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Abstract. Ultrasound images of the heart can be taken from many different
angles. Diagnostic analysis of these images requires recognizing the pose of the
heart so that important cardiac structures can be identified. We are concerned
with the problem of automatically classifying cardiac ultrasound images with
respect to what view of the heart they contain. Our solution to this problem
has two novel aspects: first, a hierarchical classifier is constructed to classify
an unknown view into corresponding windows, and then further classify it into
one of the respective subclasses in the window; second, a simple dimension
reduction approach is used to compress the information of many image features
and to enhance the classification accuracy. Experiments on recognizing apical
two-chamber, apical four-chamber, parasternal long axis and parasternal short
axis views demonstrate the effectiveness of our approach.

1 Introduction

Many researchers have investigated feature extraction from and classification of ul-
trasound images. Some work has concentrated on feature extraction only [1]. Other
work has involved feature extraction for the purpose of classification of various tissue
types. For example, there has been work on classifying breast lesions as being benign
or malignant [2]. Other work has been done on classifying ultrasound images of liver
tissue in order to distinguish between healthy and diseasedtissue [3], detecting liver
cirrhosis [4], and differentiating between benign and malignant liver tumors [5].

There exist fifteen basic views of heart in ultrasound images. The problem of au-
tomatically distinguishing between such a relatively large number of views simulta-
neously is very difficult. However, these fifteen views are imaged from four windows:
the parasternal, apical, subcostal, and suprasternal windows. We have discovered that
there is greater similarity between views in the same windowthan between views in
different windows. This observation leads us to develop a hierarchical classification
scheme that first distinguishes between the different windows, and then between the
views belonging to a specific window. In this paper, as our data sets did not contain
examples from all views, we present our preliminary work on automatically distin-
guishing between two views in each of two windows. These views contain the apical
two chamber (a2c), the apical four chamber (a4c), the parasternal long axis (plax), and
the parasternal short axis (psax) views. Example images of each of these four views
can be seen in Figure 1.

Previous work closely related to our study include techniques for differentiating
between different ultrasound views of an organ, such as the work done by Ebadollahi
et al. [6] for automatic indexing of ultrasound clips according totheir view of the
heart. They derive their features using using the Gray-Level Symmetric Axis Trans-
form to detect the chambers of the heart, and Markov Random Fields to model the



constellation of the chambers. They achieve accuracies of up to 88.35% using a sup-
port vector machine classifier and leave-one-out cross validation. However, they make
the assumption that clinically similar views (views that are not distinguishable by hu-
man experts and for clinical purposes are considered identical) are considered to be
the same view. Also, they only use frames from the ultrasoundclips which have the
correct number of distinct chambers for each view and no false or missing chambers
as their training/testing data set. When they remove these assumptions, their accuracy
falls to as little as 34%, and to 52% when clinically similar views are considered the
same. In our approach, we use simpler features and classifiers, and use the entire ul-
trasound clip instead of just the “best frames.” Zhouet al. [7] present an approach
for view recognition of cardiac ultrasound images. However, they only differentiate
between the a2c and a4c views, and they achieve an accuracy ofup to 90% for this
problem. Also, their approach requires a pre-processing phase in which the left ven-
tricle is identified by a human. With our approach, we can achieve accuracies of up to
87.9% using leave-one-out cross-validation on our training data set and up to 92.7%
on our test set, as detailed in Section 5, using a much more automatic pre-processing
phase, as described in Section 2 below.

Fig. 1.Four different ultrasound views of the heart. Clockwise from upper left: apical two cham-
ber view, apical four chamber view, parasternal long axis view, and parasternal short axis view.

2 Data Description and Pre-processing

The ultrasound images that we are concerned with come in the form of video clips.
The number of frames can vary from clip to clip. The clips have3 color channels
(RGB). Each frame of the clip contains the actual ultrasoundimage as well as some
diagnostic information. The area of a frame displaying the actual ultrasound image
is referred to as the fan area due to its shape (see Figure 1). The actual size of this
fan area in a given ultrasound clip depends on the machine andits settings. In this
work, we assume that all clips have the same resolution, though clips with different
resolutions can be resampled to a common resolution.

The first stage of our approach is to detect, in each clip, the fan area, from which
image features will be extracted. Detection of the fan area is itself not trivial, as the size
of the fan area varies from clip to clip. Although a fan mask can be detected from each



clip, some features are evaluated assuming the fan area is uniform across all clips. We
therefore construct a universal fan mask by finding the unionof the individual masks
identified from each clip in our training set: the masks are overlaid on each other, and
any pixel that is marked as “on” in a given percentage of the individual masks will be
marked as “on” in the universal mask. Moreover, ultrasound images have a wide range
of intensity values dependent on the machine setting, so an important preprocessing
step is to normalize the pixel intensities of these images. We first convert each of the
clips to a single intensity matrix by averaging over the RGB color channels. Then a
standard linear normalization is carried out by dividing the pixel intensities by the
interquartile range of the pixel intensity distribution. These interquartile values are
chosen to reduce impact of extreme outliers or noise.

3 Feature Extraction

Gradient featuresIn ultrasound images, the walls (and corresponding chambers) are
usually quite distinct from the noise in the image. One simple way of measuring the
orientation of the walls (and therefore the chambers) is to find the sum of the mag-
nitudes of the gradients in each of the x, y, and z directions.The magnitude of the
gradients measure the vertical and horizontal structure inthe clips (x and y gradients),
and the motion in the clips (z gradients).

The four cardiac views of our concern show different physical structures. For ex-
ample, the apical classes have a lot of vertical structure, the plax class has a lot of
horizontal structure, and the psax class has a circular structure, which will lead to
different values for the gradient magnitude in x and y directions. There is a distinct
separation between the a4c and plax views with respect to thevalues of the x and y
gradients, as can be seen in the scatter plot in Figure 2.
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Fig. 2. A scatter plot of the x and y gradient features for the a4c and plax classes.

Another set of features are also derived from gradients. TheXZ and YZ sum-
gradients are computed by first finding the z-gradients in thevolume and then sum-
ming across all frames to get a two-dimensional image. From this image we find the
x and y gradients in the manner described above. The “real” sum-gradients in the x, y,
and z directions are computed in a similar manner as the basicsum-gradients, but take
the sign of the gradients into account. The sum-gradient combinations (x+y, x+z, y+z)
are computed by just adding the respective basic gradient features together. The sum-
gradient ratios (x:y, x:z, y:z) are computed by just dividing one sum-gradient feature
by another. Finally, we use the standard deviation of the x and y sum-gradients across
all frames, and the standard deviation of the magnitude of the z gradient for each voxel
in the fan volume.

Peak FeaturesThe peak features estimate the number of horizontal and vertical edges
or walls in the images. We use this feature to try to discriminate between the a2c and
a4c classes, since the a2c images have only two walls while the a4c images have 3



walls. We extract the peak features by viewing the image as a matrix and finding the
sum of each row (column). This value is then normalized by thenumber of pixels in
each row that are in the mask area. The resulting vectors are then smoothed to remove
noise. The resulting feature is then the number of maxima in the vector.

Other Statistical FeaturesWe also derive several statistics in an attempt to character-
ize the distribution of pixel intensities in an ultrasound clip. To derive these features
we first average across all frames in a clip. We then extract the mean, standard de-
viation, and the second through fourth statistical momentsof the pixel intensities in
the average frame. Since images of different views different numbers of walls and
chambers, each view presents a different distribution of intensities.

Raw Pixel Intensity FeaturesAnother set of features we consider are the values of raw
pixel intensities after doing normalization and taking theaverage across all frames in
the clip. There is a constant number of features (pixels) foreach clip because we use a
universal mask, even though this may cover more or less area than the actual fan area.
We perform resampling to reduce the image size, smoothing the image in the pro-
cess to make the feature amount scalable. We use Naı̈ve Bayesclassifiers to determine
classification accuracy for various values of the smoothingand resampling parameters.
We find that we achieve maximum accuracy with a heighth of 16 and 24 pixels in the
resampled image and a standard deviation of 0.25 for the Gaussian kernel. One draw-
back of using these features is that they are not translationinvariant; structures may
appear at different places in different images. Hence, it may not be very meaningful
to compare corresponding attributes between two images as ameans of classification.
Another drawback is that, even with resampling, there is still a large number of fea-
tures, which can degrade both the speed and quality of the classifier. These drawbacks
make the features difficult to be efficiently used in the classification (or recognition)
task. We hence design the “principal features” to compress information from the raw
intensity features, which are described in Section 4.

4 Principal Feature Integration
The raw pixel intensity features generate an input space of very high dimensionality.
Even if there exists information useful for the separation of views, it is vague and
hidden in this high dimensional space. Hence we design features that aim to project
high dimensional data into a lower-dimensional space wherethe scatter of the data is
reshaped to enhance class separability. We call these features “principal features.”

These new features are generated using the output of a basic classifier, which we
call “mean model classifier”. Consider a data set ofn-dimensional feature vectors
belonging toc classes, respectively. The modelMi for theith class is the mean of all
feature vectors belonging to theith class. Now for a given feature vectoru, we want
to approximate it by a convex combination of theM models. In other words,

u = α1M1 + α2M2 + ... + αcMc (1)

or in the matrix format,
Mα = u (2)

whereM is an-by-c matrix with theith column equal toMi. We further require that

Σiαi = 1 (3)

and
αi ≥ 0, ∀i = 1, · · · , n. (4)

We solve a least squares problem for (1) to obtainα. The mean model classifier then
classifies an unknown feature vectoru according to the index of the largest component
of α.
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Procedure:Generate Principal Features
T = Training data
Tα = {}
for all pointsu ∈ T

ConstructM from T − {u}
SolveMα = u for α

Tα = Tα ∪ {α}
end for
returnTα

Fig. 3. (a) A scatter plot of the a2c and a4c principal features derived from ther = 16 raw pixel
intensities; (b) Algorithm for generating principal features.

Although this simple classifier itself may not produce good classification accuracy,
the coefficient vectorα, in a c-dimensional space, becomes very promising features
to discriminate views. Geometrically, If the mean model classifier works reasonably
well, there should be good separation between the classes intheα space, as the points
will cluster around the axes of their respective classes. Inother words, ifu belongs
to classi, we expect its projection to theith model,αi, to be larger than any other
coefficients. Theseα features are referred to as “principal features”. In Figure3(a) we
plot the a2c and a4c classes in the plane formed by the a2c and a4c principal features
derived from the raw pixel intensities forh = 16. Note that we have added a small
amount of jitter in order to minimize the point overlap, since many points in the same
class tend to have very similar values for their principal features. As expected, the
points cluster around the axes corresponding to their respective classes.

The principal features can then be used in place of or in addition to the original
features to form another vector that is fed into another classifier. This process helps
to enhance the final classification, since we are using the output of one classifier as
the input to another in order to increase the accuracy. We derive the principal features
for the training data using the leave-one-out approach presented in Figure 3(b). Later,
we can derive the principal features for each sample in the testing data set by utilizing
mean modelsM calculated from the training data set. We generate principal features
using several different feature subsets, such as the raw pixel intensities forh = 16,
those forh = 24, and the x, y, and z sum-gradients, among others.

A benefit of using principal features is that they allow us to compress a large num-
ber of regular features into only four features. For example, there are 124 raw pixel
intensity features forh = 16, and 282 features forh = 24. Reducing these two feature
sets down to 4 principal features each represents a fifty-fold reduction in the number
of features. Also, by using the principal features we are implicitly doing two stages
of classification: in the first we generate the principal features using the mean model
classifier, and in the second we use the principal features inconjunction with other
features to classify the ultrasound images. If the mean model classifier works well,
then these principal features will provide good (or better)separation between classes
for the second classifier compared to the original features.In some cases, the princi-
pal features may not provide better separation between the classes than the original
features. However, the principal features may still increase the classification accuracy
when used in conjunction with the original features. For example, if we run a Naı̈ve
Bayes classifier on just the the x, y, and z gradient features,we attain an accuracy
of 46.8%, but when we run it on the principal features derivedfrom these gradient
features, the accuracy is only 42.7%. However, when we perform classification using
both the gradient features and the principal features, the accuracy increases to 54.8%.



5 Classification Approach

Data SetsThe ultrasound video clips we use in our classification experiments were
collected from Siemens ACUSONTMultrasound systems at St. Francis Hospital in
Roslyn, New York. Our complete data set from which we draw ourtraining and test
sets contains clips from 23 different patients, but the training and test set are dis-
joint. Each patient has a different number of clips for each view. Our training data set
contains 31 ultrasound clips for each of the four views (a2c,a4c, plax, and psax), with
some patients contributing two or more clips. The test set contains 14 clips each for the
a2c, a4c, and psax classes, and 13 clips for the plax class. All clips have a resolution
of 640 × 480, and have a varying number of frames. The pre-processing techniques
described in Section 2 and the feature extraction approaches described in Section 3
are implemented in Matlab using the Image Processing toolbox and the Optimiza-
tion toolbox (for calculating the principal features). We utilize the implementation of
several classifiers available in Weka [8].

Hierarchical Classifier The Weka software package provides implementations of
many different classification algorithms. We ran experiments using several different
classification approaches with leave-one-out cross-validation on the training data set
including naı̈ve Bayes, support vector machine [9, 10] and logistic model trees (LMT)
methods. We find that Logistic Model Trees (LMT) classifiers [11] perform consis-
tently well as shown in Table 1(a), where we show the confusion matrix of the LMT
classifier on the four-view recognition problem. These are the leave-one-out cross-
validation results on the training data.

LMT constructs a tree-structured classifier with logistic regression functions at the
leaves. The classic logistic regression approach modelslog(p/(1−p) as a linear func-
tion of the features wherep represents the probability of a feature vectorx belonging
to classi. It can be written as

log(p/(1 − p) = β0 + βT x

where theβ vector and the scalarβ0 are parameters to be determined andx denotes
the feature vector for each clip. Consequently, the probability of x is

p(x) =
exp(β0 + βT x)

(1 + exp(β0 + βT x))
. (5)

LMT is motivated by the principle of “divide and conquer”. That is, a complex set of
data is divided into sufficiently many subsets such that a simple linear logistic regres-
sion model adequately fits the data in each subset.

From Table 1(a), we achieve an accuracy of 83.1%. On the testing data, we achieve
an accuracy of 89.1%. The corresponding confusion matrix can be seen in Table 1(b).
These results, while not poor, still leave room for improvement. We observe that apical
views tend to be confused more often with each other than withthe parasternal views,
and vice versa. From Table 1(a) one can see that 8 clips containing apical views are
classified as parasternal views, and 2 clips containing parasternal views are classified
as apical views. Similarly, in Table 1(b), five of the clips containing parasternal views
are classified as containing apical views. In Figure 4 we can see that for the x and y
sum-gradients, there is very good separation between the apical and parasternalsuper-
classes, more so than between all four subclasses. This increased distinction between
the superclasses extends to the other attributes as well.

We next use Weka to search for classifiers that perform well onthe two-class prob-
lem for our training data set. Many of the classifiers we try give accuracies in the 90%
range. Again, the best classifier we find is an LMT classifier which gives us 95.2%



(a) Training Data
a2ca4cplax psax

a2c 23 2 1 5
a4c 2 27 1 1
plax 0 0 29 2
psax 2 0 5 24

(b) Testing Data
a2ca4cplax psax

a2c 14 0 0 0
a4c 0 14 0 0
plax 0 0 12 1
psax 5 0 0 9

Table 1.Confusion matrix for a LMT classifier for the four-class problem run on (a) the training
data with leave-one-out cross-validation; (b) the testingdata.
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Fig. 4. (a) A scatter plot of the x and y gradient features showing separation between the apical
and parasternal superclasses; (b) diagram of the hierarchical classifier.

accuracy. In this case, we find that on the training data set, using leave-one-out cross-
validation, only 5 clips containing apical views are classified as having a parasternal
view (compared to 8 clips in Table 1(a)), and only 1 clip containing a parasternal view
is classified as having an apical view (compared to 2 clips in Table 1(a)).

This observation leads us to develop a classifier strategy that exploits the behav-
ior we note above, namely that the misclassifications tend tobe within the apical and
parasternal classes, not across them. Hierarchical classification techniques have been
used before. Marsoloet al. [12] use hierarchical multi-level classification to classify
proteins based on their structure. Proteins are first classified according to their Struc-
tural Classification of Proteins (SCOP) database class. At the next level, a classifier is
used to distinguish between the folds in the corresponding SCOP class.

Our hierarchical approach first tries to classify a feature vector into either the api-
cal or parasternal class. Then it attempts to further classify the vector into the respec-
tive subclasses. Hence, there are three total classifiers: one at the top level, and one
each for the apical and parasternal branches. A diagram of this classifier can be seen
in Figure 4(b). The same feature vector are used at both levels of classification. At the
top level, the classifier is trained only to distinguish between the apical and paraster-
nal superclasses. On the left-hand branch, the second-level classifier is trained only to
distinguish between the apical two chamber and apical four chamber views, and simi-
larly, on the right-hand branch, the classifier is trained only to distinguish between the
parasternal long axis and parasternal short axis views.

(a) Training Data
a2ca4cplax psax

a2c 26 1 2 2
a4c 1 29 1 0
plax 0 0 27 4
psax 1 0 3 27

(b) Testing Data
a2ca4cplax psax

a2c 14 0 0 0
a4c 0 14 0 0
plax 0 0 12 1
psax 2 0 2 10

Table 2. Confusion matrix for a hierarchical LMT classifier for the four-class problem run on
(a) the training data using leave-one-out cross-validation; (b) the testing data.

When we apply this hierarchical classifier to our training data set, our classifica-
tion accuracy improves. In our implementation, we use LMT classifiers at both levels



(superclass and subclass), our accuracy improves to 87.9%,as can be seen in the con-
fusion matrix in Table 2(a). When we apply the hierarchical classifier to the testing
data set, we achieve an accuracy of 90.9%, as can be seen in Table 2(b).

6 Analysis and Conclusion

From our experimental results, we see that the use of a hierarchical classification
scheme reduces the number of misclassifications among the superclasses. While we
only concentrated on two subclasses (views) of two different superclasses (windows)
in this paper, our approach is easily applicable to the complete hierarchy of fifteen
views belonging to four different windows.

Furthermore, our hierarchical classification scheme is flexible enough to allow the
use of any classifier at any node in the hierarchy. Indeed, when we use a Support
Vector Machine classifier at the root node of the hierarchy and LMT classifiers on the
leaves, we achieve a slightly higher accuracy of 92.7% on thetesting data set.
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