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ABSTRACT
This paper describes a novel classification method for com-
puter aided detection (CAD) that identifies structures of in-
terest from medical images. CAD problems are challenging
largely due to the following three characteristics. Typical
CAD training data sets are large and extremely unbalanced
between positive and negative classes. When searching for
descriptive features, researchers often deploy a large set of
experimental features, which consequently introduces irrel-
evant and redundant features. Finally, a CAD system has
to satisfy stringent real-time requirements.

This work is distinguished by three key contributions. The
first is a cascade classification approach which is able to
tackle all the above difficulties in a unified framework by
employing an asymmetric cascade of sparse classifiers each
trained to achieve high detection sensitivity and satisfac-
tory false positive rates. The second is the incorporation
of feature computational costs in a linear program formu-
lation that allows the feature selection process to take into
account different evaluation costs of various features. The
third is a boosting algorithm derived from column genera-
tion optimization to effectively solve the proposed cascade
linear programs.

We apply the proposed approach to the problem of detect-
ing lung nodules from helical multi-slice CT images. Our
approach demonstrates superior performance in comparison
against support vector machines, linear discriminant analy-
sis and cascade AdaBoost. Especially, the resulting detec-
tion system is significantly sped up with our approach.

Categories and Subject Descriptors
I.5.m [Pattern Recognition]: Miscellaneous
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1. PROBLEM SPECIFICATION
Over the last decade, Computer-Aided Detection (CAD)

systems have moved from the sole realm of academic pub-
lications, to robust commercial systems that are used by
physicians in their clinical practice to help detect early can-
cer from medical images. The growth has been fueled by the
Food and Drug Administrations (FDA) decision to grant ap-
proval in 1998 for a CAD system that detected breast can-
cer lesions from mammograms (scanned x-ray images) [19].
Since then a number of CAD systems have received FDA
approval. Virtually all these commercial CAD systems fo-
cus on detection (or more recently diagnosis [7]) of breast
cancer lesions for mammography. The CAD concept can
be generalized to many other detection tasks in medical im-
age analysis, such as lung nodule detection and colon polyp
detection.

The typical workflow for a CAD system when used to
identify structures in a new patient image is:

1. Identify candidate structures in the image: Most med-
ical images, particularly image volumes generated by high-
resolution computed tomography (CT), are very large. Typ-
ically, an efficient image processing algorithm considers each
pixel (or voxel) in the image as a potential candidate “seed”,
and selects a fraction of the seeds as candidates.

2. Extract features for each candidate: A large number of
image features are usually calculated to describe the target
structure. Some of the features can be irrelevant, or redun-
dant, or computationally expensive. Thus, sparse feature
selection is necessary in order to ensure a relatively small
number of relevant features in the deployed CAD system.

3. Classify candidates as positive or negative: A previously-
trained classifier is used to label each candidate.

4. Display positive candidates: Commonly, the digitized
image is displayed with marks for inspection by physicians.

In the candidate identification stage, even a small fraction
of the seeds is necessarily very large in order to maintain



high sensitivity. High sensitivity (ideally close to 100%) is
essential, because any cancers missed at this stage can never
be found by the CAD system. Hence, a very large number
of false positives are generated in this stage (typically, fewer
than 1% of the candidates are positive), which makes the
classification problem highly unbalanced. Moreover, CAD
systems must run fast enough so that physicians can use
them in the middle of their diagnostic analysis.

2. OVERVIEW OF OUR APPROACH
Our major contribution in this paper lies in a new cas-

caded classification approach that solves a sequence of linear
programs, each constructing a hyperplane classifier of the
form sign(w′x + b) where x is the feature vector and (w, b)
are model parameters to be determined. The linear pro-
grams are derived through piece-wise linear cost functions
and the `1-norm regularization condition. The resulting lin-
ear program works in the same principle as for the 1-norm
SVM. The `1-norm regularization inherently performs fea-
ture selection since penalizing on the 1-norm regularization
of w drives the resulting optimal w to be sparse, meaning
only a few features receive a non-zero weight w. To incorpo-
rate the feature computational complexity into the selection
of features, a weighted `1-norm is employed where weights
are determined by the computational cost of each feature.
Each linear program employs an asymmetric error measure
that penalizes false negatives and false positives with differ-
ent weights. An extreme case is that the penalty for a false
negative is infinity, which is used in the early stage of the
cascade design to alleviate the skewed class distribution and
preserve high detection rates.

Previous cascade classification approaches are mostly based
on AdaBoost [10, 20, 11]. Cascade AdaBoost serves as a
great tool for building real-time robust applications [22, 24],
especially for object detection systems. However, cascade
AdaBoost works with two implicit assumptions: 1. a signif-
icant amount of representative data is available for training
the cascade classifier; 2. all features can be equally eval-
uated with a relatively low computational cost. These as-
sumptions, unfortunately, often do not hold in CAD sys-
tems. Collecting patient data is very expensive and time-
consuming. Available data can be noisy and hardly rep-
resent all aspects of the target characteristics. One of the
major concerns about cascade classification approaches is if
a classifier within the cascade does not generalize well and
hence screens out more true positives than necessary, then
these true positives will never be recovered at later stages.
The more stages in the cascade, the more likely that the
system becomes unstable. This observation motivates us
to design a cascade that consists of significantly few stages.
Furthermore, simple and low-cost image features are often
not sufficient for detecting target structures in a CAD sys-
tem. Advanced features are indispensable for performance
enhancement, but they require great computation time. If
these features need to be calculated for a large portion of
the candidates at the early stage of the cascade, the system
may become prohibitively slow. Cascade AdaBoost treats
all features equally when selecting features for each individ-
ual stage classifier, which leads to a computation inefficiency.

Unlike cascade AdaBoost, the proposed approach incor-
porates the computational complexity of features into the
cascade design. Our cascading strategy brings advantages
of multiple folds: 1. Easy classification: the detection prob-

Figure 1: Shown in this figure are four sample nod-
ules (top row) and four sample false positives (bot-
tom row) from the CG step.

lem becomes much more balanced at later stages, facilitating
advanced classification algorithms to be applied and perform
well at these stages when overall accuracy becomes more de-
manding at later stages. 2. High computational efficiency:
early stages weed out many non-target patterns, so most
stages are not evaluated for a typical negative candidate.
Computationally expensive features are only calculated for
a small portion of the candidates at later stages. 3. Robust
system: the linear program with a `1-norm regularization
at each stage is a robust system. Although no theoretical
justification is derived, a cascade of very few stages is un-
likely to harm the robustness of linear classifiers, as opposed
to a cascade of over 20 stages as often obtained via cascade
AdaBoost.

3. AN EXAMPLE OF CAD: AUTOMATIC
NODULE DETECTION

In this article, we focus upon an automatic lung nodule
detection system. Lung cancer is the leading cause of cancer-
related death in western countries with a mean 5 year sur-
vival rate for all stages of only 14%. The prognosis of stage
I cancer is more optimistic with a mean 5 year survival rate
of about 49%. Although multi-slice CT scanners allow ac-
quisition of the entire chest, only 15% of lung cancers are
diagnosed at the early stage. The problem is that a single
CT examination may acquire up to 700 axial images whose
interpretation is tedious and perceptually demanding. CAD
is considered to be a helpful diagnostic tool to handle this
increasing amount of radiological data. It is well recognized
that the use of CAD not only offers the potential to de-
crease detection and recognition errors as a second reader,
but also to reduce mistakes related to misinterpretation [1,
16]. Recently a variety of research has been dedicated to im-
provement of automatic nodule detection performance using
state-of-the-art machine learning techniques, such as convo-
lution neural networks [13], support vector machines [15]
or a combined system which uses simple rules to reduce the
number of nodule candidates followed by linear discriminant
analysis [2].

Our data was collected from multiple sites. The CT vol-
umes are typically of size 512 × 512 × 350 (approximately),
representing a slice thickness of about 1mm. We conduct a
pre-processing step. The region of interest, which is the lung
in our problem, is first extracted using segmentation tech-
niques, so that all candidates generated will be guaranteed



inside the lung. This also facilitates the detection of wall-
attached nodules (an example is shown in Figure 1, top-left).
The candidate generation (CG) algorithm employs a robust
blob detection strategy that identifies all the blob-like struc-
tures. The size of the blob-like structures vary in diameter
starting from 3mm, which is the minimum size of interest
for radiologists. The output of the CG step is the locations
of candidates, along with some internal features that are
generated as intermediate results of the candidate genera-
tor. These features include simple gray scale statistics and
shape based information of the blob. There are a total of 10
such features output by the candidate generator. The CG
algorithm successfully identifies most of the nodules from
the CT scans, including some non-obvious nodule examples,
as illustrated in Figure 1 (first row): from left to right, wall-
attached, elliptical, vessel-attached and very small nodules.
However, the CG also generates a huge number of false posi-
tive candidates as illustrated in Figure 1 (second row): from
left to right, these false positives are due to lymph tissue,
tissue scarring, unknown structure and motion.

After the CG step, a large number of image features are
computed for each of the candidates to describe the shape
(both 2D and 3D), size, intensity statistics (that describe
texture), and template matching. The complexity of these
features is around linear with respect to the size of the sub-
volume where the feature computation takes place. This
can be as large as 21 × 21 × 21 voxels, and the amount of
computation may become prohibitively large if we need to
compute them on every candidate.

Another set of more advanced and computationally de-
manding features are calculated as follows. For each de-
tected candidate region, the target is segmented by using a
nodule segmentation technique developed in [18]. Twenty
seven statistical features, computed in a remapped coordi-
nate system, are derived from the segmented shape of the
candidate. The feature set includes local intensity statis-
tics and geometrical features, such as size and anisotropy
of the gray values at multiple scales. Furthermore, the
intensity homogeneity is represented in a set of entropic
measures by using the generalized Jensen-Shannon diver-
gence [14]. Jensen-Shannon divergence extends the well-
known Kullback-Liebler divergence between a pair of prob-
ability distributions in order to describe overall similarity of
a set of distributions. Intensity homogeneity can be repre-
sented with the Jensen-Shannon divergence by computing
overall similarity of a set of intensity-based histograms de-
rived from different sub-partitions. This approach allows a
flexible extension of the entropy-based intensity homogene-
ity index as a function of arbitrary data partition and/or
sampling. The computation time of different sets of features
are summarized in Table 1.

4. CASCADE OF HYPERPLANE CLASSI-
FIERS

Cascade classifiers have previously been investigated in
such works as [27, 12, 9]. Particularly, in the field of face
detection, many classification cascading strategies [25, 21,
23] have shown good performance. Among those methods,
the AdaBoost boosting algorithm provides a simple yet ef-
fective stagewise learning approach for the cascade design.
However, as discussed in Section 2, it has some disadvan-
tages.

Feature Sets Features Mean STD
Feature set 1

(Simple) CG features 0 0
Feature set 2
(Complex) Shape & size 17.3 1.8

Intensity statistics 26.4 7.2
Template 1.5 0.26

Feature set 3
(Most Complex) Multi-scale statistics 2010 351

Table 1: Statistics of the computation time of vari-
ous features in milliseconds per candidate.

In this section, we investigate a linear programming frame-
work for constructing a cascade of sparse linear classifiers
w′x + b. Each stage of the cascade solves a linear program
which is formulated through the hinge loss

ξ = max{0, 1 − y(w′x + b)}

and the `1-norm penalty or weighted `1-norm penalty

‖w‖γ
1 =

X

γi|wi|

where γi is a weighting factor related to the computational
cost of the i-th feature assuming the cost information is
available or otherwise it becomes the regular `1-norm by
setting all γ = 1. Although the linear programs at each
stage can be solved using any general-purpose linear pro-
gram solver, we show in the next section that the column
generation technique for linear programs, is equally suitable
for optimizing each linear program in an incremental fash-
ion as AdaBoost does. Moreover, the column generation
boosting derivation can be applied to any linear program
regardless of the choice of the trade-off factor between the
detection rate and the false positive rate whereas AdaBoost
needs to be revised for an asymmetric re-weighting scheme
[25, 23].

The proposed cascade classification strategy provides a
general framework for building a cascade, but a concrete
cascade design is problem-specific. Prior knowledge or do-
main insights may help identify good features to be included
in various stages for a specific problem. Users can give high
priority to more meaningful and interpretable features to
use in early stages. If no such priori information exists, one
philosophy is to have a preference for less complex and com-
putationally cheaper features.

The cascade hierarchy for our nodule detection system has
3 stages as depicted in Figure 2. The first stage (C1) consid-
ers the internal features of the CG algorithm as discussed in
Section 3 because these features come together with candi-
dates and do not require any extra computational cost. As
observed in our experiments, a significant amount of non-
nodule candidates are eliminated at this stage. This stage
in the classification cascade can also be viewed as an effort
to optimize the CG algorithm itself. After the CG step,
more advanced features are calculated to improve the over-
all accuracy for both false negative and false positive rates.
With these features, the second classifier (C2) in the cas-
cade often achieves an acceptable performance. However,
to further improve from the acceptable performance to an
excellent performance, it requires the third set of features
which are computationally demanding. Our cascade evalu-
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Figure 2: Cascade of classifiers for nodule detection

ate these features in the last stage (C3) for the candidates
that have survived from the second stage. Bear in mind that
each stage can take a single set of features or treat compu-
tationally expensive features as an addition to the feature
set which is already being used. Our system uses the accu-
mulated set of features.

4.1 Utilizing asymmetric loss function at early
stages

In a cascade, computation time and detection rate of the
early stages are critically important to overall performance
of the final system. As emphasized already in previous sec-
tions, any nodules missed at the first stage can not be re-
covered later by the system. Detection sensitivity needs
to be extremely high, and often requires to be 100%. In
most cascade classification methods, a reasonable classifier
is trained at this stage and then the decision threshold is
adjusted (manually or in a greedy fashion) to minimize the
false negatives. We propose a more principled formulation
that guarantees a 100% detection rate as well as optimizes
the best possible false positive rate at 100% detection rate.

Denote {xi, yi}, i = 1, · · · , ` as our candidate set gener-
ated by the CG algorithm. We use X to denote the fea-
ture matrix where each row represents a candidate feature
vector x and each column specifies a feature, and use i to
index the rows (or candidates) and j to index the various
features. Notice that the feature vector x realizes different
image features at different stages. Without loss of general-
ity, we assume that the classification stage receives `+ pos-
itive candidates and `− non-nodule candidates, X contains
d features, and C+ and C− contain, respectively, the sets of
indices of positive sample and negative sample.

Our linear program formulation at each stage seeks an
optimal hyperplane classifier by minimizing a weighted sum
of the empirical error measure and the regularization fac-
tor. The classification error measure approximated via the

hinge loss is generally defined by
P

ξi

`
. To deal with the

unbalanced problem, we define the error measure as a con-

vex combination of the false negative rate and false positive
rate, i.e.,

µ

`+

X

i∈C+

ξi +
1 − µ

`−

X

i∈C−

ξi (1)

where 0 ≤ µ ≤ 1 is a tuning parameter. The asymmetric
cascade classifier can be achieved by choosing an appropri-
ate value of µ close enough to 1. However, this does not
guarantee a 100% detection rate at the first stage which is
desired for our design. An extreme case of the asymmet-
ric error measure is to give a penalty of infinity to a false
negative so that the resulting classifier preserves all nodule
candidates detected. This asymmetric error cannot be for-
mulated as a convex combination of false positive and false
negative rates, and it corresponds to imposing the constraint
P

j

Xijwj + b ≥ 0, ∀i ∈ C+.

To form a linear program, we rewrite wj = uj − vj and
require uj , vj ≥ 0. The linear program is written as the
following optimization problem with a regular `1-norm reg-
ularization:

minu,v,ξ λ
d
P

j=1

(uj + vj) + 1

`−

P

i∈C−

ξi

s.t.
P

j

Xij(uj − vj) + b ≥ 0, i ∈ C+

−
P

j

Xij(uj − vj) − b + ξi ≥ 1, i ∈ C−,

ξi ≥ 0, i ∈ C−,

uj , vj ≥ 0, j = 1, · · · , d.

(2)

where λ > 0 is the regularization parameter. Note that
|wj | = uj + vj if either uj or vj has to be 0 so

P

j
|wj |

is replaced by
P

j
(uj + vj). Solving the above linear pro-

gram yields optimal solutions to the formulation directly
with

P

j |wj | since at optimality, at least one of the two
variables uj and vj will be zero for all j = 1, · · · , d.

We now derive the dual problem for the above linear
program since the dual will play a key role in the column
generation derivation for the boosting algorithm which we
shall discuss in the next section. There are two variables
uj , vj corresponding to a feature X·j in problem (2). Cor-
respondingly the Lagrangian dual problem has two con-
straints for the feature X·j , i.e.,

P`

i=1
βiyiXij ≤ λ and

−
P`

i=1
βiyiXij ≤ λ. Combining both constraints, we have

−λ ≤
P`

i=1
βiyiXij ≤ λ. Hence the dual problem is written

as:

maxβ

P

i∈C−

βi

s.t. −λ ≤
P̀

i=1

βiyiXij ≤ λ, j = 1, · · · , d,

P̀

i=1

βiyi = 0,

0 ≤ βi ≤
1

`−
, i ∈ C−.

(3)

The two linear programs (2) and (3) guarantee that all
true positives remain to the next cascade stage. With all
nodule candidates preserved, they reduce the most possible
amount of false positives by minimizing the error 1

`−

P

i∈C−

ξi.

4.2 Incorporating computational complexity
of features

In later stages of a cascade, 100% detection rate may not
be realistic to maintain in order to attain a reasonably good



false positive rate. The convex combination error measure
(1) is thus used in the linear programs to allow the presence
of false negatives. In later stages, more and more computa-
tionally demanding features are included in the training of
classifiers. One philosophy we hold is to allow cheaper fea-
tures to do their best before resorting to expensive features,
thus leading to a computational efficiency. The weighted
`1-norm regularization is employed to form linear programs
where weighting factors γ are each determined by the com-
putational cost of the corresponding feature. Consequently,
expensive features will be selected with greater penalty in
the objective function of linear programs. The optimization
problem can be formulated as the following linear program
similarly by rewriting each wj = uj − vj :

minu,v,ξ λ
d
P

j=1

γj(uj + vj) + µ

`+

P

i∈C+

ξi + 1−µ

`−

P

i∈C−

ξi

s.t. yi

 

P

j

Xij(uj − vj) + b

!

+ ξi ≥ 1,

ξi ≥ 0, i = 1, · · · , `,

uj , vj ≥ 0, j = 1, · · · , d.

(4)
Analogous to the duality analysis for problem (2), the dual

to problem (4) can be derived and written as follows:

maxβ

P̀

i=1

βi

s.t. −λγj ≤
P̀

i=1

βiyiXij ≤ λγj , j = 1, · · · , d,

P̀

i=1

βiyi = 0,

0 ≤ βi ≤
µ

`+
, i ∈ C+,

0 ≤ βi ≤
1−µ

`−
, i ∈ C−.

(5)

Determining an appropriate weight vector γ based on the
feature computational complexity can be problem specific,
and can be an interesting topic for further research. In
our implementation, we simply normalized the computation
time in milliseconds by the Sigmoid function, so γ ranges
from 0.5 to 1.

5. FEATURE SELECTION VIA COLUMN
GENERATION BOOSTING

We describe a column generation technique in this sec-
tion. The column generation techniques have been widely
used for solving large-scale LPs or difficult integer programs
since 1950s [17], and have been introduced to the machine
learning community, i.e., the so-called LPBoost [5, 6]. But
the LPBoost procedure derived in [5, 6] does not directly
solve our formulations. Although our formulations (2) and
(4) can be optimized by any linear program solvers. The
to-be-derived boosting scheme offers an on-line and incre-
mental fashion solution, and provides as well insights into
which features play roles during the training phase, facili-
tating feature selection.

In the context of column generation, a feature X·j is
viewed as a column. During the process, features are con-
tinuously selected and classifiers are optimized based on the
selected features corresponding to the columns generated.
In the primal space, the column generation method solves
linear programs on a subset of variables w, which means
not all columns of the matrix X are generated at once and

used to construct the classifier. Columns are generated iter-
atively and added to the problem to achieve optimality. In
the dual space, a column in the primal problem corresponds
to a constraint in the dual problem. When a column is not
included in the primal, the corresponding constraint does
not appear in the dual. If a constraint absent from the dual
problem is violated by the solution to the restricted prob-
lem, this constraint (a cutting plane) needs to be included in
the dual problem to further restrict the dual feasible region.
Thus these techniques are also referred to as cutting plane
methods [3].

The variables wj are then partitioned into two sets, the
working set W used to build the model and the remaining
set denoted as N that is eliminated from the model as the
corresponding columns are not generated. Each generation
step optimizes a subproblem over the working set W of vari-
ables and then selects a column from N to add to W . At
each iteration, wj (i.e., uj , vj) in N can be interpreted as
wj = 0, or accordingly, uj , vj = 0. Hence once a solu-
tion αW = uW − vW to the restricted problem is obtained,
α̂ = (αW αN = 0) is feasible to the master linear program
(4). The following statement examines when an optimal
solution for the master problem is obtained in the column
generation procedure.

Remark 1 (Optimality of Column Generation).

Let (û, v̂, ξ̂, β̂) be the primal-dual solution to the restricted
version of problem (4) with variable b always included in W .
The solution is optimal to (4) if and only if for all j ∈ N ,
˛

˛

˛

P

i β̂iyiXij

˛

˛

˛ ≤ λγj.

To show the optimality is achieved, we need to confirm pri-
mal feasibility, dual feasibility and the equality of primal
and dual objectives. Recall how we define û = (uW uN = 0)

and v̂ = (vW vN = 0), so (û, v̂, ξ̂) is feasible for LP (4).
Since the solution is optimal to the restricted problems, the
primal objective is equal to the dual objective. Now the
key issue to evaluate is the dual feasibility. Since β̂ is opti-
mal for the restricted problem, it satisfies all constraints of
the restricted dual. Hence the dual feasibility is validated

if
˛

˛

˛

P

i
β̂iyiXij

˛

˛

˛
≤ λγj , j ∈ N . Following the same line of

proof, we can show a similar optimality condition for linear
program (2).

Any column that violates dual feasibility can be added.
A common heuristic is to choose the column X·j that max-

imizes 1

γj

˛

˛

˛

P

i β̂iyiXij

˛

˛

˛ over all j ∈ N . In other words, the

column X·j that solves

τ = max
j∈N

1

γj

˛

˛

˛

˛

˛

X

i

β̂iyiXij

˛

˛

˛

˛

˛

(6)

will be included in the restricted problem. Compared with
original LPBoost in [5], our method encloses negations of
weak models X·j in the hypothesis set. We summarize the
column generation steps in Algorithm 1 where e is a vector
of ones of appropriate dimension corresponding to the bias
term b.

Algorithm 1. Column generation for LP (4)
1. Initialize the first column X0 = e,

specify the tolerance tol

2. For t = 1 to T , do



3. Solve problem (4) with Xt−1,
obtain solution (ut,vt, ξt, βt)

4. Solve problem (6) to obtain τ ,
and let z be the solution

5. If τ ≤ λ + tol, optimal, break from loop,
otherwise, Xt = [Xt−1 z], continue

6. End of loop
7. ŵ = ut − vt.

Similarly, column generation for linear program (2) can
be derived and is depicted in Algorithm 2.

Algorithm 2. Column generation for LP (2)
1. Initialize the first column X0 = e,

specify the tolerance tol

2. For t = 1 to T , do
3. Solve problem (2) with Xt−1,

obtain solution (ut,vt, ξt, βt)
4. Solve problem

τ = max
j∈N

˛

˛

˛

˛

˛

X

i

β̂iyiXij

˛

˛

˛

˛

˛

to obtain τ ,
and let z be the solution

5. If τ ≤ λ + tol, optimal, break from loop,
otherwise, Xt = [Xt−1 z], continue

6. End of loop
7. ŵ = ut − vt.

6. COMPUTATIONAL RESULTS
We validate the cascade linear program (LP) classifica-

tion algorithm with respect to its generalization performance
and computational efficiency. We compared our cascade LP
strategy to a single stage 1-norm SVM model constructed us-
ing all features, and the commonly-used cascade AdaBoost.
We also compared our approach to a greedy search algo-
rithm [26] based on linear discriminant analysis (LDA) in
the most recent lung nodule detection system.

6.1 Data and experimental settings
A prototype version of our system (not commercially avail-

able) was applied on a proprietary de-identified patient data
set. The dataset consisted of 176 high-resolution CT images
that were randomly partitioned into two groups: a training
set of 90 volumes and a test set of 86 volumes. In total, 129
nodules were identified and labeled by radiologists, among
which 81 appeared in the training set and 48 in the test set.
The training set was then used to optimize the classification
parameters, and construct the final classifier which was then
tested on the independent test set of 86 volumes.

The candidate generation algorithm was independently
applied to the training and test sets, achieving 98.8% de-
tection rate on the training set at 121 FPs per volume and
93.6% detection rate on the test set at 161 FPs per vol-
ume, resulting in totally 11056 and 13985 candidates in the
respective training and test sets. There can exist multiple
candidates pointing to one nodule, so 131 and 81 candi-
dates were labeled as positive in the training set and test
set, respectively. A total of 86 numerical image features
were designed (10 of which came from the CG step with
no extra computational burden), and used to train the first
classifier. The feature set 2 contained size, shape, intensity,
template matching features which required on average 15.6

millisec. cpu time per feature per candidate, and was used
together with the CG features to learn the second classifier.
The multi-scale statistical features depicting sophisticated
higher-order properties of nodules comprised the feature set
3 and were used in the final classifier construction together
with all other features. These features each on average need
2010 millisec. cpu time for a candidate.

6.2 Generalization performance
During the training phase, the tuning parameters in the

greedy LDA approach and the parameters (λ, µ) in our cas-
cade LP approach as well as 1-norm SVM were optimized
according to the leave-one-patient-out (LOPO) cross vali-
dation performance [8]. The LOPO procedure is, in spirit,
similar to leave-one-out. The parameter λ was chosen from
choices of {0.01, 0.1, 1, 10, 100, 1000}, and µ was chosen
from a range [0.6, 0.98] with a stepsize 0.02. Parameters at
each stage of our cascade LP were tuned to achieve the best
LOPO performance. Notice that the first stage of cascade
LP does not require µ. The single 1-norm SVM was tuned
to attain the best overall LOPO performance. The choice
of λ = 1 turned out to be the best option for both cas-
cade LP and 1-norm SVM on the training data, and µ was
selected as 0.96 for 1-norm SVM, and 0.98 for the second
and third stages in our cascade. Figure 3 depicts the 3 Re-
ceiver Operator Characteristic (ROC) curves of the LOPO
performance for classifiers, respectively, obtained by the 3
algorithms. Cascade LP outpermed the single 1-norm SVM,
and dominated greedy LDA at the lower end of false positive
rates.

In the experiments with cascade AdaBoost, we largely fol-
lowed the procedure described in [24]1. Each stage classifier
was learned using all available features and after a classifier
was obtained, the decision threshold was adjusted to mini-
mize false negatives since AdaBoost itself aimed to optimize
overall classification accuracy whereas the cascade design
requires high detection rates. Cascade AdaBoost does not
have hyper-parameters to tune. Instead it requires a vali-
dation set. The performance on the validation set is used
to determine when to terminate the boosting steps at each
stage. Hence other than using LOPO process as used by
other approaches, we randomly sampled 30% of the train-
ing patient cases and used them as a validation set. Cas-
cade AdaBoost also requires a pre-specified target accuracy
which we chose as the minimum acceptable detection rate
of 88% at 4 false positives per volume. In our experiment,
it reached the target accuracy on the validation set at the
4th stage, so 4 classifiers were constructed in the cascade.
The overall training and validation performance is reported
in Figure 5. We also tried to only include CG features in
the first stage of AdaBoost cascade, but it failed reducing
a reasonable amount of non-nodule candidates with a full
detection rate (i.e., the CG sensitivity).

The four classifiers obtained respectively by cascade LP,
1-norm SVM, greedy LDA and cascade AdaBoost were eval-
uated on the unseen test set. The performance is summa-
rized in Figure 4. We see cascade LP and cascade AdaBoost
generalize equally well. Greedy LDA seems to have overfit
as LOPO and test ROC curves have a large gap. The two

1The AdaBoost approach [11] used in [24] has been imple-
mented by other sources. A MatLab version of the imple-
mentation was downloaded from MatLab Statistics web page
http://www.mathtools.net/MATLAB/Statistics/
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Figure 3: ROC curves show the leave-one-patient-
out performance for 3 classifiers on the training
data.

cascade approaches outpermed the other two methods sig-
nificantly with a t-test p-value close to 0.

6.3 Selected features and speed
The numbers of features selected from different feature

sets are listed in Table 2 together with the numbers of can-
didates remained after corresponding stages or classifiers.
Features listed at the columns corresponding to later clas-
sifiers are the features selected different from those in pre-
vious stages. Notice that the computational cost mainly
came from feature evaluation since all the four algorithms
adopted linear classifiers which cost ignorable time in com-
parison with the time for feature calculation.

Clearly, cascade LP demonstrates computational efficiency.
Its 3 stages together selected 18 features, and only 2 of
them were from feature set 3 which were evaluated only for
393 candidates in the last stage. The final system achieved
87.5% versus 0.7 FP rate. The first stage significantly re-
duced the false positive rate from 161 to 34.1. Only 3011
candidates left for further evaluation of image features. The
1-norm SVM single model and greedy LDA approach both
selected more features from set 3 and they computed these
features for all the candidates, resulting in momentously
longer running time (14 ∗ 2010 + 12 ∗ 15.6 = 28327 millisec.
per candidate and totally 3.9×105 sec. on all candidates for
“SVM”, and 6 ∗ 2010 + 7 ∗ 15.6 = 12169 millisec. per can-
didate, and totally 1.7× 105 sec. for “LDA”) in comparison
with a total execution time of 3011∗8∗15.6+393∗(5∗15.6+
2 ∗ 2010) millisec., and approximately 1986 sec. that the
cascaded classifier achieved. Although cascade AdaBoost
achieved similar generalization performance, it required a
significant greater execution time of 9.7 × 104 sec.

7. CONCLUSIONS
We have proposed a novel cascade classification approach

based on sparse linear programs for computer aided detec-
tion systems. Our approach can handle very large training
sets and produce an excellent generalization. In addition, it
offers the advantage of producing highly sparse hyperplane
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Figure 4: ROC curves of 4 classifiers on the test
data.
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Figure 5: ROC curves of cascade AdaBoost classifier
on the validation set and training set.

classifiers. The proposed cascade algorithm is relatively easy
to implement since at each stage of the algorithm only a
linear program has to be solved. In general, any linear pro-
gram solver can be used to optimize the related linear pro-
grams. We particularly presented an incremental solver via
column generation optimization. The proposed approach
prioritizes features with low computational cost to be at
the top of the cascade and incorporates the feature compu-
tational complexity into the selection of features, resulting
into fast CAD systems. Comparisons to other existing lung
CAD algorithms on a real dataset consisting of 176 high-
resolution CT images illustrate the superiority of the new
approach.

Our current approach optimizes hyper-parameters (λ, µ)
at each stage to achieve the best performance of that stage.
A possible extension of this work is to develop automatic op-
timization of hyper parameters of individual stages towards
the final system performance. Theoretical examination of



Cascade Sparse LP `1-norm SVM Greedy LDA Cascade AdaBoost
C1 C2 C3 C1 C2 C3 C4

Feature set 1 2 1 0 7 3 3 0 2 2
Feature set 2 − 8 5 12 7 3 2 3 4
Feature set 3 − − 2 14 6 2 4 1 2
Number of
candidates 3011 393 102 231 298 4384 1452 754 159
Detection
percentage 93.6 89.1 87.5 87.5 83.3 93.6 89.6 88.0 87.5

False positives
per volume 34.1 3.5 0.7 2.2 3.0 50 16 7.9 1

Table 2: Selected features and performance summary of different classifiers

the system robustness is also an important extension for
further research.
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