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Abstract

3D object detection and importance regression/ranking
are at the core for semantically interpreting 3D medical im-
ages of computer aided diagnosis (CAD). In this paper, we
propose effective image segmentation features and a novel
multiple instance regression method for solving the above
challenges. We perform supervised learning based seg-
mentation algorithm on numerous lesion candidates (as 3D
VOIs: Volumes Of Interest in CT images) which can be true
or false. By assessing the statistical properties in the joint
space of segmentation output (e.g., a 3D class-specific prob-
ability map or cloud), and original image appearance, 57
descriptive features in six subgroups are derived. The new
feature set shows excellent performance on effectively clas-
sifying ambiguous positive and negative VOIs, for our CAD
system of detecting colonic polyps using CT images. The
proposed regression model on our segmentation derived
features behaves as a robust object (polyp) size/importance
estimator and ranking module with high reliability, which is
critical for automatic clinical reporting and cancer staging.
Extensive evaluation is executed on a large clinical dataset
of 770 CT scans from 12 medical sites for validation, with
the best state-of-the-art results.

1. Introduction

Robust, highly sensitive 3D object (e.g., cancer tumors)
detection and its importance staging/ranking are the key
computer vision components to develop a semantically use-
ful tool for computer aided diagnosis (CAD). We propose a
stratified learning framework including (supervised) object-
specific image segmentation, segmentation feature extrac-
tion, robust object classification and importance regression
(taking into account the segmentation ambiguity and uncer-
tainty). Segmentation has been extensively explored for var-
ious medical imaging purpose [27, 15, 29, 8, 22, 11, 24], but
explicit descriptive feature extraction and analysis on statis-
tically characterizing segmentation outputs, for object clas-
sification and robust staging of cancer (as estimate of object
key attributes), has not been much studied. In this paper,

we focus on finding and analyzing polyps1, the precursors
of colon cancer, but the proposed method can be extended
to other medical imaging applications (e.g., lung nodule de-
tection), or generic object segmentation and detection tasks
in 3D range, LIDAR or spatial-temporal volumetric data.

Our algorithm use object-specific Figure-Ground seg-
mentation results (i.e., probabilistic 3D map or clouds) as
input for separately encoding or wrapping the object-image
information for classification and analysis. Explicit or im-
plicit figure-ground segmentation [18, 6, 10, 20, 22, 12]
has shown of being capable to improve object recognition
and detection problems in both computer vision and medi-
cal imaging. Particularly, the seminal work [10] develops a
seamlessly interleaved segmentation and detection process
to iteratively refine both segmentation and detection in a
loop. [22] follows the similar “interleaved-looping” strat-
egy and apply to lung nodule detection in 3D CT images.
In our work, however, segmentation process and segmen-
tation feature extraction, detection and regression steps are
separate, consecutive building blocks in a flow-sequence.

Giving a per-voxel soft foreground/background segmen-
tation map (as each pixel with the object-class posterior
probability [0, 1] assigned by the segmentor; close to 1
means more foreground class) and the original image, we
try to classify if the segmented foreground is the object
to be detected, in the joint image and segmentation prob-
ability space. As shown in Fig. 1, our algorithmic flow
is a straightforward process, with no loops needed. In
other words, the proposed segmentation feature extraction,
classification and regression techniques are not fully de-
pendent on a specific segmentation algorithm tuned for a
specific object class (different from interleaved approaches
[10, 20, 22]). The segmentation process and output prob-
ability map must be sensitive to different object classes
(e.g., colon polyp, lung nodule, emphysema, or other dis-
eases/tumors) or sub-categories (e.g., sessile, pedunculated,

1Colon cancer is the second leading cause of cancer death in western
countries, but it is one of the most preventable of cancers because doctors
can identify and remove its precursor known as a polyp. 3D Computed
Tomography Colonography (CTC) has emerged as a powerful screening
tool for polyp detection and the field of computer aided detection (CAD)
of colonic polyps in CTC is highly intensive [2].
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Figure 1. Flow-chart of the staged object/polyp segmentation, clas-
sification/detection, and size/importance regression process.

flat polyps; and solid, partial solid and GGO nodules),
while our method is not, but applicable, as a more general
segmentation+appearance feature extraction and classifica-
tion/regression process.

Polyp segmentation in CT images is defined as identify-
ing and isolating polyp voxels from non-polyp contexts (air,
soft-tissue, colonic wall and tagging material), using a 3D
mask in volumetric space, or a closed 1D curve boundary
on 3D colonic surface. It can be heuristic, non-probabilistic
[15, 29, 8, 24], or data-driven learned and probabilistic
[12]. In [12], a compositional polyp segmentation frame-
work is proposed (locating possible polyp tips; finding in-
side/outside polyp surface voxels; and optimizing polyp
boundaries), by supervisedly learning the medical experts’
knowledge as the annotated polyp boundary curves in a
database. It also generates per-voxel polyp class probability
for each segmented polyp voxel. Examples of the boundary
based segmentation and probability maps on polyps with
different shape morphologies, and under various surface
contexts, are shown in Fig. 2. We choose and implement
[12] as our object/polyp segmentor, due to its good segmen-
tation accuracy, generality over polyp variations, and in-
trinsic probability output which represents the segmentation
uncertainty and ambiguity. The non-probabilistic anatomi-
cal object segmentation approaches in medical imaging can
give heuristically defined, hard segmentation sizes for ana-
lyzed lesions. We exploit 57 segmentation descriptive fea-
tures in six groups of cues (in the joint probability and im-
age space): polyp shapeness and dimension statistics, seg-
mentation posterior probability statistics, Multi-resolution
segmentation boundary smoothness, spatially-banded prob-
ability and area statistics, 3D Ellipsoid based shape descrip-
tors, and multiscale intensity histogram features. The pro-
posed feature extraction approach from segments of proba-
bility and image appearance is relevant with generic feature
design [9, 19, 14] for other computer vision problems.

Our framework does not require perfectly accurate
object-level segmentation which can be very challenging.
Since the ultimate goal is for object detection (i.e., detecting
a cancer VOI and staging), not on improving segmentation
accuracy, we focus on deriving and fusing informative or

discriminative statistics as features, drawn from a noisy seg-
mentation output. Though [12] is the state-of-the-art polyp
segmentor, spurious polyp-class probability responses are
still visible in some polyp VOIs, in Fig. 2. Further-
more, it performance on negative VOIs (non-polyp) is un-
controlled because supervised segmentation classifiers can
not be trained from negative populations (There is no an-
notation or definition on how to segment negative anatomic
structures, unless used for bootstrapping.). Thus image seg-
mentation is primarily used as a probing process to find ob-
servations on positive/negative populations, for object clas-
sifier and regressor.

On the other hand, our classifier (MILRVM: multiple in-
stance relevence vector machine) and regressor (section 3)
can be trained to learn and handle the bottom-up segmen-
tation/feature noise or bias, in a hierarchical learning sense.
For example, not directly (semantically) relevant features
(e.g., segmentation boundary smoothness) can be integrated
to improve the estimation of object size (for staging) in re-
gression, as they may be statistically correlated. In a sim-
ilar spirit, [19, 14] use image regional features, or Gestalt
grouping features to classify edges as object or non-object
boundary classes in natural images.

Our contribution are three folds. First, we propose a set
of probabilistic segmentation (PSM) features, serving as an
intermediate-level object representation for object recogni-
tion and attribute regression purposes2. Second, we exploit
a new probabilistic ridge regression model on object (polyp)
size estimation which can handle the multiple instance set-
ting, essential for CAD problems[4]; and a soft-gating clas-
sification framework over MILRVM for polyp detection.
Third, the validity of new feature set, regression model and
gating classification architecture is demonstrated on a com-
prehensive clinical dataset of 770 CT scans, collected from
12 hospitals in US, Europe and Asia.

2. Features & Algorithm
In this section, we first briefly review the polyp segmen-

tation algorithm [12], for self-contained content. Then the
detailed derivation of 57 probabilistic segmentation (PSM)
features in six subgroups, ranging from statistics of di-
mensions, shapeness, gloabl-local probability distributions
to boundary smoothness and multiscale histogram, is pre-
sented.

2.1. Supervised Probabilistic Polyp Segmentation
VOI Proposal: To generate polyp-like candidates

(VOIs) from a 3D CT scan, various heuristics on sym-
metric, spherical or semi-spherical curvature pattern aggre-
gation [15, 29, 8, 24] can be exploited on colon surface.
Though many polyps are not spherical in a global object
shape sense, they may still have some spherical local sur-
face patches as parts, to be identified by Candidate Gen-
eration (CG) procedure. Then VOIs proposed by CG will

2Previous work mainly explore on directly observable, low-level inten-
sity, texture and curvature features [15, 29, 8, 24, 22, 25, 27] in medical
imaging.
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(a) (b) (c) (d)
Figure 2. Illustrative examples of polyp-class voxel labeling probability responses and contour boundary segmentation on 3D colonic
surface in CT images, using [12]. Polyps can have various shape morphologies and ambiguous surface/intensity contexts thus spurious
polyp-class probability responses are still visible in all above segmentation maps. (a,b,c) are 3D colon volumetric renderings where surface
voxels with higher polyp posterior probabilities are enhanced by higher intensities, and the purple and red-colored curves presents the
radiologist annotated or computer segmented polyp boundary contours, respectively. The green or blue curves are the radial axes of polar
coordinates [12]. (d) is a 2D projection view and the orange curve is the current polar coordinates axis, with two blue dots marking the
polyp boundary by segmentation algorithm. (a) a 15.0mm irregular-shaped polyp on a colon fold; (b) a 9.1mm sessile polyp on colon
wall; (c) a 7.6mm lobulated flat polyp on colon wall; (d) a 13.8mm pedunculated polyp on a colonic fold.

be inputed into the pipeline in Fig. 1. Our detection by
classification is also a rare-event cascade detection [26], as
the number of VOIs are normally two orders of magnitude
more than the true object (polyp). To achieve high sensi-
tivity on detecting positives, CG cascade produces a large
portion of negatives (> 99%, triggered by a large variety of
colonic anatomical structures resembling polyp-like shapes,
e.g., haustral folds, Ileo-Cecal Valve), which makes the ob-
ject classification task challenging. For Lung nodel CG, 3D
multiscale Gaussian and DOG (Derivatives of Gaussian) fil-
ters [22] can be used to pick round-like structures through
template matching.

A hierarchical, three-staged supervised learning archi-
tecture is employed for polyp segmentation [12] where only
true polyp VOIs are considered. First the polyp tip is es-
timated by labeling and grouping the polyp-tip probabil-
ity by scanning all surface voxels using a trained classifier.
A surface polar coordinate system is then fitted centering
the located tip as its origin and sampling the surrounding
colonic surface with a set of spatially-evenly distributed ra-
dial curves/axes. Second the polyp boundary learning is
performed through two-layered stacked learning: scanning
a small 7×7×7 cubic volumetric window centered at each
voxel on each polar axis to give its polyp-class probabil-
ity ℘,; followed by running a 1D curve parser on the se-
quence of {℘} along each ith polar axis to determine the
cutting boundary point B̂i with bi-partitioning confidence
ρi, to separate the interior portion of polyp and exterior por-
tion of non-polyp region. Third the polyp boundary contour
(1D surface curve) is formed by connecting the boundary
points according to the axis proximity of polar coordinates.

The segmented polyp voxels are represented as a set
of Ŝ{υij} = {υij} : (PC(υij) ≤ B̂i). The re-
maining polyp dimensioning process of finding three sizes
(Diameteri, i = 1, 2, 3) considering Ŝ as a volumetric
mass, can be referred from [12]. Note that [12] and our
implementation are both trained on 200 ∼ 300 clean-prep
polyps (easier for radiologists to annotate polyp segmen-

tation boundaries than tagging-prep polyps with possible
artifact-coatings). However, we apply the trained segmen-
tor on both positive and negative VOIs (as false positives
from CG process) for detection purpose, in more challeng-
ing but more clinically important and popular tagging-prep
datasets.

2.2. Probabilistic Segmentation (PSM) Features
Our probabilistic segmentation (PSM) features compute

various types of intermediate-level statistics, capturing the
polyp segmentation process uncertainty and confidence dis-
tributions in 3D space. This “descriptor of segments of
probability+appearance” aggregates on low level, per-voxel
polyp-class labeling probability map and the original object
image appearance. There is no need to set hard thresholds,
apart from previous work [15, 29, 8]. We expect that PSM
features can effectively discriminate true objects (polyps)
out of various candidates in CG. The estimated polyp di-
mensions (Diameteri, i = 1, 2, 3) [12], are denoted as
(D1, D2, D3) for conciseness. Each classified polyp voxel
of Ŝ{υij} = {υij} : (PC(υij) ≤ B̂i) is represented as a
tuple of (℘ij , Iij , (xij , yij , zij)) where ℘ij is the polyp in-
terior posterior probability, and Iij = I(xij , yij , zij) and
(xij , yij , zij) are the intensity value of υij and its 3D volu-
metric coordinates, respectively. We compute the following
six subgroups of PSM features as follows.

Statistics of polyp dimensions:(9) This group of 9 size
related features include three diameters (D1, D2, D3) [12]
and three other composed features: (D1 × D2 × D3) to
approximate the polyp volume; (D1 × D2) to describe
the area of 2D polyp base on colon surface; D3/D1 to
indicate the flatness or plateness of polyp as a simple
height-length ratio; and three nonlinearly expanded fea-
tures (D2/D1, D1/D2, D1/D3) to better fit into the linear
classifier3 MILRVM we will use. We can also incorporate
the shapeness descriptor for faint or light blob-like, light

3This is analogical to the nonlinear feature expansion/mapping in non-
linear support vector machines.
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tubular-like and faint plate-like structures in medical im-
ages [25, 22] or ballness, stickness and plateness features
[5] in Space-Time shape action modeling, as functions of
(D1, D2, D3). We leave this as future work.

Statistics of polyp probabilities {℘}:(3) This feature
group computes three overall confidence of {℘ij} on the
final segmented polyp surface Ŝ (negative VOIs may have
empty or non-empty Ŝ). ProbSum is the sum of polyp-
class posterior probabilities

∑
i,j ℘ij within segmentation

υij ∈ Ŝ{υij}, similar to the data-model fidelity energy term
in conditional random field formulation; Area is the area
of the segmented polyp surface as count(Ŝ{υij}) in voxel
counts; and ProbAvg is the averaged polyp probability or
confidence ProbSum/count(Ŝ{υij}).

Multi-resolution polyp boundary smoothness:(5)
Given the estimated polyp boundary points B̂i, i =
1, 2, ..., 120 with parsing confidence ρi in polar coordinates,
we can measure the segmentation boundary smoothness
term by

BS(inter) =

∑
‖B̂i − B̂i+inter‖ × (ρi × ρi+inter)∑

(ρi × ρi+inter)
(1)

where
∑

i=1,2,...,120−inter and inter is a parameter which
controls how far the two boundary points are compared for
smoothness. Multi-resolution smoothness is implemented
by varying inter = 2i (i = 0, 1, 2, 3, 4) exponentially. True
polyps are expected to have smoother boundaries whereas
false polyps may return irregularly-rugged boundaries. This
is inspired by Gestalt Perception Law that a good object-
level segmentation should have smooth boundaries in natu-
ral images [19, 14].

Spatially banded probability and area statistics:(15)
To capture the finer spatial granularity statistics, we divide
the segmented polyp surface intoK “circular belts”, by uni-
formly shrinking the polyp boundary contour inwards from
outskirt. It forms equal-width banded zones which share the
same geometric centroid as polyp tip and are proportional to
the segmented polyp boundary, in a similar spirit to differ-
ent contour levels on topographical height map [28] of 3D
surfaces, or log-polar spatial histogram in shape context [1].
For implementation, we compute the band number as

BN(υij) = ceil(υij/(Bi/5)) (2)

where ceil(•) is a function to return the next bigger or
equal integer of any given input, and contribute υij only
to the band zone BN(υij) for features of probability sums
{ProbSumk}, areas {Areak} and averaged probabilities
{ProbAvgk}. Without loss of generality, we set K = 5
with 0th band at the core and 4th close to boundary, grad-
ually. Band histogram pooling can also be implemented by
general point-to-center geodesic distance binning, thus in-
dependent of polar coordinates [12].

3D Ellipsoid Shape Descriptor:(9) For the 3D voxel
mass of Ŝ{υij} per VOI, we first estimate its centroid
and covariance matrix in volumetric coordinates using

(xij , yij , zij).

[x̄, ȳ, z̄] =

∑
i,j [xij , yij , zij ]× ℘ij∑

i,j ℘ij
(3)

CoMat =

∑
i,j(∆X)T (∆X)× ℘ij∑

i,j ℘ij
(4)

where ∆X = ([xij , yij , zij ] − [x̄, ȳ, z̄]) Then, Singular
Value Decomposition (SVD) is employed to calculate three
Eigen-values of CoMat: R1, R2, R3 that geometrically
maps to the three radii if fitting the mass of Ŝ as an ellip-
soid. For comparison, D1, D2, D3 are computed directly
from Ŝ. The covariance matrix CoMat models the 3D vol-
umetric spatial distribution of underlying polyp segmenta-
tion, including and beneath the colonic surface. Unique to
regular Ellipsoid fitting, ℘ij is used as a weight factor in
Eq. 3,4, to reflect per-voxel segmentation confidence or un-
certainty. Assuming R1 ≥ R2 ≥ R3, six other features
(R1×R2×R3, R1×R2, R1/R2, R2/R1, R1/R3, R3/R1)
are also computed for feature expansion purpose.

Multiscale Intensity Histogram Features:(16) By us-
ing the ℘ij-weighted covariance matrix CoMat, we search
all voxels {v} of volumetric coordinates [vx, vy, vz], within
the
√
L Mahalanobis distance, originating from the ellip-

soid centroid [x̄, ȳ, z̄], i.e.,

MHD(v) = (∆V )(CoMat)−1(∆V )T ≤ L = 8 (5)

where ∆V = [vx, vy, vz] − [x̄, ȳ, z̄]. L is set as 2, 4, 6, 8,
corresponding to fitted 3D object (polyp) ellipsoids with
multiple spatial scales, while keeping their radii aspect ra-
tios. A domain-knowledge based CT intensity binning of
[0, 350); [350, 950); [950, 1100); [1100, 212] is used to con-
struct an intensity histogram IHk, k = 0, 1, 2, 3 of voxels
for each ellipsoid, where [0, 350) stands for air, [350, 950)
for soft tissue, [950, 1100) for fat and [1100, 212] for bone
or tagging materials. Polyps are mostly composed of soft
tissues. A total of 16 features are calculated (4 bins by 4
scales) to model the intensity patterns of the object and its
multiscale contexts. Similar analogy is applicable to ana-
lyzing other tumors in CT imaging. Deriving histograms in
the image Gradient domain, such as 3D HOG (Histogram
of Oriented Gradients [3]) features, is another option, but
how to compactly parametrize 2D orientation histograms
and achieve 3D rotation-invariance for effective object de-
tection [23] is non-trivial. This is left for future work.

3. Probabilistic Multiple Instance Regression
In this section, we describe a robust regression model

on object (polyp) size estimation for cancer lesion stag-
ing4. Many probabilistic segmentation features are statis-
tically correlated in terms of dimensioning polyps, and they

4The lesion’s true size is the clinical gold-standard indicating the lesion
development, but very hard to estimate reliably. Staging critically affects
the follow-up therapy treatment plan.

1052



IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, 2011
can be robustly fused through a statistical regression model,
to estimate the polyp diameter more accurately than D1 in
[12]. Our method is developed and extended from ridge re-
gression [7], by adding a probabilistic formulation and han-
dling multiple instance learning. Suppose we have a set of
samples (xi, yi), i = 1, · · ·N , where xi is a d-dimensional
vector and yi is the size measured by radiologists. De-
note X the feature matrix whose i-th row contains the fea-
tures for the i-th data point, and y the label vector of N
labels. The conventional linear ridge regression constructs
a hyperplane-based functionwTx to approximate the output
y by minimizing the following loss function:

LRR(w) = ||y −Xw||2 + λ||w||2 (6)

where || · || denotes the 2-norm of a vector and λ > 0
is the regularization parameter. Here the first term is the
squared loss of the output, the second term is the regular-
ization term which penalizes the weight vector w with large
norm, and parameter λ balances off the two terms. By ze-
roing the derivative of L with respect to w, it is not diffi-
cult to see that ridge regression has a closed-form solution
w = (XTX + λI)−1XT y.

The regularization parameter λ is important for getting
a good weight vector w. It is mostly tuned via a cross-
validation procedure though there are some other ways of
estimating λ in the ridge regression literature. Neverthe-
less, we present a probabilistic interpretation for the method
and derive a principled way of adapting these parameters.
Assume the output yi follows a Gaussian distribution with
mean wTxi and variance σ2, i.e., yi ∼ N (wTxi, σ

2), and
the weight vector w satisfies a Gaussian prior distribution:
w ∼ N (0, I). Then the negative log-posterior density of w
is exactly the LRR(w) as defined in Eq. 6, with λ = σ2.
One advantage of this interpretation is that one can opti-
mize the regularization parameter λ = σ2 by maximizing
the marginal likelihood of the data, which is also called the
evidence maximization [13] (or the type-II likelihood):

logP (y|σ2) = −N
2 log 2π − 1

2 log |XXT + σ2I|
− 1

2y
T (XXT + σ2I)−1y

(7)
Alternatively, one can also derive an Expectation-
Maximization algorithm, taking w as the missing data and
σ2 the model parameter. In this approach, we estimate the
posterior distribution ofw in the E-step, which is a Gaussian
with

µw = (XTX + σ2I)−1XT y,
Cw = σ2(XTX + σ2I)−1.

(8)

Then in the M-step we maximize the “complete” log-
likelihood with respect to σ2, assuming the posterior of w
as given in the E-step. This leads to the following update
for σ2:

σ2 =
1

N

[
||y −Xw||2 + tr(XCWXT )

]
(9)

The final algorithm iterates the E-step and M-step until con-
vergence. The posterior mean of w can be used to make

predictions for test samples, and we can also report the vari-
ances of these predictions (by considering the posterior co-
variance of w).

In addition, the proposed probabilistic ridge regression
approach makes use of the specific observation in polyp di-
mensioning that a polyp may be represented by multiple CG
candidates. Hence all these candidates will be labeled with
the same size annotated by the radiologist. However, the
candidates may represent fundamentally different segmen-
tations based on their different locations on the polyp. It
is desirable to use the candidate whose segmentation is the
closest to the actual layout of the polyp and hence its seg-
mented size approximates the diameter of the polyp with
the best accuracy, to make the size prediction. Mathemati-
cally, it can be translated into “finding the candidate whose
estimated size f(x) = wTx differs the least from y, i.e.,
min |y − f(x)| ”. Hence, the objective of ridge regression
Eq. 6 can be revised to the following function:

min
w

∑
j

min
i∈Ij

(yj − wTxi)
2 + λ||w||2 (10)

where Ij corresponds to the index set of candidates that
point to the same polyp j. We use an alternating algorithm
to optimize this objective. It initiates all candidates as in
ridge regression to learn a weight vector w. Then at each
iteration, only the candidates xi which have the predicted
size wTxi the closest to yj are selected to construct the next
w, until algorithm reaches a fixed point. A general feature
selection approach can also be devised for the multiple in-
stance regression formulation when replacing ||w||2 by its
1-norm counterpart ||w||1. Minimizing the 1-norm regular-
ization condition leads to sparse w which relies only on few
features.

4. Experimental Results
We report extensive experimental evaluations on

tasks of discriminative feature analysis, polyp classifica-
tion/detection, and polyp size regression and ranking. A
new two-layer, hierarchical soft-gating tree classifier on
polyp detection is also discussed. Note that an unseen clin-
ical database of 770 Tagged-prep CT scans collected from
multiple medical sites is employed, with 239 patient-level
and 416 volume-level polyps.No data volumes from the
same patient are used for both training and testing. Only
clean-prep polyps are used for polyp segmentor training.

Polyp Detection by Classification: The Fisher Discrim-
inant (FD) Score of any given feature f is defined as follows

J(f) =
(f̄+ − f̄−)2

σ2(f+) + σ2(f−)
(11)

where f̄+ and f̄− denote the mean; σ2(f+) and σ2(f−)
present the covariance of feature f ’s distribution on posi-
tive {f+} (e.g., object, polyp) and negative {f−} classes of
populations. In general, FD score describes the two-class
separatibility using a single feature f , or the discrimina-
tive power of feature. The FD scores of PSM features with

1053



IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, 2011
ranks are given in Table 4. The group of locally banded
features is more discriminative than global-scale features,
e.g., ProbSumk features rank higher than the original es-
timated D2, D3, D1 polyp sizes [12] and ProbSum. Refer
to Fig. 6 for the kernel density plots of the highest ranked
ProbSum0 on positive and negative populations.

PSM features combined with MILRVM classifier [16]
achieve better detection rates under the same false positive
(FP) rate per volume5, than without using PSM features (but
original feature set in CAD), in both tagging-prep training
and testing datasets. The improvement on training dataset
is similar with the testing dataset and only testing perfor-
mance is reported below (118 patient-level or 222 volume-
level polyps), due to space limit. This demonstrates good
generality across different datasets by the combination of
classifier and features. In testing, with PSM feature inte-
grated, our CAD system improves the per-patient polyp de-
tection sensitivity from 82.20% to 84.75%. Furthermore, it
significantly improves the detection rates of two most diffi-
cult polyp subcategories: from 76.92% to 82.05% for large,
and from 67.35% to 71.43% for flat polyps, with ∼ 3.5 FPs
per-volume. For details, refer to the FROC curves in Fig. 3.

Soft-gating Classification: We next evaluate the PSM
features using a two-layer, hierarchical tree classifier ar-
chitecture, called “soft-gating” framework in a Bayesian
“divide-and-conquer” setting. We first train a basis clas-
sifier (as MILRVM) using large (≥ 10mm) polyps ver-
sus intermediate size (6 ∼ 9mm) polyps. In runtime, this
so-learned “size classifier” can assign weights Pb(large),
Pb(interm) for each VOI input (including negatives)
as its probabilities of being large or intermediate polyp
class. Two weights are further normalized as Pb(large) +
Pb(interm) = 1. Then all positive/negative training
VOIs are passed into both the left and right branches of
the soft-gating tree, with different weights of Pb(large),
or Pb(interm) respectively. A modified MILRVM classi-
fier is applied again on each leaf to learn PbL(prob) and
PbR(prob), which can handle weighted training samples.
Finally, the probability of being “Polyp” for any candidate
VOI is obtained in a Bayesian manner

Pb(Polyp) = Pb(large)× PbL(polyp|large)+
Pb(interm)× PbR(polyp|interm)

(12)

, different from hard cascading [26]. This binary tree clas-
sification framework is illustrated in Figure 4 (a). Other
gating strategies other than size gating (e.g., object shape
morphology gating) can also be exploited.

We further investigate the effectiveness of PSM fea-
tures using within the size-gating tree classifier. Five
PSM features (D1D2;Area;Area3;D1D2D3;D1) are se-
lected with dominating weights for the size-gating branch
MILRVM classifier for learning Pb(large), Pb(interm),
out of total 10 selected features. PSM features also sig-
nificantly contribute to compose the left PbL(prob) and

5We provide the patient-level sensitivity (i.e., if a polyp is detected in
either view, it is counted as a true positive) as gold-standard in colon CAD
and per-volume false positive rate where a single negative structure (e.g., a
stool) can appear as two FPs in both Prone and Supine views.

Feature Rank FDS Feature Rank FDS
ProbSum0 1 1.341 ProbSum3 2 1.314
ProbSum2 3 1.299 ProbSum1 4 1.289
D2 5 1.268 ProbAvg0 6 1.172
ProbSum4 7 1.167 D3 9 1.132
ProbAvg1 12 1.111 D1 14 1.102
ProbAvg2 15 1.092 ProbSum 17 0.977

Table 1. The FD score comparison of PSM features for polyp de-
tection. Core band features are more discriminative than outer,
boundary band features.

right PbR(prob) leaf classifiers. MILRVM has an intrin-
sic feature selection and weighting mechanism on building
classification margins/probabilities. Size based soft-gating
achieves the best performance for our CAD system (than
plain and shape-gating MILRVM ), on an enhanced testing
dataset of 412 CT volumes. The detection FROC curves
of two subcategories of Sessile-Pedunculated (SP) and Flat
polyps are shown in Fig. 4 (b,c). We obtain the detection
rates of 95.0% and 88.0% for SP or Flat polyps respectively,
under the same 3.36 FPs per-volume. The most competitive
recent work [21] reports the detection sensitivity of 90% for
SP, and 75 ∼ 80% for flat polyps, with 4.5 FPs per-scan on
average6. [24] achieves 95% or 85% sensitivity rates, at 5
FPs per scan, on two 86 or 141 patient datasets, respectively.

Polyp Size Regression & Ranking: After classifica-
tion, we first exploit the cross-correlation or Pearson’s cor-
relation coefficient between any single PSM feature and
the annotated polyp size (in the range of [3, 30]mm) in
the database. The correlation value is ∈ [−1, 1], with
higher value meaning better approximation. Among all
≥ 350 classification features (a superset of PSM), D1 re-
turns the highest correlation value as 0.6843 which validates
good generality of the clean-prep trained polyp segmenta-
tion module for unseen data. For details, refer to Fig. 5
(a) where multiple instances per-polyp are shown. Second,
the correlation coefficient of the estimated polyp size using
our probabilistic regression model (section 3) and PSM fea-
tures, improves to 0.8102 or 0.7174 for training or testing
dataset respectively, as shown in Fig. 5 (b,c). The RM-
SEs also decreases from 4.3915mm (a) to 3.3072mm (b)
and 3.6426mm (c), compared with using D1 only. The fi-
nal regressor is a linear combination of 16 weighted PSM
features including D1, ProbSum, boundary smoothness
BS(inter) and banded Areak, ProbSumk features, with
automatic feature selection. 185 volume-level polyps are
used for training and 231 polyps for testing.

Finally, it is an important task for a useful CAD system to
return detected objects/polyps in an order of their predicted
importances. In training, we study the statistical rank con-
sistency measurement of two lists, ranked by a PSM feature
or the annotated polyp size respectively. A lot of group-wise
nonparametric comparison statistics can be applied. Based
on concordance index (CI) criterion [17] (as the probability

6Note that we do not have access to the dataset in [21], but generally as-
sume that our dataset is comparable to [21], as they both are in the order of
hundreds of CT volumes and collected from a variety of clinical hispitals.
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(a) FROC of All Polyps (Testing) (b) FROC of Large Polyps (Testing) (C) FROC of Flat Polyps (Testing)
Figure 3. Free Receiver Operating Characteristic (FROC) Curves of polyp detection, using MILRVM classifier [16] with and without PSM
features, on the category of ALL actionable polyps (a), Large (39 patient-level or 75 volume-level) (b), and Flat (49 patient-level or 90
volume-level) (c) polyps, based on the study of the tagging-prep, testing dataset of 393 CTC scans. Green dot lines are the CG sensitivity
upper bound and FROC curves are shown in Red (with PSM features), Blue (Size gating) and Cyan (without PSM).

(a) Soft-gating Classifier (b) Sessile-Pedunculated Polyp Detection FROC (C) Flat Polyp Detection FROC
Figure 4. Size-based soft-gating classification framework (a) and FROC curves of polyp detection using size-gating classification tree with
PSM features incorporated, on two polyp subcategories of 80 (142 in volume-level) Sessile-Pedunculated (b) and 50 (89 in volume-level)
flat polyps (c). Green dot lines are the CG sensitivity upper bound and FROC curves are shown in Blue.

of order concordance between the observed and predicted
distributions), the multi-resolution segmentation boundary
smoothness features BS(inter) surprisingly give the high-
est scores. A reasonable explanation is that segmentation
on bigger polyps may produce more rugged boundaries be-
cause of larger expanding surface. Then PSM diameters,
probability, area and banded statistics follow, with decreas-
ing index values. Refer to table 4 for details.

Feature Rank CI Feature Rank CI
BS(1) 1 0.870 BS4 2 0.861
D1 3 0.782 D2 6 0.750
D1D2 9 0.741 Area4 9 0.718
D3 11 0.714 D1D2D3 12 0.713
Area 14 0.702 ProbSum 17 0.680

Table 2. Concordance Index of PSM features for polyp ranking.

5. Conclusion
In this paper, we have presented a set of probabilistic seg-

mentation (PSM) descriptive features, in the joint (object-
specific) segmentation probability and image spatial space.
The derived PSM features form an intermediate-level, ob-
ject class descriptor using segmentation as a probing pro-

cess for object classification and detection. We demonstrate
its validity in applications of colon polyp (object) detec-
tion, size regression and ranking, with the newly proposed
Bayesian regression model and soft-gating classifier. The
experiments are executed using a large multisite clinical
dataset of 770 CT volumes. Our results statistically out-
perform the best other work reported [21, 24].
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