (12)
and let K ;5 be the solution. If T = 0, the current solution

(d,é,ﬁ) is optimal to the master problem; otherwise, add
the column K 5 to the restricted problem.

Unlike for problem (7) with e > 0, choosing the column
with the largest violation score | ), u;y:Kij|, i.e., generating
columns by solving problem (12) is not simply a heuristic for
problems with free a.. Instead it is the “optimal” greedy step
for CG optimization as shown in the following proposition.

PRrROPOSITION 4.1. The column generated by solving prob-
lem (12) is the column in N that decreases the duality gap
the most at the current solution.

PROOF. Let z be the column produced by problem (12).
The dual objective value at the current solution (&, &, Q) is

>t — 5 20,30, diyiKaig)®
=2t = 5 D jew (0, wiiKi)® = 5 3 e n (X, diyiKij)®
= % Z]EW dgz‘ + szﬁi - % Z]’GN(Zi ﬂiyiKij)2
= % 25:1 d? +CY & — % Z]’GN(Z'L IZiin{ij)2

The last equation holds due to & = (&" & = 0). Hence
the duality gap at (é&, €, 1) is %zjeN(Zi’lziyiKij)Q. Find-
ing a column in N that minimizes the duality gap yields the
solution z. [

4.3 Apply to SVM regression

The CG-Boost approach can be easily generalized to solv-
ing regression problems with the e-insensitive loss function
max{|y— f(x)|—¢,0} [17]. To construct regression models f,
we penalize points as errors that are predicted by f at least €
off from the true response. Using the 2-norm regularization
(see [15] for 1-norm regularization), the QP becomes:

Milagn 525,05 +C i (& +m)
s.t. EjKijOéj—i—éiZyi—e,Z'Il,"',g,
-2 Ko +mi > —yi—e, i=1,-- 4,
57«207 Ui 207 7':13 7‘€
(13)
Note that each column in the primal has its size doubled
in comparison with the classification case. The j** column
becomes K.; concatenated by —K.;. Let u; and v; be the



Lagrange multipliers corresponding to the first set of con-
straints and the second set of constraints, respectively. Then
the dual constraints are 3, (u; —vi)Kij = o. Again, as an-
alyzed in Section 4.2, optimality can be verified by assessing
if 7, (us —v;)Kq; =0, V j € N as in the following remark.

REMARK 4.2
Let (&, £,7,14, V) be the solution to the current restricted QP
(13) and its corresponding dual, and let W, N be the current
working and non-working sets, respectively. Solve

T=max |[S_, (i — 9Ky (14)

JEN
and let K ; be the solution. If 7 = 0, the current solution

(d,é,ﬁ,ﬁ,@) s optimal to the master problem; otherwise,
add the column K ; to the restricted problem.

5. ALGORITHMS AND EXPERIMENTS

In the mixture-of-kernels method, the kernel library S
contains finite choices, so an effective column, i.e., the solu-
tion of (12) can be found by scanning columns of K. How-
ever, it requires access to the entire kernel matrix at each
iteration. When the amount of training data is large, it is
not desirable. To make CG-Boost more efficient, we propose
a stratified CG process: columns from different training ex-
amples and different types of kernels are given different pri-
orities to be generated.

First, columns corresponding to error points (£; > 0) can
be selected in order to fit the error points better in the next
iteration. Hence (step i) we first choose the column with the
largest violation score of (12) from the kernel columns corre-
sponding to error points; (step ii) once all such columns are
satisfied by the current solution, a full scan on all columns is
performed. Moreover, different kernels correspond to feature
spaces of different geometric character. Certain tasks may
favor one kernel over others within the library. Domain in-
sights may help identify good candidate kernels for a specific
problem. Users can give high priority to more interpretable
kernels by generating columns first from these kernels. If no
priori information exists, one philosophy is to have a pref-
erence for less complex and computationally cheap kernels.
For example, assume the kernel library contains two types of
kernels, linear and RBF. In either of the above steps (i) and
(ii), the columns from the linear kernel will be considered
first. If no appropriate linear kernel column can be added,
then we consider columns from more complicated kernels.

We evaluated the CG-Boost mixture-of-kernels approach
in terms of the prediction accuracy, sparsity of solutions
and compared it to other approaches such as composite-
kernel methods. The MNIST hand-written digit database
of 60,000 28 x 28 images was used in our experiments. We
discriminated between odd and even numbers. We randomly
chose 1000 examples for training, 2000 examples as the val-
idation set and 10000 examples in test. The training, vali-
dation and test sets were mutually exclusive. We used the
commercial optimization package ILOG CPLEX 8.0 to solve
the restricted problems. Three kernel types were adopted:
linear, quadratic and RBF kernels, denoted respectively as
L, Q and R in Table 1 where L4+Q means a combination
of linear and quadratic kernels with ¢ = 1 and L,Q,R indi-
cates a mixture of linear, quadratic and RBF kernels. We
employed a fixed strategy to find a value for o in the RBF
kernel. First we calculated the mean of ||x; — x;||> where

(COLUMN GENERATION FOR REGRESSION).

Table 1: Classification results for MNIST hand-
written digit database. 7Top, 2-norm regularization;
bottom, 1-norm regularization. Rirn, Rist, Tirn and
Tist denote the training and test error percentages
as well as training and test times in seconds, respec-
tively. (i, Cy and C, give the numbers of columns
from linear, quadratic and RBF kernels.
Kernel Rt'rn Rtst T’trn Ttst Cl Cq Cr

L 1.1 18.7 | 73.1 0.2 |969 | - -

Q 6 18.0 | 90.3 4.4 - 181 | -

R 16.2 | 22.1 | 115.2 | 870 - - | 971
L+Q 3.1 152 | 909 | 0.82 | 184 | 184 | -
L+R 15 20.0 | 125.4 | 882 | 980 980

L+Q+R | 2.5 | 16.1 | 158.5 | 889 | 980 | 980 | 980
L,QR 0.4 |13.5|130.2 | 13.4 | 122 | 20 | 13

L 4.8 15.6 | 33.1 0.2 | 171 | - -
Q 6.3 19.6 | 54.9 2.3 - 94 -
R 40 38.8 | 74.6 6.4 - - 7
L+Q 6.0 16.5 | 73.0 4.5 98 | 98 -
L+R 4.8 15.8 | 83.7 84 93 93

L+Q+R | 6.6 | 153 | 71.1 | 855 | 93 | 93 | 93
LQR | 09 |13.1| 955 |11.1| 77 | 10 | 12

i, 7 run through the training examples, and then set o equal
to the mean value.

From the Tis¢ column of Table 1, the mixture models re-
quire much less execution time in the testing phase than
composite models due to the sparsity on the RBF kernel
bases achieved by the mixture models by referencing the last
3 columns of Table 1. Due to the characteristics of compos-
ite kernel models, different kernels have the same number of
columns selected even though some columns might not be
necessary. Solving the mixture kernel models can consume
more time than composite-kernel models based on Ty, (pro-
vided we do not count the time needed to determine the
parameter p in the composite-kernel models. We simply set
1 = 1 in our comparison). However since CG-Boost is an
iterative boosting process, it can be terminated earlier when
a solution with desirable performance is obtained. Then the
training time is also dramatically reduced.

We validated the effectiveness of our stratified process in
generating the columns. Form Figure 1 (top), more columns
have to be generated in the CG approach if we do not stratify
the column generation. The convergence was slower for the
regular CG process. Moreover, using the stratified process,
whenever a column from a simple kernel is identified to be
included in the QPs, all other columns from complex kernels
will not be calculated at that iteration. Hence the number
of columns that needs to be computed in order to generate a
column is significantly reduced in comparison with the reg-
ular CG process. On average the stratified CG needed 255
kernel columns to be calculated at each iteration while the
regular CG required a full scan (¢ x P=3000 columns). CG-
Boost is an extension to original LPBoost, so the scalability
analysis for LPBoost in [7] is also suitable to CG-Boost.

We also examined the parameter tuning problem. An ap-
propriate choice of the regularization parameter C' deter-
mines the prediction accuracy. In the usual tuning process,
we choose a value for C, then solve the QPs completely, and
then examine the validation performance of the obtained
model to decide if the choice is appropriate. In CG-Boost,
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Figure 1: Top: comparison of regular CG boosting
and stratified CG boosting methods. Bottom: im-
proper regularization parameter values can be mon-
itored during the CG iteration.

by monitoring the validation performance at each iteration,
we can assess if it is overfitting due to an improper choice of
C, without having to fully solve the QPs as shown in Figure
1 (bottom) where the validation curve corresponding to an
improper C' value goes up after 400 columns are generated.

6. CONCLUSIONS

We proposed a column generation boosting approach CG-

Boost for classification and regression using mixture-of-kernels

models. We argued that the proposed approach leads to
models that are more expressive than models obtained by
single-kernel or composite-kernel approaches. This means
we are able to better approximate the target function us-
ing a smaller number of basis functions. CG-Boost pro-
duces sparse solutions, so the testing time can be signifi-
cantly reduced, and also sparser models tend to have bet-
ter generalization performance due to the Occam’s Razor
principle. Experimental results were presented to support
our claims. In addition, by extending the current LPBoost
method to handle quadratic programs, we are able to solve
many learning formulations by leveraging existing and fu-
ture algorithms for constructing single kernel models. Our
method is also computationally more efficient than the com-
posite kernel method, which often requires semi-definite pro-
gramming techniques to find appropriate composite kernels.
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