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ABSTRACT
We present LungCAD, a computer aided diagnosis (CAD)
system that employs a classification algorithm for detecting
solid pulmonary nodules from CT thorax studies. We briefly
describe some of the machine learning techniques developed
to overcome the real world challenges in this medical do-
main. The most significant hurdle in transitioning from a
machine learning research prototype that performs well on
an in-house dataset into a clinically deployable system, is
the requirement that the CAD system be tested in a clini-
cal trial. We describe the clinical trial in which LungCAD
was tested: a large scale multi-reader, multi-case (MRMC)
retrospective observational study to evaluate the effect of
CAD in clinical practice for detecting solid pulmonary nod-
ules from CT thorax studies. The clinical trial demonstrates
that every radiologist that participated in the trial had a sig-
nificantly greater accuracy with LungCAD, both for detect-
ing nodules and identifying potentially actionable nodules;
this, along with other findings from the trial, has resulted
in FDA approval for LungCAD in late 2006.

Categories and Subject Descriptors
I.5.m [Pattern Recognition]: Miscellaneous

General Terms
Algorithms
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1. INTRODUCTION
Lung cancer is the most commonly diagnosed cancer world-

wide, accounting for 1.2 million new cases annually. Lung
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cancer is an exceptionally deadly disease: 6 out of 10 people
will die within one year of being diagnosed. The expected
5-year survival rate for all patients with a diagnosis of lung
cancer is only 15%, compared to 65% for colon, 89% for
breast and 99.9% for prostate cancer. In the United States,
lung cancer is the leading cause of cancer death for both men
and women, causing more deaths than the next three most
common cancers combined, and costs $9.6 Billion to treat
annually. However, lung cancer prognosis varies greatly de-
pending on how early the disease is diagnosed; as with all
cancers, early detection provides the best prognosis. At one
extreme are the patients diagnosed with metastatic tumors
(that have spread far from the lung), for whom the 5-year
survival rate is just 2%. On the other hand, when diagnosed
at an early stage, when the disease is still localized within
the lung, the 5-year survival rate is 49%, and many treat-
ment options (surgery, radiotherapy, chemotherapy) are vi-
able. Today, only 24% of lung cancer cases are diagnosed at
an early stage. [1, 10].

The recent development of multidetector computed to-
mography (MDCT) scanners has made it feasible to detect
lung cancer at very early stages in priciple. Despite these ad-
vances in technology, many potentially clinically significant
lesions still remain undetected [13]. One contributing factor
is the explosion of generated data: The state-of-the-art 64-
slice dual-source CT acquires up to 3,687 axial images in 30
seconds for each patient (each image must then be carefully
examined by a radiologist). There is a growing consensus
among clinical experts that the use of computer-aided di-
agnosis (CAD) software when used as a second reader (i.e.,
in conjunction with the radiologist) not only offers the po-
tential to improve the detection accuracy of a radiologist,
but also to reduce mistakes related to misinterpretation [2,
11]. In order for a CAD system to be used in clinical prac-
tice in the United States, it must first receive approval from
the the Food and Drug Administration (FDA). All CAD
systems must go through a rigorous clinical trial to receive
approval (in much the same way as a new drug). A handful
of CAD systems have received approval for detecting breast
cancer lesions in the past 8 years. To be approved CAD sys-
tems must show satisfactory performance in two areas. The
principal value of CAD is determined not by its stand-alone
performance, but rather by carefully measuring the incre-
mental value of using Computer-Aided Diagnosis in normal
clinical practice with the radiologist in-the-loop. Secondly,
CAD systems must not have a negative impact on patient



management (for instance, false positives which cause the
radiologist to recommend unnecessary, and potentially dan-
gerous, follow-ups). Additionally, designing a trial for lung
cancer detection is considerably more challenging than for
breast cancer. One factor is the relative difficulty in obtain-
ing ground truth (correct labeling) for lung cancer related
lesions. Whereas, in breast cancer virtually all suspicious
lesions are routinely biopsied (providing definitive histolog-
ical ground truth), a lung biopsy is a dangerous procedure,
with a 2% risk of serious complications (including death);
this makes obtaining definitive ground truth infeasible, par-
ticularly for patients being evaluated for early signs of lung
cancer.

Section 2 describes some of the machine learning chal-
lenges involved in learning a classifier for detecting lung
cancer. We review some of our previous solutions. Section 3
describes the clinical trial design for our LungCAD system,
which includes a fairly complex mechanism for determin-
ing ground truth and measuring incremental improvement.
Section 4 summarizes the experimental results of the clin-
ical trial that has resulted in granting clinical approval for
LungCAD. We conclude in Section 5 with some discussion
about CAD in general and future challenges.

2. MACHINE LEARNING CHALLENGES
LungCAD system consists of 5 stages: 1. lung segmenta-

tion to identify the lung area within the chest; 2. candidate
generation which identifies suspicious unhealthy candidate
regions of interest (ROI) from a medical image; 3. feature
extraction that computes descriptive features for each can-
didate so that each candidate is represented by a vector x
of numerical values or attributes [15]; 4. classification that
differentiates candidates based on candidate feature vectors;
5. visual presentation of CAD findings to the radiologist in
order for him to accept or reject the CAD findings. In this
section, we focus on learning the classifier in Step 4.

Automatic learning technologies greatly reduce the time
required to develop algorithms that act as “second readers”
besides improving the diagnostic accuracy. Many standard
algorithms (such as support vector machines (SVM), back-
propagation neural nets, kernel Fisher discriminants) have
been used to learn classifiers for detecting malignant struc-
tures [2, 11]. However, these general-purpose learning meth-
ods either make implicit assumptions that are commonly
violated in CAD applications, or cannot effectively address
the difficulties arisen when learning a CAD system.

Non-IID Data Traditional learning methods almost uni-
versally assume that the training samples are independently
drawn from an identical albeit unobservable underlying dis-
tribution (the IID assumption), which is often not the case
in CAD systems. Due to spatial adjacency of the regions
identified by a candidate generator, both the features and
the class labels of several adjacent candidates are highly cor-
related. This is true both in the training set and in the test-
ing data. A batch-classification algorithm in [14] derives a
probabilistic classification model by specifying a priori guess
on the candidate labels with a covariance matrix Σ that en-
codes the spatial-proximity-based correlations within an im-
age. Multiple-instance learning methods [9, 3] optimize the
classifier design by taking into account the fact that multi-
ple candidates can exist to associate with a single malignant
structure. Random effects may exist in patient images from
the same hospital, or exist in different candidates extracted

from the same patient. The approach in [7] proposes to use
additional mix-effect parameters, each for one hospital, or
for one patient. All these algorithms improve the classifica-
tion accuracy significantly.

Unbalanced Data and Speed In the candidate identi-
fication stage, high sensitivity (ideally close to 100%) is es-
sential, because any cancers missed at this stage can never
be found by the CAD system, which potentially produces
many false positives (less than 1% of the candidates are pos-
itive), making the classification problem highly unbalanced.
Moreover, a CAD system has to satisfy real-time require-
ments that it finishes running during the radiologists first
read. These issues were addressed by employing effective
cascaded classification frameworks as shown in [4, 5]. The
method in [4] investigates a cascaded classification approach
that solves a sequence of linear programs, each construct-
ing a sparse hyperplane (linear) classifier. It incorporates
the computational complexity of various features into the
cascade design for time efficiency. A more recent work [5]
does not follow standard cascade procedure where individ-
ual classifiers are optimized towards one specific stage given
the candidates survived from early stages. Instead, it uses
a novel AND-OR cascade training strategy which optimizes
all of the classifiers in the cascade in parallel by minimiz-
ing the regularized risk of the entire system and providing
implicit mutual feedback to individual classifiers to adjust
parameter design. These cascaded approaches have been
compared with the well-known cascade AdaBoost, and are
superior with many additional advantages.

Irrelevant and Redundant Features When search-
ing for descriptive features, researchers often deploy a large
amount of experimental image features to describe the iden-
tified candidates, which consequently introduces irrelevant
and redundant features. Feature selection is essential in
CAD systems. A previous LungCAD system [15] utilizes
a greedy forward selection approach to select one feature at
one time from the feature set according to certain discrim-
inant score ranking. Recent research has focused more on
general sparsity treatments to construct sparse estimates of
classifier parameters, such as in [6, 4]. These models control
the classifier complexity by sparse-favoring regularization
terms, such as the `1-norm regularization ||w||1 =

∑ |wi|
for a linear classifier of the form sign(wT x).

3. LUNGCAD TRIAL DESIGN
The clinical trial design is illustrated in Figure 2. The

principal challenges we faced in designing the clinical trial
are described below:
Measure incremental improvement: The principal value
of CAD is determined not by its stand-alone performance,
but rather by carefully measuring the incremental value of
Computer-Aided Diagnosis in normal clinical practice; as re-
flected in incremental improvement in accuracy as objective
evaluation by the radiologist.
Patient management impact: It is not enough that Lung-
CAD improves the detection of lung cancer. It must result
in a net improvement in patient management since unnec-
essary false positive findings lead to unnecessary follow-ups.
Ground truth: As discussed earlier, due to the unavail-
ability of lung biopsies , an alternative method had to be
devised for determining ground truth.

We retrospectively collected MDCT studies from 200 con-
secutive patients (mean age: 61.5y, 56% male) who had been
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Figure 1: A multicenter, Multi-Reader Multi-Case (MRMC) retrospective clinical study to assess the incre-
mental value of LungCAD in the identification of pulmonary nodules on thoracic CT examinations (CRO=
contract research organization, GR=general radiologist, CR=chest radiologist).

referred for evaluation of potential pulmonary nodules from
4 clinical sites: NYU, Univ. of Pennsylvania, Univ. of Mary-
land and the Cleveland Clinic; These studies were processed
by an independent Contract Research Organization (CRO),
BioImaging, Inc, Yardley PA. 4 studies were excluded due
to respiratory or cardiac motion, or image artifacts.

All 196 studies were initially evaluated by 17 board-certified
general radiologists (GR) in active community practice, each
using a predetermined randomized order, to detect poten-
tial nodules of diameter ≥ 3mm. The GR’s were required
to score potential nodules on a “nodule” scale, from 1 (“un-
likely”) to 10 (“definite”). GR’s were also required to deter-
mine if each nodule could be identified as “actionable” again
on a 10 point scale (0 − 2 denoting “no followup needed”,
3−6 “indeterminate”, > 6 “definite need for followup”). To
illustrate, a benign calcified granuloma would be represented
as true (10), non-actionable (< 3) nodule.

Then CAD-identified potential nodules were presented to
the GR’s (after eliminating nodules that had already been
found by the GR), and were assessed using the same two
scales. These blinded, independent reviews were re-sent to
the CRO, where findings were examined by an independent
fellowship trained chest radiologist to consolidate any nod-
ules independently found by more than one GR.

The results were then reviewed separately by 5 fellowship-
trained expert chest radiologists (CR) randomly chosen from
a panel of 10, each interpreting 100 studies. Expert CR’s
were required to evaluate each nodule separately without
knowledge of whether these had been identified by radiol-
ogists or by CAD, and to assess them on both a “nodule”
and “actionability” binary decision and its rating. Further,
the nodule size and lung lobe in which each nodule was seen
was also recorded. For nodule candidates to be considered
true nodules (ground truth) a minimum consensus of 3 out
of 5 experts was necessary.

A note on sample size: Based on pilot studies, we assumed

that at least 60% of patients would have a nodule in an aver-
age of 3 lobes, that the CR’s would have average ROC area
without CAD of 0.80 with moderate inter-reader variability,
and that CAD would improve the ROC area by 0.025. To
yield 80% power in the trial, we estimated that 17 readers
and 200 patients would suffice.

4. CLINICAL TRIAL RESULTS
Ground truth was defined as having at least 3 of 5 expert

chest radiologists identifying at least one nodule in a lobe
(affected lobe); otherwise, lobes were labeled normal. Sim-
ilarly, an actionable lobe was one in which 3 or more CR’s
identified one or more actionable nodules.

A total of 1320 (≥ 3mm) nodules were identified in 196
patients of which 863 (65.4%) were interpreted by expert
CR’s as actionable. (Unless specified otherwise, from here
on all nodules will be assumed to be in the clinically rel-
evant range of ≥ 3mm in diameter.) 181 patients had at
least 1 nodule (prevalence rate of 92.3%): only 15 patients
were interpreted as normal (all lobes were normal). 1320
nodules were detected in 525 (53.6%) of 980 (= 196×5) po-
tentially evaluable lobes of which 397 (40.5%) had at least
one actionable nodules.

The primary measurement for the diagnostic accuracy of
the 17 general radiologists (GR), both with and without
CAD, for detecting solid pulmonary nodules, is the area
under ROC curve, using lobes as the unit of analysis. A
nonparametric estimator was used to adjust for the clustered
data as described in [12]. Sensitivity was defined as the
probability that a GR identified at least one nodule in an
affected lobe; specificity was defined as the probability that a
GR did not identify a nodule in a normal lobe (i.e., correctly
identified it as nodule-free).

Figure 2 shows that the 17 GR’s accuracy for identify-
ing nodules ranged from 0.704 to 0.853 without CAD to
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Figure 2: Area under receiver operating curve with
and without CAD, for actionable solid nodules.

Figure 3: Average nonparametric ROC curve of all
17 readers for detecting nodules without and with
CAD.

0.738 to 0.883 with CAD. The most important result was
that every one of the 17 GR’s had statistically significantly
greater accuracy with CAD for detecting lung nodules. As-
sessed collectively, the GR’s mean accuracies were 0.780 and
0.828, without and with CAD, respectively (p < 0.001; 95%
CI of 0.036 to 0.059), as shown in Figure 3.

Similar results were achieved for the clinically significant
actionable nodules: the 17 GR’s accuracy for ranged from
0.699 to 0.854 without CAD to 0.760 to 0.880 with CAD.
Again, every one of the 17 GR’s had statistically significantly
greater accuracy with CAD for identifying actionable lung
nodules.We stress these findings because most CAD trials
demonstrate a statistically significant increase for the read-
ers considered as a group, with only some of the readers in-
dividually having statistically significantly greater accuracy.
These results are particularly significant because every GR
showed statistically significant improvement for both tasks -
detecting nodules, and identifying actionable nodules. Fig-

Figure 4: Average nonparametric ROC curve of all
17 readers without and with CAD for identifying
actionable nodules.

ure 4 shows the ROC performance for all 17 readers without
and with CAD for identifying actionable nodules.

We varied the definition of expert truth by changing the
number of expert confirmations required for acceptance from
any 1 CR to 2, 3, 4, 5 expert CR’s for both nodules and ac-
tionable nodules. With one exception, every one of the 17
GR’s showed statistically significant improvement both for
detection and identification of actionable nodules with CAD.
(The sole exception was the case that all 5 expert CR’s must
agree about an actionable nodule - which tended to happen
for fewer and more obvious actionable nodules, thus mak-
ing it harder to shown statistically significant improvement,
but the trend was towards improvement with CAD.) In an-
other analysis, statistical improvement in GR’s accuracy was
achieved for all nodules regardless of size (≥ 3mm).

To determine the patient management impact we esti-
mated the number of patients, where CAD lead to a positive
management change: i.e., a recommendation for additional
imaging studies and/or biopsy in an actionable lobe which
was missed without CAD); and estimated the number of pa-
tients where CAD lead to a negative management change:
a recommendation for additional studies and/or biopsy in
a normal lobe which was correctly diagnosed without CAD.
As this is a patient-level analysis, patients with both positive
and negative management changes were labelled as a posi-
tive change, under the assumption that detecting a missed
nodule is more beneficial to a patient than the risk of an
unnecessary follow-up (typically another imaging exam).

The average number of patients with a positive manage-
ment change resulting from using CAD was 24.8 (averaged
across the CR’s), meaning that 7.9 patients (= 196/24.8)
must be evaluated for a positive management change, on av-
erage. On the other hand, 12 patients had negative manage-
ment changes (averages across the 17 CR’s), meaning that
16.3 patients must be evaluated with CAD for a negative
management change to result. As the positive management
changes exceeded the negative management changes on av-
erage, this was sufficient, even without considering that on



average positive management changes are more beneficial
than negative managment changes are harmful.

Additional details on the multi-reader, multi-case (MRMC)
statistical methodology used, are provided in our submis-
sion and in [16]. The LungCAD clinical trial summary of
safety and effectiveness [8] (which is available on the FDA’s
web site) contains many more results and analyses, includ-
ing: patient-level analysis of GR’s increase in accuracy with
CAD, bootstrap sampling to estimate variability of expert
CR’s.

5. DISCUSSION
To summarize our clinical results, CAD is an effective sec-

ond reader, both for detecting nodules and for identifying
potentially actionable nodules. The false positive rate is
acceptably low given the increased rate of positive manage-
ment changes. These findings have resulted in LungCAD
being granted clinical approval by the FDA for detecting
solid pulmonary nodules from CT thorax studies. Although
some debate remains about the precise value of screening
(for breast cancer, and now for lung cancer), all experts
agree that early detection is key for improvement of can-
cer cure rates. Many efforts are ongoing to pave the way for
MDCT to be used for identifying lung cancer at early stages.
However, much remains to be done in this area. First, our
study focused on solid pulmonary nodules; in high risk pa-
tients, part-solid and ground-glass nodules (GGN) are also
seen on chest MDCTs. GGNs are defined as nodules with
hazy attenuation without obscuration of underlying vascular
markings, and will necessitate the development of improved
machine learning and image processing methods to detect.

Our focus in this study been to detect pulmonary nodules.
However, the eventual goal is not just to detect nodules, or
even to detect actionable nodules, but to detect lung cancer
in early stages, and thereby, intervene and treat the patient
and improve survival. Therefore, CAD needs to move in the
next few years, from detecting nodules to classifying nod-
ules as benign or malignant. A first step could be to report
the probability of malignancy, although the clinical and reg-
ulatory challenges to design a trial to prove the efficacy of
such a system would be daunting (larger sample size is not
the answer - our study took nearly two years to complete -
and the FDA is already taking steps to reduce the regula-
tory burden, while ensuring the safety and efficacy of CAD).
An even more intriguing notion would be to identify lesions
that are currently benign, but would have a high probability
of turning malignant - pre-cancerous lesions - to move from
a reactive paradigm of treating cancer to a more proactive
paradigm of prevention.

We have described some machine learning challenges in
the lung CAD domain and reviewed some of our previous
machine learning work. Our methods are not specific to lung
cancer only, and have shown equivalent or superior perfor-
mance on other data sets. For instance, the PECAD (Pul-
monary Embolism) problem (that formed the basis of the
2006 KDDCup) is very different in its evaluation criteria;
treatment of PE is systemic (as opposed to localized in lung
cancer) and the goal is to identify patients as having one
of more PE’s or being PE-free. In the ColonCAD problem,
the goal is to detect all pre-cancerous polyps; the cost of a
false positive is not very high, and the treatment of choice is
to remove all potentially suspicious lesions. Yet, despite the
very different optimization criteria and the vastly different

medical domain knowledge, many of these machine learning
methods described here, also translate to these and other
CAD problems.
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