
Multi-Objective Programming in SVMs

Jinbo Bi bij2@rpi.edu

Department of Mathematical Sicences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA

Abstract

We propose a general framework for support
vector machines (SVM) based on the prin-
ciple of multi-objective optimization. The
learning of SVMs is formulated as a multi-
objective program (MOP) by setting two
competing goals to minimize the empirical
risk and minimize the model capacity. Dis-
tinct approaches to solving the MOP intro-
duce various SVM formulations. The pro-
posed framework enables a more effective
minimization of the VC bound on the gener-
alization risk. We develop a feature selection
approach based on the MOP framework and
demonstrate its effectiveness on hand-written
digit data.

1. Introduction

We examine the learning process of finding a function
f ∈ F that minimizes the generalization risk where F
is a set of possible functions. For classification prob-
lems, which we will focus on in this paper, the general-
ization risk of a given decision boundary f is defined as
the probability that a data point is misclassified using
the decision model constructed on f . The empirical
risk is computed as the misclassification rate of f on
sample data. An upper bound on the generalization
risk R(f) in VC theory (Vapnik, 1998) typically takes
a form as

Remp(f) + Ψ(
h

�
) (1)

where Remp(f) is the empirical risk for a given function
f chosen from F , h is a measure of the capacity of
F , named as the VC dimension of F , and � is the
amount of training data. The function Ψ is basically a
monotonically increasing function in terms of the ratio
h/�.

The bounds suggest us that to achieve a small gen-
eralization risk, the learning process prefers a small

empirical risk and a small capacity of F . The VC di-
mension h is the best-known measure of the capacity
of F . Better complexity measures exist, but are usu-
ally more difficult to evaluate. The VC dimension is
more applicable to manipulating under practical and
algorithmic circumstances. Therefore the small capac-
ity can be obtained by minimizing the VC dimension
of F . The goal of learning processes thus becomes to
minimize both the empirical risk and the VC dimen-
sion. However, they are conflicting goals in the sense
that when h is small, the empirical risk may be large
due to insufficient learning. In contrast, the learning
machine may require a large h to obtain a small empir-
ical risk, and may suffer the “overfitting” phenomenon.

Multi-objective programming is an optimization tech-
nique for solving problems with multiple conflicting
goals. Mathematically, objectives are said to be con-
flicting if optimal solutions corresponding to each in-
dividual objective are not the same within the feasi-
ble region. A multi-objective program (MOP) for the
learning process can be formulated in principle as fol-
lows:

min Remp(f)
min h(F)
s.t. f ∈ F .

(2)

Note that the function class F itself is an adjustable
variable in the MOP (2) because altering the VC di-
mension of F has impact on the choices of F . Usually
we define a type of possible functions beforehand, for
example, consider the linear functions. The function
class F is a subset of linear functions which presents
the desired VC dimension. The concrete formula-
tions of the multi-objective optimization can be de-
rived by specifying the type of the functions in F ,
the computation of the empirical risk and an esti-
mate of the VC dimension. Distinct specifications in-
troduce variants of multi-objective programs (MOP).
When a MOP is successfully formulated as desired,
the question arises as to how we can solve it. A lot
of research has been devoted to the study of vari-
ous approaches to solving MOPs. Depending on the

Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), Washington DC, 2003.



specific MOPs, appropriate techniques can be devel-
oped and used to solve them. Traditional methods
for solving MOPs include the weighted sum method,
the constraint method, weighted metric methods, goal
programming methods, etc. Later around evolution-
ary algorithms become popular for finding solutions to
MOPs. The classic SVM with the hyper parameter C,
derived using the weighted sum method, is just one
way to solve the MOP. Under the MOP framework,
we propose a feature selection approach that allows
the learning process to reduce the dimensionality of
the problem without losing prediction accuracy.

For a MOP with two conflicting objectives as given in
Problem (2), each objective corresponds to a different
optimal solution. We have to find a compromise in
the objectives. The fundamental difference between
single- and multi-objective optimization is that for a
MOP, we can find a set of optimal solutions where
no single solution can be said to be better than any
other. Solving a MOP often implies to search for the
set of optimal solutions as opposed to a lone solution
for a single-objective program. For a learning process,
we do not need to spread the entire set of optimal
solutions because VC bounds can provide information
to help us locate the best compromise.

In the next section, we briefly review the principle
of multi-objective optimization and traditional ap-
proaches to solving a MOP. A concrete MOP formu-
lation based on the above framework (2) is rigorously
derived and analyzed in Section 3. Employing dis-
tinct methods to solve the proposed MOP with proper
simplifications yields various learning algorithms, in-
cluding the classic SVM (C-SVM) and rigorous SVM
(RSVM) as discussed in Section 4. In Section 5, we
develop an approximation scheme for solving the pro-
posed MOP without simplifications, aimed at produc-
ing acceptable solutions rather than optimal solutions.
Based on the MOP framework, we propose a feature
selection approach in Section 6 and demonstrate that
it can reduce the dimensionality without loss of pre-
diction accuracy in Section 7.

2. Review of MOP

In this section, we state the MOP with two objectives
in its general form

minx Obj1(x)
minx Obj2(x)
s.t. g(x) ≤ 0, d(x) = 0,

xlow ≤ x ≤ xup.

(3)

The bold face of a lower-case letter indicates that it
is a vector. Here g and d are vectors of functions

of appropriate dimension, and xlow , xup are the lower
and upper bounds on x ∈ R

n. All constraints together
define the feasible region F = {x : g(x) ≤ 0, d(x) =
0, xlow ≤ x ≤ xup}. We introduce the concepts of
domination and Pareto-optimality.

2.1. Pareto-optimality

A solution x1 is said to dominate another solution
x2 (Eschenauer et al., 1986), if 1. the solution x1

is no worse than x2 in all objectives, i.e., Obj1(x1) ≤
Obj1(x2) and Obj2(x1) ≤ Obj2(x2); 2. the solution x1

is strictly better than x2 in at least one objective, i.e.,
∃ i ∈ {1, 2}, Obji(x1) < Obji(x2).

A feasible point is a Pareto-optimal or non-dominated
solution if the point is not dominated by any other
point in the feasible set F . Typically the Pareto-
optimal set consists of all Pareto-optimal solutions.
We use a toy example to illustrate the definitions as
in Figure 1(above). This problem has two quadratic
objective functions, and the Pareto-optimal set is the
interval [A, B]. In general, the Pareto-optimal fron-
tier in the objective function space is used to illustrate
the optimality in the MOP context (Figure 1(below)).
Each point in the figure represents a pair of objective
values corresponding to a x ∈ F . The filled circles
correspond to Pareto-optimal solutions and they fall
on the Pareto-optimal frontier.

Obj

x

y

2

A
[ ]

B

Obj
1

Obj 2

Obj
1

Figure 1. Above: The Pareto-optimal set of two quadratic
objective functions is [A,B]. Below: The Pareto-optimal
frontier of two objective functions in general.

The question arises as how we can find a Pareto-
optimal solution to a MOP. Traditional methods avoid



the inherent complexity in a multi-objective program
and convert multiple objectives into a single objective
by using certain schemes and user-specified parame-
ters. Many studies compare different methods of such
conversions, and provide reasons in favor of one conver-
sion over another. We describe two simple and widely-
used methods for such conversions. They will serve as
the basis of our approaches to solving the MOP arisen
in learning problems in the later sections.

2.2. Traditional methods

The weighted sum method transform two objectives
into a single objective by multiplying each objective
with a pre-defined weight and adding them together.
The weight of an objective is usually chosen in pro-
portion to the objective’s relative importance in the
problem. Determining an appropriate weight vector
also relies on the scaling of each objective function.
Usually the objectives are scaled appropriately so that
each has the same order of magnitude when choos-
ing the weights. The composite objective function can
thus be written as

min{c1Obj1(x) + c2Obj2(x) : x ∈ F } (4)

where the weights c1 and c2 are non-negative and at
least one of them is not zero.

Solving Problem (4) yields Pareto-optimal solutions
if the weight is positive for both objectives. Differ-
ent weight vectors do not necessarily lead to different
Pareto-optimal solutions. It does not imply that any
Pareto-optimal solution can be obtained by using a
positive weight vector unless the MOP is convex. A
MOP (3) is convex if all objective functions are convex
as well as the feasible region is convex, (equivalently,
all inequality constraints are convex and equality con-
straints are linear). For any Pareto-optimal solution x̂
to a convex MOP, there exists a positive weight vector
c such that x̂ is a solution to Problem (4).

If the MOP is not convex, the Pareto-optimal fron-
tier may have non-convex portions as shown in Figure
1 (below, the dotted line). The non-convex parts of
the Pareto-optimal set cannot be obtained by mini-
mizing the combinations of the objectives as formed
in Problem (4). To alleviate the difficulties faced by
the weighted sum approach in solving problems with
non-convex pattern, the constraint method was pro-
posed. The MOP is reformulated by keeping one of
the objectives and restricting the rest of the objec-
tives within user-specified values. For instance, if we
treat the second objective in MOP (3) by a constraint,
the modified problem becomes

min{Obj1(x) : Obj2(x) ≤ δ, x ∈ F }. (5)

Any Pareto-optimal solution of a MOP can be ob-
tained by solving the constraint problem (5) for a
proper upper bound δ regardless of the non-convexity
of the Pareto-optimal frontier. One disadvantage for
this method is that the solution to the problem (5)
largely depends on δ which has to be chosen within
the minimal or maximal value of the objective.

Other approaches to solving MOPs include the
weighted metric methods, Benson’s method, goal pro-
gramming methods, and some interactive methods.
Evolutionary algorithms are popular tools for solving
multi-objective optimization. They all have advan-
tages and disadvantages in one way or another.

3. The Concrete MOP Formulation

A concrete formulation of the MOP (2) can be derived
by specifying how to calculate the Remp(f) (the first
objective) and how to estimate the VC dimension h(F)
(the second objective). These specifications depend on
the definition of the set of possible functions F .

SVMs construct decision models based on linear func-
tions. Nonlinear models can be obtained via the so-
called kernel substitution. By using a kernel, the origi-
nal input vector xi is transformed to zi = Φ(xi) which
is in a usually high dimensional feature space denoted
as Z. A kernel function in the input space corresponds
to an inner product in the corresponding feature space.
The feature space is uniquely determined by the kernel
function and its parameters. For example, a common
type of kernels is polynomials, and the parameter for
this type of kernels is the order of the polynomial. Let
us generally denote a kernel by ks(·, ·) with parame-
ter(s) s, and the corresponding mapping operator by
Φs. Note that for a given type of kernels, the fea-
ture space or the mapping is solely dependent on the
choices of the parameter(s) s.

To construct a decision model, we first describe
the smallest ball containing all transformed vectors
Φs(xi). Assume that the transformed vectors are cen-
tered to have mean 0. This can always be done by
an appropriate transformation of the kernel. For an
arbitrary kernel k(x, x̃) and the corresponding feature
space Z, the following kernel

k̂(x, x̃) = k(x, x̃) − 1
�

∑�
i=1 k(x, xi)

−1
�

∑�
i=1 k(xi, x̃) + 1

�2

∑�
i,j=1 k(xi, xj).

maps the input vectors to vectors in Z with mean 0.
We then approximately look for the ball BR = {z ∈
Z : (z · z) ≤ R} with center at the origin and the
smallest possible radius

√
R, which contains the im-

ages Φs(xi), i = 1, · · · , �. This implies that for any i,



(Φs(xi) ·Φs(xi)) = ks(xi, xi) ≤ R.

In the feature space Z determined by ks, consider
the set of hyperplanes {z ∈ Z : (w · z) + b = 0}
that separate the transformed data (Φs(xi), yi) with
a margin, i.e., satisfy mini=1,···,� |(w · Φs(xi)) + b| = 1
with (w · w) ≤ W . The margin is calculated as
1/

√
W . For any hyperplane in the set of separating

hyperplanes, the decision model can be constructed as
gw,b = sgn ((w · z) + b) where z ∈ BR. The domain of
the decision model is BR. The VC dimension h of the
set {gw,b : (w ·w) ≤ W} has an upper bound as

h ≤ RW + 1 (6)

provided the dimension of the feature space is larger
than RW . This is often the case encountered in prac-
tice. This upper bound is tight when data vectors are
uniformly distributed right on the surface of the ball.

The decision model gw,b classifies the vectors in BR

with the margin 1/
√

W . In many practical applica-
tions, such a decision model does not exist. To al-
low for the possibility of errors, the slack variables
ξi ≥ 0, i = 1, · · · , � are introduced (Cortes & Vap-
nik, 1995; Vapnik, 1998) such that

yi ((w · Φ(xi)) + b)} ≥ 1 − ξi.

Now we specify the set of functions F = {gw,b : (w ·
w) ≤ W} in the learning process. Then RW + 1 can
be regarded as an estimate of the VC dimension of F .
The empirical risk for this set of functions is computed
as

∑�
i=1 ξi. We thus formulate the MOP in variables

w, b, ξ, s, W and R as

min
∑�

i=1 ξi (7)
min RW (8)
s.t. yi ((w · Φs(xi)) + b) ≥ 1 − ξi,

ξi ≥ 0, i = 1, · · · , �, (9)
(w · w) ≤ W, (10)

ks(xi, xi) ≤ R, i = 1, · · · , �. (11)

We refer to this problem as the master MOP (MMOP).
Note that it is equivalent if we remove the constraint
(10) instead write the second objective as R(w · w).
Then the problem has fewer constraints, but a more
complicated objective. The question of which way is
more computationally efficient is not examined here.
The above formulation MMOP was used in our experi-
ments. The MMOP serves as a mechanism to minimize
the VC bound (1). Once a solution (ŵ, b̂, ŝ, Ŵ , R̂, ξ̂)
is determined, the MOP approach constructs the op-
timal decision model based on the separating hyper-
plane {z : (ŵ · z) + b̂ = 0} in the feature space char-
acterized by kŝ. In addition, the model is chosen from

the set F with VC dimension close to R̂Ŵ + 1. In
the next section, we investigate approaches to solving
the MMOP. By exploiting these approaches, we obtain
distinct SVM formulations.

4. Deriving SVM Formulations

As we introduced in Section 2, solving a MOP of-
ten involves converting multiple objectives to a single
one. To derive the class of SVM algorithms (Boser
et al., 1992; Vapnik, 1998) based on the MOP frame-
work, the master MOP has been simplified. For
a given kernel with fixed parameter s, the value of
ks(xi, xi) for any xi is correspondingly fixed, and
R = max{ks(xi, xi), i = 1, · · · , �} is a constant. The
constraint (11) can then be removed since it does not
take effect when optimizing the MMOP. Minimizing
the RW is equivalent to directly minimizing (w · w)
and omitting the constraint (10). Now the MMOP is
simplified to the following MOP

min
∑�

i=1 ξi

min (w · w)
s.t. yi ((w ·Φs(xi)) + b) ≥ 1 − ξi,

ξi ≥ 0, i = 1, · · · , �.
(12)

Note that the constraints here are linear in terms of w,
b and ξ. This MOP has convex objectives and linear
constraints, so it has convex Pareto frontier.

4.1. Classic SVMs

The weighted sum method becomes a good choice for
finding the Pareto-optimal set of MOP (12). Any
Pareto-optimal solution to the problem (12) can be
obtained by minimizing the composite objective func-
tion

1
2
(w ·w) + C

�∑
i=1

ξi

for an appropriate value of C. This actually pro-
vides a new perspective to explain the foundation
of SVMs besides the regularization theory (Evgeniou
et al., 2000). In practice, we do not need the entire
Pareto-optimal set. Instead we search for the particu-
lar Pareto-optimal solution that minimizes the bound
(1). In other words, C should be tuned in such a way
that the obtained model gw,b produces the smallest
value of the risk bound (1).

4.2. Rigorous SVMs

Similarly, the constraint method can also be applied to
the MOP (12) to explore its Pareto frontier. Suppose
we minimize the empirical risk and restrict the VC



dimension by forming a constraint on the second ob-
jective as (w ·w) ≤ W . Here W is no longer a variable
as in the MMOP, but a user-specified parameter. The
resulting optimization problem called “rigorous SVM”
(RSVM) (Vapnik, 1998)is stated as follows:

min
∑�

i=1 ξi

s.t. (w ·w) ≤ W,
yi ((w ·Φs(xi)) + b) ≥ 1 − ξi,

ξi ≥ 0, i = 1, · · · , �.
(13)

Solutions to RSVM depend on the choices of W . W
should be selected within a reasonable range to achieve
small values of the risk bound. Basically, the VC di-
mension is an integer in [1, �]. A proper range for W
can be designated based on the analysis of the bound
(1) and the property of VC dimension (Vapnik, 1995).

4.3. More General Cases

In many practical situations, we also adjust the ker-
nel parameter s in the learning process. The radius of
the ball

√
R may vary when reducing the dimensional-

ity or creating a composite kernel (Lanckriet et al.,
2002) where the above simplification may be unde-
sirable. We have to solve the non-convex MMOP it-
self. It may have non-convex frontier, so the constraint
method is more applicable to solving the MMOP than
the weighted sum method in order not to miss the
opportunity to identify a Pareto-optimal solution. In
general, to achieve a Pareto-optimal solution, we can
optimize one of the objectives (7) and (8) on all vari-
ables w, b, ξ, s, R and W with a constraint con-
structed on the other objective. Unfortunately, the
resulting problems suffer the difficulties, such as the
unknown mapping Φ and the strong nonlinearity of
the problems, and thus may not be practically ap-
plicable. Proper approximation schemes are needed
to create acceptable solutions, not necessarily Pareto-
optimal solutions. We propose such an approximation
procedure to simplify the computation at expense of
potentially losing optimality.

5. Acceptable Approximation

The scheme is motivated by the constraint method
and can be viewed as an approximate way to solve
the problem formed by the constraint method. It is
an iterative procedure with each iteration consisting
of two consecutive steps. The first step is to optimize
the empirical risk subject to the constraint on the VC
dimension. The second step is to optimize RW with
a restriction on the empirical risk. We partition the
variables into two groups (w, b) and (s, R, W ), and the
slackness ξ is included in both groups. The empirical

risk (7) is optimized on (w, b, ξ) and the VC dimension
(8) is optimized on (s, R, W, ξ).

In the first step, we fix s, so the radius parameter of the
ball R becomes a constant. Following the same argu-
ments in Section 4, the constraint (11) can be omitted.
We restrict (w · w) within a fix value W . The prob-
lem is converted to the RSVM (13) in variables w, b,
ξ to minimize the empirical risk. After we obtain the
optimal solution (w, b, ξ) with respect to the current
values of s and W , we proceed to the second step. In
the second step, we set the variables w and b to the
solution found in the first step. Now the problem op-
timizes the VC dimension over variables s, R, W and
ξ. Moreover, the objective (7) is restricted to be no
more than the optimal objective value obtained in the
first step. Then we use the optimal s and W obtained
in the second step in the next iteration.

The first step focuses on improving the performance
of the classification model by minimizing the empiri-
cal risk with a fixed VC dimension. The classification
model is constructed on a linear function in the fea-
ture space particularly defined by s found in last it-
eration. By optimizing on s, the second step seeks a
feature space, for which a smaller VC dimension can
be possibly achieved with the empirical risk preserved.
The second step is not aimed directly at enhancing the
learning performance because it does not search for a
classification model, instead for a kernel function.

Algorithm 1:

1. Initialize s0 and W 0 with appropriate values. Set
t = 1.

2. Solve the dual formulation of RSVM (13) (Vapnik,
1998) with the fixed st−1 and W t−1,

min
α

√√√√W t−1

�∑
i,j=1

αiαjyiyjkst−1(xi, xj) −
�∑

i=1

αi

s.t.
∑�

i=1 αiyi = 0,
0 ≤ αi ≤ 1, i = 1, · · · , �,

(14)
and compute the optimal bt, wt =

∑�
i=1 αt

iyiΦst−1 (xi)
where αt is constructed by dividing the optimal solu-
tion α̂ to Problem (14) (Vapnik, 1998) by

γ =

√∑�
i,j=1 α̂iα̂jyiyjkst−1(xi, xj)√

W t−1
.

Calculate the corresponding optimal objective value
Et of Primal (13).

3. Substitute the wt and bt into the MMOP, and
restrict the first objective to be no more than Et. Solve



the resulting optimization problem

min
s,R,W,ξ

RW

s.t. yi




�∑
j=1

αt
jyjks(xj , xi) + bt


 ≥ 1 − ξi,

ξi ≥ 0, i = 1, · · · , �,∑�
i=1 ξi ≤ Et,

�∑
i,j=1

αt
iα

t
jyiyjks(xi, xj) ≤ W,

ks(xi, xi) ≤ R, i = 1, · · · , �,
(15)

to obtain st and W t.
4. Determine if more iterations are needed, for

instance, if either Et or Ht = RtW t is decreased, set
t = t + 1, and go to Step 2; otherwise, stop.

This scheme does not guarantee to achieve a Pareto-
optimal solution to the MMOP due to the decompo-
sition of the variables into two sets, and the partial
optimization of each step on only a subset of vari-
ables. However Proposition 1 shows that it improves
the solution in the way that each iteration produces a
model f in F whose empirical risk is no larger than
that at the previous iteration. The VC dimension of
F is no larger than the one at the last iteration. If
the algorithm can strictly reduce both objectives to
some degree, it identifies acceptable solutions relying
on the users preference. Furthermore, this scheme is
computationally tractable since it does not require the
mapping Φs, nor the explicit definition of a kernel as
long as the kernel matrix can be computed in terms of
s as a positive semi-definite matrix.

Proposition 1 (Approximation Performance)
Let Et−1 and Ht−1 be the optimal objective values re-
spectively of the first step and the second step at the
previous iteration. Let Et and Ht be the corresponding
optimal values at the current iteration. Then we have
Et ≤ Et−1 and Ht ≤ Ht−1.

Proof. This proof is based on the fact that the
optimal objective value of a problem has to be no
worse than the objective value of any feasible point.
An iteration of Algorithm 1 starts with solving Prob-
lem (14) with fixed st−1 and W t−1. For the sake of
simplicity, we consider the corresponding primal prob-
lem (13). Realize that st−1 and W t−1 were obtained
by optimizing Problem (15) at last iteration. By ex-
amining the constraints of Problem (15), the solution
(w̄ =

∑
αt−1

i yiΦst−1 (xi), b̄ = bt−1) is feasible to Prob-
lem (13) with

∑
ξi ≤ Et−1. Since Et is the optimal ob-

jective value of Problem (13) at the current iteration,
Et ≤ Et−1. Following the same line of arguments, we

can show that Ht ≤ Ht−1 too.

6. Feature Selection

Based on the MOP framework, we propose a feature
selection approach aimed at reducing the dimensional-
ity without impairing the model prediction accuracy.
The feature selection is performed by associating each
feature xi with a scaling factor si. The larger values
of si indicate more useful variables, and the dimension
xi corresponding to a si = 0 is vanished in the model.
We define a kernel function as k(xi, xj) = x′

iSxj where
S is a diagonal matrix with diagonal entries si ≥ 0.
The mapping introduced by this kernel can be ex-
plicitly expressed as x = (x1 x2 · · ·xn)′ �→ √

Sx =
(
√

s1x1
√

s2x2 · · ·√snxn)′ that defines a feature space.
Algorithm 1 constructs decision models based on a
function from the set {f(x) = w′Stx + b : w′Stw ≤
W t} at the tth iteration. Notice that there is no need
to center this kernel since the images of input data
have mean 0 already if input data are centered.

The feature selection approach, which we call MOPFS,
can be regarded as a special case of Algorithm 1 with
ks(xi, xj) replaced by x′

iSxj and s = (s1 s2 · · · sn)′.
Notice that all constraints in Problem (15) become lin-
ear in terms of s, so Problem (15) is merely a quadratic
program. Step 3 of Algorithm 1 has been slightly mod-
ified to fit our goal to reduce the number of features.
We minimize the objective RW + c

∑n
i=1 si where c

is chosen as a small number relative to RW so that
if two solutions s exist, the modification prefers the
sparse one with a few si non-zero. In order to take
into account the result obtained at previous iterations,
we transform input data by xi =

√
St−1xi in problem

(15), and solve problem (15) gives the optimal Ŝ. Then
the actual scaling matrix at the tth iteration becomes
St = ŜSt−1 in terms of original data. Suppose that
the algorithm runs T iterations. The final scaling ma-
trix ST = ŜT · · · Ŝ1S0 where the initial scaling matrix
S0 = I, an identity matrix of appropriate dimension.

7. Computational Results

The goals of our experimental study were to assess
the generalization performance and computational be-
haviors of the proposed MOPFS approach, and com-
pare the approach to other feature selection meth-
ods. Other methods include three filter methods and
a SVM-based feature elimination approach called VS-
SSVM (Bi et al., 2003). The filter methods chose the
same amount of features as that in MOPFS accord-
ing to Pearson correlation coefficients, Fisher crite-
rion scores and Kolmogorov-Smirnov (KS) test (We-



0.1 0.2 0.3 0.4 0.5
0   

0.03

0.06

0.09

0.12

0.15

0.18

W0/l

l=100,train
l=100,test
l=500,train
l=500,test

1 2 3 4 5 6 7 8
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18 571

156

129

114 114 114 114 114

Iteration

RW
train risk
test risk
# of feature

5 10 15 20 25

5

10

15

20

25

Figure 2. Left: results with varying W 0. Dotted lines stand for � = 100, and solid lines for � = 500. Middle: values of
RW , the training and test error rates at each iteration. The curve for RW actually represents the ratio RW/�. The
numbers of selected features are also included by rescaling to fit in the figure with the numbers beside the curve. Right:
the selected 114 features obtained by MOPFS. Each feature is gray scaled according to its weight si (� = 500, W 0 = 49).

ston et al., 2000). In the VS-SSVM method, sparse
linear SVMs were constructed to generate linear mod-
els based on 20 distinct partitions of training data.
The final set of selected features were the aggregate of
non-zero weighted features found by each of the 20 lin-
ear models. We conducted all the experiments on the
MNIST database of handwritten digits, downloaded
from http://yann.lecun.com/exdb/mnist/. The digits
had been size-normalized and centered in a 28 × 28
image. We try to solve the classification problem of
distinguishing odd numbers from even numbers. The
database contains 60,000 digits. We took the first 100
and 500 digits respectively as two training sets. The
1000 digits after the 10,000th digit and the last 10,000
digits of the database were used as the validation set
and the test set, respectively. For fair comparison, all
methods were followed by RSVM training to construct
their final classifiers. The parameter W 0 in RSVM was
optimized based on the validation set for the reduced
data from each feature selection method. Then the
classifiers obtained with the best W 0 were evaluated
on the test set to calculate Rtst shown in Table 1.

The data were preprocessed in the following way: ex-
amples were centered to have mean 0 by subtracting
the mean of the training examples; then each variable
(totally 28 × 28 = 784 variables) was scaled to have
standard deviation 1; after that, each example was
normalized to have �2-norm equal 1. Note that the
test data should be blinded to the learning algorithm.
Hence the test data were preprocessed using the mean
and standard deviation of each variable computed on
training data. By performing this preprocessing, the
input data were transformed to the surface of the unit
ball (R0 = 1) centered at the origin. Then W 0+1 pro-
vided a firm estimate of h of the initial F . This step

of preprocessing also removed the variables that have
all values 0, thus only 571 variables were remained.

We used a preliminary solver written in C++ available
at www.cs.rpi.edu/˜bij2/rsvm.html to solve the dual
RSVM (14) and MINOS 5.5 optimization software to
solve Problem (15). Algorithm 1 can be viewed as a
constraint method for solving a MOP, so the initial W 0

plays a crucial role in the trade-off of the training error
versus model capacity. We examined the performance
of MOPFS for a large range of choices of W 0. W 0 was
chosen such that h/� ∈ [0.05, 0.5]. Figure 2(left) plots
the training and test risks versus W 0/�. The empir-
ical risk decreases monotonically with W 0 increasing
whereas the test risk curves have minimum points at
about 0.1�. As an example, Figure 2(middle) shows
the computational behaviors of MOPFS in each itera-
tion for � = 500 and W 0 = 49. We can see a decrease
of the test risk as the VC dimension and the empirical
risk decrease. Meanwhile, the number of features is
dramatically reduced from 571 to 114. In all MOPFS
experiments across various � and W 0, the generaliza-
tion performance was either enhanced or preserved
with iteration running forth. Figure 2(right) visualizes
the selected 114 features in the original image setting.
The comparison as shown in Table 1 reveals that the
elimination of features hardly improved or even im-
paired the generalization ability for the three ranking
methods compared with the model constructed on all
variables. MOPFS and VS-SSVM performed similarly
on the larger dataset, but VS-SSVM exhibited poor
prediction accuracy for � = 100 though greatly reduc-
ing features. The sparsity of support vectors could also
be enforced with more features eliminated. We leave
extensive comparison with other feature selection ap-
proaches on more data to future research.



Table 1. Comparison of our approach MOPFS with the filter methods and the VS-SSVM approach for training sizes equal
to 100 (left) and 500 (right). The N Feat, N SV, Rtrn and Rtst represent the numbers of selected features and support
vectors, and the training and test risks. The ratio h/� was computed as (W 0 + 1)/� where W 0 was tuned based on the
validation set. The FULL models without feature selection are also included

Method h/�(100) N Feat N SV Rtrn Rtst h/�(500) N Feat N SV Rtrn Rtst

Full 0.25 571 65 0.04 0.1898 0.15 571 214 0.070 0.1322
MOPFS 0.10 43 35 0.05 0.1687 0.10 114 158 0.040 0.1227
Pearson 0.16 43 42 0.06 0.1882 0.13 114 163 0.088 0.1502
Fisher 0.16 43 40 0.07 0.1890 0.10 114 168 0.074 0.1415
KStest 0.16 43 39 0.05 0.1880 0.10 114 175 0.092 0.1510
VS-SSVM 0.16 38 47 0.05 0.1910 0.13 162 152 0.048 0.1205

8. Conclusion

This work basically addresses two issues. The first is-
sue concerns the fundamentals of constructing SVMs.
A learning process needs to perform capacity control
while minimizing the empirical risk in order to min-
imize the generalization risk. VC dimension is often
used as an effective measure of the model capacity.
An upper bound shows that it relates to the margin
of separation and the radius of the smallest ball con-
taining empirical data. SVMs (Section 4.1 and 4.2)
usually seek the optimal decision model which pro-
duces the largest margin between the decision bound-
ary and each of the classes. They do not explicitly
regulate the radius of the ball. The MOP framework
proposed herein provides us an approach to controlling
the radius of the ball as well as the margin. It thus
enables more rigorous implementation of the learning
theory. Existing SVM formulations can be viewed as
special cases of the MOP with appropriate simplifi-
cations, and thus are incorporated in this framework.
The second issue is that we address the feature se-
lection problem by developing an approach under this
MOP framework. It performed better on real-world
data sets of hand-written digits than some existing
methods, showing that the MOP framework can be
practically useful.

Open problems include the development of more effi-
cient approximation schemes for solving the MOP. A
major problem of our scheme is that it can get trapped
at a local minimizer. For example, if we fix s in Prob-
lem (14) to obtain the ŵ and b̂, solving Problem (15)
with ŵ and b̂ may not generate a new s because the
initial value of s is likely to be optimal to Problem
(15). The MOP framework may be more useful in
transductive inference where the labelling of empirical
data is incomplete since the information of unlabelled
data can be easily incorporated into the calculation of
the radius of the sphere containing data.

Acknowledgements

The author thanks Vladimir Vapnik for insightful sug-
gestions and the referees for their useful comments.

References

Bi, J., Bennett, K. P., Embrechts, M., Breneman, C.,
& Song, M. (2003). Dimensionality reduction via
sparse support vector machines. Journal of Machine
Learning Research, 3, 1229–1243.

Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992).
A training algorithm for optimal margin classi-
fiers. Proceedings of the 5th Annual ACM Workshop
on Computational Learning Theory (pp. 144–152).
Pittsburgh, PA: ACM Press.

Cortes, C., & Vapnik, V. (1995). Support vector net-
works. Machine Learning, 20, 273–279.

Eschenauer, H. A., Koski, J., & Osyczka, A. (1986).
Multicriteria design optimization: Procedures and
applications. New York: Springer-Verlag.

Evgeniou, T., Pontil, M., & Poggio, T. (2000). Reg-
ularization networks and support vector machines.
Advances in Computational Mathematics, 13, 1–50.

Lanckriet, G., Cristianini, N., Bartlett, P., Ghaoui,
L. E., & Jordan, M. (2002). Learning the kernel
matrix with semi-definite programming. Proceedings
of International Conference on Machine Learning.

Vapnik, V. N. (1995). The nature of statistical learning
theory. New York: Springer.

Vapnik, V. N. (1998). Statistical learning theory. New
York: John Wiley and Sons Inc.

Weston, J., Mukherjee, S., Chapelle, O., Pontil, M.,
Poggio, T., & Vapnik, V. (2000). Feature selection
for SVMs. Neural Information Processing Systems
(pp. 668–674).


