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Abstract. Ultrasound images of the heart can be taken from many differe
angles. Diagnostic analysis of these images requires né&ing the pose of the
heart so that important cardiac structures can be ident¥\édare concerned
with the problem of automatically classifying cardiac attound images with
respect to what view of the heart they contain. Our solutmmhis problem
has two novel aspects: first, a hierarchical classifier istanted to classify
an unknown view into corresponding windows, and then furdhessify it into
one of the respective subclasses in the window; second, plesidimension
reduction approach is used to compress the information af/rimaage features
and to enhance the classification accuracy. Experimentsagnizing apical
two-chamber, apical four-chamber, parasternal long axisparasternal short
axis views demonstrate the effectiveness of our approach.

1 Introduction

Many researchers have investigated feature extraction &mod classification of ul-
trasound images. Some work has concentrated on featuactatr only [1]. Other
work has involved feature extraction for the purpose ofgifastion of various tissue
types. For example, there has been work on classifying biesisns as being benign
or malignant [2]. Other work has been done on classifyingaatiund images of liver
tissue in order to distinguish between healthy and disetisguake [3], detecting liver
cirrhosis [4], and differentiating between benign and gnaint liver tumors [5].

There exist fifteen basic views of heart in ultrasound images problem of au-
tomatically distinguishing between such a relatively &argumber of views simulta-
neously is very difficult. However, these fifteen views aragad from four windows:
the parasternal, apical, subcostal, and suprasternabwmd\e have discovered that
there is greater similarity between views in the same wintlam between views in
different windows. This observation leads us to developesdnchical classification
scheme that first distinguishes between the different wirsd@and then between the
views belonging to a specific window. In this paper, as ouadeats did not contain
examples from all views, we present our preliminary work aitoanatically distin-
guishing between two views in each of two windows. These sieantain the apical
two chamber (a2c), the apical four chamber (a4c), the parsationg axis (plax), and
the parasternal short axis (psax) views. Example imageadif ef these four views
can be seen in Figure 1.

Previous work closely related to our study include techesjfor differentiating
between different ultrasound views of an organ, such as tit& done by Ebadollahi
et al. [6] for automatic indexing of ultrasound clips accordingtheir view of the
heart. They derive their features using using the Gray-L8ymmetric Axis Trans-
form to detect the chambers of the heart, and Markov Rand@tdd-to model the



constellation of the chambers. They achieve accuraciep td 88.35% using a sup-
port vector machine classifier and leave-one-out crosdatitin. However, they make
the assumption that clinically similar views (views that aot distinguishable by hu-
man experts and for clinical purposes are considered icehtre considered to be
the same view. Also, they only use frames from the ultrasaulipgd which have the
correct number of distinct chambers for each view and ne fatamissing chambers
as their training/testing data set. When they remove thesenaptions, their accuracy
falls to as little as 34%, and to 52% when clinically similaews are considered the
same. In our approach, we use simpler features and classdied use the entire ul-
trasound clip instead of just the “best frames.” Ztedwal. [7] present an approach
for view recognition of cardiac ultrasound images. Howetleey only differentiate
between the a2c and a4c views, and they achieve an accuragytof90% for this
problem. Also, their approach requires a pre-processiag@in which the left ven-
tricle is identified by a human. With our approach, we can@ahaccuracies of up to
87.9% using leave-one-out cross-validation on our trgjmata set and up to 92.7%
on our test set, as detailed in Section 5, using a much mooenatic pre-processing
phase, as described in Section 2 below.

Fig. 1. Four different ultrasound views of the heart. Clockwiserinapper left: apical two cham-
ber view, apical four chamber view, parasternal long ax@éswiand parasternal short axis view.

2 Data Description and Pre-processing

The ultrasound images that we are concerned with come inotime 6f video clips.
The number of frames can vary from clip to clip. The clips h&veolor channels
(RGB). Each frame of the clip contains the actual ultrasoumahe as well as some
diagnostic information. The area of a frame displaying tbeia ultrasound image
is referred to as the fan area due to its shape (see Figuréhé&)adtual size of this
fan area in a given ultrasound clip depends on the machinetsusgttings. In this
work, we assume that all clips have the same resolutiongthalips with different
resolutions can be resampled to a common resolution.

The first stage of our approach is to detect, in each clip,ahefea, from which
image features will be extracted. Detection of the fan eg@aélf not trivial, as the size
of the fan area varies from clip to clip. Although a fan mask ba detected from each



clip, some features are evaluated assuming the fan aredasmrmcross all clips. We
therefore construct a universal fan mask by finding the upifdhe individual masks
identified from each clip in our training set: the masks arertaid on each other, and
any pixel that is marked as “on” in a given percentage of tiévidual masks will be
marked as “on” in the universal mask. Moreover, ultrasoumages have a wide range
of intensity values dependent on the machine setting, ssaortant preprocessing
step is to normalize the pixel intensities of these imagesfiv§t convert each of the
clips to a single intensity matrix by averaging over the RG#Boc channels. Then a
standard linear normalization is carried out by dividing fhixel intensities by the
interquartile range of the pixel intensity distributionh&se interquartile values are
chosen to reduce impact of extreme outliers or noise.

3 Feature Extraction

Gradient featuresln ultrasound images, the walls (and corresponding chashbee
usually quite distinct from the noise in the image. One samphy of measuring the
orientation of the walls (and therefore the chambers) isrtd fhe sum of the mag-
nitudes of the gradients in each of the x, y, and z directidhe magnitude of the
gradients measure the vertical and horizontal structuttedrtlips (x and y gradients),
and the motion in the clips (z gradients).

The four cardiac views of our concern show different physstaictures. For ex-
ample, the apical classes have a lot of vertical structlme ptax class has a lot of
horizontal structure, and the psax class has a circulactste, which will lead to
different values for the gradient magnitude in x and y dimw. There is a distinct
separation between the a4c and plax views with respect teales of the x and y
gradients, as can be seen in the scatter plot in Figure 2.
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Fig. 2. A scatter plot of the x and y gradient features for the a4c daxl gdasses.

Another set of features are also derived from gradients. Xheand YZ sum-
gradients are computed by first finding the z-gradients invtiieme and then sum-
ming across all frames to get a two-dimensional image. Ftomitage we find the
x and y gradients in the manner described above. The “reai*gradients in the x, v,
and z directions are computed in a similar manner as the basiegradients, but take
the sign of the gradients into account. The sum-gradienbiaations (x+y, Xx+z, y+z)
are computed by just adding the respective basic gradiatiries together. The sum-
gradient ratios (x:y, X:z, y:z) are computed by just diviltme sum-gradient feature
by another. Finally, we use the standard deviation of thedyasum-gradients across
all frames, and the standard deviation of the magnitudesof tiradient for each voxel
in the fan volume.

Peak FeaturesThe peak features estimate the number of horizontal anctakedges
or walls in the images. We use this feature to try to discratérbetween the a2c and
adc classes, since the a2c images have only two walls wtela4lk images have 3



walls. We extract the peak features by viewing the image aataxrand finding the
sum of each row (column). This value is then normalized byniln@ber of pixels in
each row that are in the mask area. The resulting vectorb@anesmoothed to remove
noise. The resulting feature is then the number of maximhadrvector.

Other Statistical Featured\Ve also derive several statistics in an attempt to character
ize the distribution of pixel intensities in an ultrasourigpcTo derive these features
we first average across all frames in a clip. We then extraiiban, standard de-
viation, and the second through fourth statistical momehtse pixel intensities in
the average frame. Since images of different views differembers of walls and
chambers, each view presents a different distributiontefisities.

Raw Pixel Intensity FeatureAnother set of features we consider are the values of raw
pixel intensities after doing normalization and taking é#verage across all frames in
the clip. There is a constant number of features (pixels@émh clip because we use a
universal mask, even though this may cover more or less hagetihe actual fan area.
We perform resampling to reduce the image size, smoothiagniage in the pro-
cess to make the feature amount scalable. We use Naive Bags#iers to determine
classification accuracy for various values of the smoothimfjresampling parameters.
We find that we achieve maximum accuracy with a heighf 16 and 24 pixels in the
resampled image and a standard deviation of 0.25 for thesaukernel. One draw-
back of using these features is that they are not translati@riant; structures may
appear at different places in different images. Hence, it n@ be very meaningful
to compare corresponding attributes between two imagesmesmas of classification.
Another drawback is that, even with resampling, there Isasslarge number of fea-
tures, which can degrade both the speed and quality of tesifitx. These drawbacks
make the features difficult to be efficiently used in the dfasgion (or recognition)
task. We hence design the “principal features” to compr&ssmation from the raw
intensity features, which are described in Section 4.

4  Principal Feature Integration

The raw pixel intensity features generate an input spacewf vigh dimensionality.
Even if there exists information useful for the separatibviews, it is vague and
hidden in this high dimensional space. Hence we designresthat aim to project
high dimensional data into a lower-dimensional space wiieracatter of the data is
reshaped to enhance class separability. We call thesadsahrincipal features.”

These new features are generated using the output of a bassifier, which we
call “mean model classifier”. Consider a data seteafimensional feature vectors
belonging toc classes, respectively. The modé} for theith class is the mean of all
feature vectors belonging to thith class. Now for a given feature vectorwe want
to approximate it by a convex combination of themodels. In other words,

u=o1 M +oasMs+ ...+ o.M, (1)
or in the matrix format,

Ma=u (2)
whereM is an-by-c matrix with theith column equal td\Z;. We further require that
and

%207 Vz:1,,n (4)

We solve a least squares problem for (1) to obtaiffhe mean model classifier then
classifies an unknown feature vectosccording to the index of the largest component
of a.



principal Features Scater Plot Procedure: Generate Principal Featurgs
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Fig. 3. (a) A scatter plot of the a2c and a4c principal features ddrivom ther = 16 raw pixel
intensities; (b) Algorithm for generating principal feegs.

Although this simple classifier itself may not produce golagsification accuracy,
the coefficient vector, in a c-dimensional space, becomes very promising features
to discriminate views. Geometrically, If the mean modekslfer works reasonably
well, there should be good separation between the classiesdnspace, as the points
will cluster around the axes of their respective classestter words, ifu belongs
to classi, we expect its projection to th#h model,«;, to be larger than any other
coefficients. Thesa features are referred to as “principal features”. In Figi(ed we
plot the a2c and a4c classes in the plane formed by the a2cangtiacipal features
derived from the raw pixel intensities fér = 16. Note that we have added a small
amount of jitter in order to minimize the point overlap, gmany points in the same
class tend to have very similar values for their principatfiees. As expected, the
points cluster around the axes corresponding to their otispeclasses.

The principal features can then be used in place of or in afdio the original
features to form another vector that is fed into anothersifias. This process helps
to enhance the final classification, since we are using theutwof one classifier as
the input to another in order to increase the accuracy. Wedlttre principal features
for the training data using the leave-one-out approacheptesd in Figure 3(b). Later,
we can derive the principal features for each sample in gtentpdata set by utilizing
mean modeld/ calculated from the training data set. We generate prih&fadures
using several different feature subsets, such as the rasV ipitensities forh = 16,
those forh = 24, and the X, y, and z sum-gradients, among others.

A benefit of using principal features is that they allow usdampress a large num-
ber of regular features into only four features. For examblere are 124 raw pixel
intensity features fok = 16, and 282 features fdr = 24. Reducing these two feature
sets down to 4 principal features each represents a fiftyrduction in the number
of features. Also, by using the principal features we arelicitly doing two stages
of classification: in the first we generate the principal dea$ using the mean model
classifier, and in the second we use the principal featuresmjunction with other
features to classify the ultrasound images. If the mean inddssifier works well,
then these principal features will provide good (or betsearation between classes
for the second classifier compared to the original featunesome cases, the princi-
pal features may not provide better separation betweenldsses than the original
features. However, the principal features may still insesthe classification accuracy
when used in conjunction with the original features. Fomepke, if we run a Naive
Bayes classifier on just the the X, y, and z gradient featwvesattain an accuracy
of 46.8%, but when we run it on the principal features derifreth these gradient
features, the accuracy is only 42.7%. However, when we parétassification using
both the gradient features and the principal features,dberacy increases to 54.8%.



5 Classification Approach

Data SetsThe ultrasound video clips we use in our classification expents were
collected from Siemens ACUSONultrasound systems at St. Francis Hospital in
Roslyn, New York. Our complete data set from which we drawtoaining and test
sets contains clips from 23 different patients, but thentregj and test set are dis-
joint. Each patient has a different number of clips for eaielvwOur training data set
contains 31 ultrasound clips for each of the four views (a2c, plax, and psax), with
some patients contributing two or more clips. The test setains 14 clips each for the
a2c, a4c, and psax classes, and 13 clips for the plax classligd have a resolution
of 640 x 480, and have a varying number of frames. The pre-processingigees
described in Section 2 and the feature extraction appreadbscribed in Section 3
are implemented in Matlab using the Image Processing tao#imal the Optimiza-
tion toolbox (for calculating the principal features). Wiime the implementation of
several classifiers available in Weka [8].

Hierarchical Classifier The Weka software package provides implementations of
many different classification algorithms. We ran experitaarsing several different
classification approaches with leave-one-out cross-attid on the training data set
including naive Bayes, support vector machine [9, 10] agistic model trees (LMT)
methods. We find that Logistic Model Trees (LMT) classifietkl][perform consis-
tently well as shown in Table 1(a), where we show the confusiatrix of the LMT
classifier on the four-view recognition problem. These & leave-one-out cross-
validation results on the training data.

LMT constructs a tree-structured classifier with logistigression functions at the
leaves. The classic logistic regression approach made(s/ (1 — p) as alinear func-
tion of the features whenerepresents the probability of a feature vectdyelonging
to classi. It can be written as

log(p/(1—p) = Bo+ 3"z

where thes vector and the scala¥, are parameters to be determined andenotes
the feature vector for each clip. Consequently, the prdinabf x is

exp(Bo + B1x)
(1 +exp(Bo+ pTx))

LMT is motivated by the principle of “divide and conquer”. athis, a complex set of
data is divided into sufficiently many subsets such that gkrinear logistic regres-
sion model adequately fits the data in each subset.

From Table 1(a), we achieve an accuracy of 83.1%. On thetpdéita, we achieve
an accuracy of 89.1%. The corresponding confusion matrixbeeseen in Table 1(b).
These results, while not poor, still leave room for improestn\We observe that apical
views tend to be confused more often with each other thantivilparasternal views,
and vice versa. From Table 1(a) one can see that 8 clips cimgaapical views are
classified as parasternal views, and 2 clips containingspenraal views are classified
as apical views. Similarly, in Table 1(b), five of the clipswtaining parasternal views
are classified as containing apical views. In Figure 4 we eantlsat for the x and y
sum-gradients, there is very good separation between tbal apd parasternauper-
classesmore so than between all four subclasses. This increasgédafion between
the superclasses extends to the other attributes as well.

We next use Weka to search for classifiers that perform welhemwo-class prob-
lem for our training data set. Many of the classifiers we tiegiccuracies in the 90%
range. Again, the best classifier we find is an LMT classifieicivigives us 95.2%

p(z) = (5)




(a) Training Data (b) Testing Data
a2qaddplax|ps a2qaddplax|psax
a2c|23|{ 2| 1|5 a2c|14|{ 01 0| O
adc| 2|27 1| 1 adc| 0|14/ 0| O
plaxy 0 | 0| 29| 2 plaxt 0 | 0| 12| 1
psax 2| 0| 5|24 psax 5{0| 0| 9
Table 1.Confusion matrix for a LMT classifier for the four-class plern run on (a) the training

data with leave-one-out cross-validation; (b) the testiat.
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Fig. 4. (a) A scatter plot of the x and y gradient features showin@ssjpn between the apical
and parasternal superclasses; (b) diagram of the hiecatdassifier.

accuracy. In this case, we find that on the training data seigueave-one-out cross-
validation, only 5 clips containing apical views are cléissi as having a parasternal
view (compared to 8 clips in Table 1(a)), and only 1 clip camiteg a parasternal view

is classified as having an apical view (compared to 2 clipsaild 1(a)).

This observation leads us to develop a classifier strategfyetkploits the behav-
ior we note above, namely that the misclassifications teritevithin the apical and
parasternal classes, not across them. Hierarchical fitastin techniques have been
used before. Marsolet al. [12] use hierarchical multi-level classification to cldgsi
proteins based on their structure. Proteins are first ¢ledsiccording to their Struc-
tural Classification of Proteins (SCOP) database clas$iédnéxt level, a classifier is
used to distinguish between the folds in the correspond@@fSclass.

Our hierarchical approach first tries to classify a featweter into either the api-
cal or parasternal class. Then it attempts to further datisé vector into the respec-
tive subclasses. Hence, there are three total classifisesabthe top level, and one
each for the apical and parasternal branches. A diagramso€lssifier can be seen
in Figure 4(b). The same feature vector are used at botrsle¥elassification. At the
top level, the classifier is trained only to distinguish bedw the apical and paraster-
nal superclasses. On the left-hand branch, the seconbklassifier is trained only to
distinguish between the apical two chamber and apical foamber views, and simi-
larly, on the right-hand branch, the classifier is trainely émdistinguish between the
parasternal long axis and parasternal short axis views.

(a) Training Data (b) Testing Data
a2daddplax|ps a2daddplax/psax
a2c|26| 1| 2| 2 a2c|14| 0| 0| O
adc| 1|29/ 1| O adc| 0|14/ 0| O
plax 0 | 0| 27| 4 plax 0| 0| 12| 1
psax 1| 0| 3 | 27 psax 2| 0| 2 | 10

Table 2. Confusion matrix for a hierarchical LMT classifier for theufeclass problem run on
(a) the training data using leave-one-out cross-validatio) the testing data.

When we apply this hierarchical classifier to our trainingadset, our classifica-
tion accuracy improves. In our implementation, we use LM&Sslfiers at both levels



(superclass and subclass), our accuracy improves to 8a9éan be seen in the con-
fusion matrix in Table 2(a). When we apply the hierarchidatsifier to the testing
data set, we achieve an accuracy of 90.9%, as can be seerlé?{hp

6 Analysis and Conclusion

From our experimental results, we see that the use of a hhécal classification
scheme reduces the number of misclassifications among gesctasses. While we
only concentrated on two subclasses (views) of two diffeseperclasses (windows)
in this paper, our approach is easily applicable to the cetephierarchy of fifteen
views belonging to four different windows.

Furthermore, our hierarchical classification scheme isiflexenough to allow the
use of any classifier at any node in the hierarchy. Indeednwire use a Support
Vector Machine classifier at the root node of the hierarctd/ladT classifiers on the
leaves, we achieve a slightly higher accuracy of 92.7% one$iing data set.
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