Supplementary Materials for ‘A Sparse Interactive
Model for Matrix Completion with Side Information”

Jin Lu Guannan Liang Jiangwen Sun Jinbo Bi
University of Connecticut
Storrs, CT 06269

{jin.lu, guannan.liang, jiangwen.sun, jinbo.bi}@uconn.edu

Here we present the proof of the three theoretical parts related to our work, including the exact
recovery analysis, e-recovery analysis and the convergence analysis. Algorithm details are followed
from the theoretical part. The feature description table of the drug discovery dataset is displayed in
the last section.

1 Exact Recovery Sampling Complexity

Theorem 1 Let i = max(jug, ixy), 0 = max(|| S5 |+, |Z5 +)- o, pxy are calculated

from F. Denote qy = %(1 + loga — logr), Ty = 1238p0umax(u1,u)r(a + b)log N and

T, = %02;;2 (ab + TQ) log N. Assume T1 > qoTy, X and Y are orthonormal. For any p > 1,
with a probability at least 1 — 4(qo + 1)N P+ — 2¢oN=P*2, G and B are the unique optimizer
to the problem (3) in our formulation if

4
Q| > %au max(p1, 1) (1 + loga — logr)r(a + b) log N

For proving Theorem|[I} we introduce the Lemma ]| stating two deterministic conditions for G and
E, to be the unique minimizer of our problem. It can be proved in Lemma[2} Lemma[9)and Lemma
that under a high probability the assumption Al and A2 hold. So let us first give Lemma 1 as
below:

Lemma 1 We assume that for any M # 0, M € R™*" satisfying Ro(M) = 0 and M =
PxM Py, then we have

Al |[Pr(M)||p < ¢||Prs (M)|[F,

a
c<yfa

And assume that there exists a matrix H € R™*"™ such that

where

r 1
A2 Ro(H) =H,|Pr(H) - UVT|p < \/ 5g 1Pr=(H)[ < 5
Moreover we assume that there exists a constant Cy such that

a3 —CV/5
A3 [|Gof1=s< : g ) )’

C

where C < Cy, then G and Eq are the unique minimizer to our optimization problem.
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Proof. Assuming the solution is not unique, there exists another solution Go + AG and Eg + AE
with AG, AE # 0. Basically our aim is to prove the contradiction that |Gy + AG|1 + || Eo +
AE[l. 2 [|Gollx + [[Eo

In order to prove the contradiction, we illustrate several useful facts below:

(1) Ro(XT(Go+AG)Y) = Ro(XTG(Y) and X” (Go+ AG)Y = Px (X" (Go+AG)Y)Py,
as Go + AG minimizes the original problem.

) XTAGY # 0, since XXTAGY YT £ 0 for X and Y are full row rank.
(3) XTAGY = Px(XTAGY)Py, Ro(XAGY) = 0.

@) |Pr(XTAGY)||r < ¢|Pr(XTAGY)||r < ¢||Pre (XTAGY)]|. since X' GoY # 0 with
Condition Al.

(5) UL and V| are the left and right singular vectors of PT(XTAGY), while UTU, = 0 and
viv, =o.
Denote A = A\g /A for simplicity, then we can obtain that
[Eo + AE[|. + AlGo + AG||x

=[X"(Go + AG) Y|l + |Gy + AG|s

=[IX"(Go + AG)Y[L|UVT + UL V| +A|Go + AG|,
since the [[UV” + U, VT || = 1, where the norm is the operator norm. Then

IX7(Go + AG)Y|LIUVT + UL VT | + A|Go + AG]:

> <XT(G0 +AG)Y,UVT 4 ULVCE> +M|Go + AG|;

- <XTG0Y, UVT> + <XTG0Y, ULVf> +
<XTAGY, uv7” 4+ ULVE> +M|Go + AG]|;
~[|Eoll. + (XTAGY, UV” + UL V] — H) + A|Go + AG]x

This is obtained from the assumption A2 and matrix norm inequality. One can obtain the derivation
by the norm inequality as follows,

<XTAGY, uv? U, vl - H> +A|Go + AG||;
- <PT(XTAGY),UVT - PT(H)> n <PTL (XTAGY), U, VT — P, (H)> +\|Go + AG|;

>[|Prs (XTAGY)|. — [ Pr(XTAGY)|||[UVT — Pr(H)|

— | Pre (B)||pl|Prs (XTAGY)|. + A Go + AG
(D

using the assumption Al and A2 then organizing the terms, we could get
o + AE|l. + A|Go + AG],

1 r
> Eoll« + [| P+ (XTAGY)H*(* — G\ 55) T AIGo + AG:

T )
> Eolls + |1Pre (XTAGY)| (= — ¢ +/\\|G0H1 —\s

r

> Eoll« + Al|Golly + [|Pr+ (XTAGY)II*(§ —C\/g,) A

Slnce | Pro (XTAGY)|[, (2 —¢, /5=) > 0 which is implied from assumptlon A2, by observing Eq.
(2). once (i) A(|Go + AGH ) > Ne > N[Goll1, or (i) | Pro (XTAGY) || (L = ¢/Z) = As >0

is proved, the result could lead to a contradiction. We prove it by separating the problem into two
cases.



If the case (i) holds, we can directly obtain from Eq. (2) that |Eq + AE|. + A|Go + AG]|; >
[Eoll+ + AllGoll1-

In the contrary case of case (i), let us assume \(||Go + AG]||1) < A||Gol|1. First consider the case
if the possible minimizers G’s exist in the small e-ball B.(Gy) as a continuous neighbour of Gy,
such that ¢ < min, ; |G;;|. Then for each G, = {Go + AG € B.(Gy)}, it satisfies |G;|[1 >
IGoll1 — abe. Hence A(||Go + AG|1) > As — abXe. Since ¢ is arbitrary, A\(||Go + AG||1) > As.
Therefore, in this case the condition (i) is satisfied, which leads to the contradiction.

Otherwise, consider the minimizers G’s exist outside of the e-ball B.(G), which means G is an
isolated minimizer. Let us assume that there exists a constant C” such that for all AG,

|Pro (XTAGY)||r > C' > C > 0.

Here from the assumption A3 we can derive

1
1P (XTAGY)IL (G — ¢y [~ s

1 r
>||Pre (XTAGY)HF(§ - %) —As

1 r
>O0(= — R
>C(5 = Cyf52) — As
>0

Thus the condition (ii) is satisfied.

Suppose there is no such a constant C” satisfying the above condition. This implies that there exists
infinite minimizers and we can obtain a sub-sequence {AGy, }7° ; satisfying

Jim || Pr. (XTAG,Y)|r=0 3)
Due to the nuclear norm inequality and the fact (4) we further infer that
0.< lim |Pr(XTAG, Y)||p < lim [|Prs (XTAG,, Y)|p =0 €y
Combining Eq.(3) and Eq.() we have
Jim IXTAG, Y|r=0 S
Eq. implies that the infinite sequence {G + AG}2 v C Bc(Gyg), which is contradicted to the

fact that no minimizers G’s exist within the e-ball B.(Gy). Therefore, the above all clarify the truth
that the Eg + AE and Gy + AG are not the minimizer for our optimization problem. i

1.1 A1 holds with high probability

In this subsection we prove that Lemma 2] holds with some certain probability. Lemma [2|roots from
combining the results from Lemma [5|and Lemma [6] which upper-bounds || Pr(M)||r and lower-
bounds || Pr. (M)||r and clarify the inequality between them. Lemma|[3|and 4] are cited from [7]] to
facilitate the proof.

Let’s first illustrate Lemma[2] as below.

Lemma 2 With a certain probability at least 1 — AN P, for any Ml # 0, M € R™*" satisfying
Ro(M) = 0 and M = PxM Py we have

[Pr(M)||F < ¢l Pre (M)||F,
where ( is the same as in Lemma ifTo < |9 < T.

Proof. Since Ro(M) = 0 and M = PxMPy, we have RoPr(M) = —RqPr. (M). Then we

could attain
mn

€2

mn

<Ma PTRQPT(M)> = |Q|

(M, Pr.RoPr.(M))



First, according to Lemma and Lemma@ with a probability at least 1 — 4N ~P*1, we have

1 mn
§||PT(M)||2F Sﬁ (M, PrRq Pr(M))
1602pu?(ab + r?) log N
- 3|
< 1602pp?(ab+ r?)log N
- 3Ty

1
=2 1Pr (M)

1Pr+ (M) 7

1Prs (M) 7

finally we have
1

V2

while » < a, we have % </ 2‘17 so the lemma proved. I

1
SIPrMllr < —=1Pre (M)|lr

Before we prove Lemma [5] and Lemma [6] which we which upper-bounds || Pr(M)||r and lower-
bounds || Pr. (M)|| on certain conditions, we first need to illustrate Lemma [3|Lemma [4] derived
from the Bernstein Inequality [5].

Lemma 3 Let Xy, ..., X, be independent zero-mean random matrices of dimension dy X ds. Sup-
pose p; > max{|E[Xp X} ||, |XE X ||} and | Xy || < M almost surely form all k. If we assume

di+ds 3
Mr"log% <=3k,

then with a certain probability at least 1 — £, we have,

L L
8. d d
IS X4 < | S Z 2y 2.
k=1 k=1

w

We can also give Lemma ] which can be derived from Lemma 3]as below;

Lemmad Let X, ..., X, be independent zero-mean random matrices of dimension dy X ds. Sup-
pose p3 > max{|E[Xp X 7|, IXi Xk ||} and | X || < M almost surely form all k. If we assume

di+d 3
Mo SR < 237 g
then with a certain probability at least 1 — &, we have,

dy +da

L
8
Xl < =M1
3% < M log =

next we will bound || Pr — f&t Pr Ro Pr|| by using Lemmaand Lemma

Lemma 5 With a certain probability at least 1 — 2N ~PT1, we have

‘ < \/8pu2r(a +b)log N

32|
if |Q] > %p/fr(a + b)log N and therefore, for any M € R™m*™,

mn
Pr — +—PrRoPr
€2

mn

1
o (ML PrRaPr(M)) > 5l Pr(MD)]:

if19 > To.



Proof. For any M € R™*", we have

PrRoPr(M)= Y (Pr(M)ee]) Pr(eie]) = > (M, Pr(eie])) Pr(ee]).
(5,4)€Q (i,4) €€

For any i € [m] and j € [n], define linear operator T; ; as
T;;(M) = (M, Pr(ee})) Pr(e;e}) = PrR(; j Pr(M),

where R(; ;y(M) = e;el M, ;. So that

PrRoPr(M) = Y PrR;;Pr(M)= Y T;;(M).
(4,§)EQ (i,7)€Q

To implement Lemma we need to give M and the corresponding p?. Since || Pr — Iﬂl = PrRo Pr|

can be viewed as the spectral norm of |€2| independent zero-mean random variables 9] L Pr— T?{IL T; ;,
then we have

1 mn
—p - < P y
|||Q| T |Q| ,jH —maX{H|Q| T” |||Q| ,]”}
=max{||— Pr||, arg max || <M,PT(eie?)>PT(eie;r)||F}
IQI \ \ M =
=max{|||Q|PT|| \m ax (M. Pr(ee])) [ Preiel) )
=max{||;5; PTII, HPT(ez Bl

To bound || Pr(e;el ) ||, we get

|Pr(eie] )| r = (Pr(ee] ), ee] )
<Px(ee )Py, e;e T> <PU(ee )Py,ee > <PU e;e; Py, e; eT>
=||Px(eie] )Py | r + || Pu(eie] )Py |r — ||Pu(eie] )Py | r

<||Pxeillr||Pve;lr + [|Pueill 7| Pye;lF

a, T 7o b,
<IXTVXEVE [ T YTV SV [

m n
_1y GHXY THo 7“/~t0 buxy
<, XY T sy, o b
SUTMOHXY(G‘H)) < TTH (CH‘b)_
mn mn
Therefore
mn
i Pr — oty < max{l| - Prll, T | Pr (e ef)lr}
|9| Q" €2 |9|
ory (a+b) oru®(a+b)
< Pr|, ——= e —
e Pl b = max{ g, 0
— max{ 1 ar/L?(aer)}: oru®(a+ b) M
1]’ mn mn



Since that |51)| E[PrRoPr(M)] = - Pp(M), the corresponding p7 ; can be calculated as

1 mn 1 mn

2 —|E[(—Pr — —T; ) (—=Ppr — —T, .,
pz,] || [(|ﬂ| T |Q| ,]) (|Q| T |ﬂ| ,])]”
m?n?
=||E PrP, =5 1315 P T;
|| [‘Q‘Q T + |Q|2 |Q|2 T a]]H
m?n?
:||WPT+W]E[TLJ'TLH |Q|2 PT]E[ il
1 m?n? 2mn 1
=|—=%Pr + —5E[T;,T; ;] — ~=5Pr—Pr||
|22 |22 QP " mn
m?n? 1 2p? 1
E[T; ;T;, —— P E[T; ;T 5], 7= Pr
|| ‘Q‘Q [ ] |Q|2 TH _max{ |Q|2 [ ] ‘Q‘Q }
2,2
< max{-53 Tk E[||Pr(eie])|r I Ti;ll; |Q|2}
m2n? orp?(a+b) 1
< i -
_maX{ |ﬂ|2 mn mnH T”]a |Q|2}
~orp?(a+b)
R

By Lemmaa let M = W and p? = %, we conclude with a certain probability
1—2N—PHL

8 m+n orp?(a+0b) 8opru?(a +b)log N
P P RoPr| <4/=1 <
|| T — ‘Q‘ T TH \/3 og oON-p+1 |Q| = 3‘9‘

which also should satisfy the condition that

a*r?pt(a +b)? o m+n §cr1"u2(a+b)
QP EON—1 =87 Q)

which means
S8opru®(a+ b)log N

12| >
3
Moreover, if |Q2] > T, > w, then
Bopu?r(a+b)logr 1
P PrRqP. < =
‘T n””—\/ 319 S 2

By utilizing the property of matrix norm, we have

(M. Pr(M) = T PrRaPrOM) ) < JIPEOMI

o
So that
1
(ML Pr(M) — 3Pr(MD < (ML Pria PrOMD)).

which we can easily derive

1 mn

S 1PrOMI < T PrRaPr (M),
1

Following the similarly outline of the proof as Lemmal[5 we can prove the following Lemmal6]



Lemma 6 With a certain probability at least 1 — 2N P+ we have
8a2pu?(ab +r?)log N
— @PTJ_RQPTJ_ o pi”(ab+17) log

| <
2 39|
i1 > Ty = %aqur(a + b)log N and therefore, for any M € R™*™,

1602pu?(ab + r?) log N
Q|

Pr.

T (M, Pri R Pr. (M)

IN

Then based on Lemmal[5|and [f] we can prove that A1 holds with a certain high probability.

1.2 A2 holds with high probability

In this subsection we aim to investigate the condition when A2 holds with the high probability.
Like the similar approach we propose above, we also need to bound the following two terms

% |Prr RoPr(H)|  and || Pr(H) — 7\?}\ PriRoPr(H)|o in Lemmaandrespectively where

|| - || oo is the maximum entry of a matrix.

Lemma 7 For a fixed H € R™*"™, with a probability 1 — 2N P+, we have

|8opmnualog N
— || PrL Rq P, <|1Pr(H)||ooy | — ==,
Proof. We write

PriRoPr(F)= > (H,Pr(eie]))Pri(eie])= > T,
(i.)EQ (i.4)€Q

where T; ;(H) = (H, Pr(e; e; ) Pri(e; e; 7). Evidently,
E[Pr. RoPr(H)] = 0.

To use Lemma we compute M and p? as,

if 12| > To.

= max T
i€[mlj€n] 17551

< max max H, Pr(e;e P €€
_ie[m]je[n]l\F\IFﬂ'M rleie))) Pre(eie; )l

max <H Pr(e;e >PTL e;e T)

T i€lm]je(n]
<|[Pr(H)[| max IIPJu(ee F
i€[m]j€n
u2o? (ab—|—7‘ )
<Py (HD) o D)

and
P} = max{||[E[T;;, T3], 1EIT, Ti ]}
=||Pr(8)||5, max{||E[Pr- (e;e] )" Pr. (eie] )], |E[Prs (eie] ) Pro(eie]) "]}
=[|Pr(H )||c2><: max{||[E[Py eje zTPXLeiejTPYL]H [E[Px Le; jTPYJ-ejei Px ]|}

oUxXya UuXYb

<||Pr (H) %, max{ IE[Px Lee] Px-]|I, }

IE[Py Leje] Pyi],

Mxyb

<[ Pr(H) 20 max{ X2 | Py Elejel | Py | 1Px L Ele;ef | Px.]l, }

HXYb

<|[Pr(H)[I3 Umax{ X2 Py Py, [Px 1 Px.]],}

oUXY max{a, b}
<) pr(a) 2, T 40,0}



To prove simply without loss of the generality, we assume b < a, so we can get
2 2 THXYA 2 THG
o2 < IPr()|2 T < pp(an) 2,222

By Lemma 3] we have, if

2,2 2
5 ou?(ab+r®) 2N 3 5 opal|
PR, log gty < o Pr(ED) |2, 721
that is
8ou(ab +37”2)p10gN <19,
a

therefore, with a probability of 1 — 2NV —ptl

mn _mn 8opp?|2 log N
R T e (H [ ooy | S2PPER108 1Y

8opua|Q|log N
mhp ) 2ZPRARE 08 Y

8omnpualog N
=[Pr(@) o\ —%ar

by Lemma we need to use the condition |©¥| > Tj, and then
320pru®(a + b) log N < 8op(ab + r?)plog N
3 - 3a
which is because ¢ > 1, a > b, and a > r. Then under the condition |Q2| > T}, we complete the
proof. i

|2 > Tp >

Lemma 8 For a fixed H € R™*", with a probability 1 — 2N ~P*2, we have

mn Sopru?(a + b) loe N
(P =) ()| < ) Sl TOEN, gy
|| PrRaPr 39|

and therefore if |Q2] < Ty,

mn 1
- < =
” (PT |Q|PTRQPT) (H)”OO = 2||PT(F)||OO

Proof. For each matrix index (a, b), sample (4, j) uniformly at random to define the random vari-
able 1y, = [mnPrRqPr(H) — Pr(H)] We have
E[na,b] = 0>

Ny < | PrRi; Pr — Prll| Pr(H)|s < rop®(a+b)| Pr(H) |

and
E[n; ;) =E[([mnPrR; ; Pr(H) — Pr(H)la:)’]
=E[([m* QPTRMPT( Nap)?] + ([Pr(H)]a)? = 2mnE[([PrR; j Pr(H)]ap[Pr(H)]as)’]
=m?n*E[(PrR; ; Pr(H)]ap)?] — ([P ( )} b)°
1)) (H, Pr(ee])))?] — ([Pr(H)lap)?

=m nQE[(<eaeb ,PT (e;el)
=mnl|Pr(H)|%| Pr(eqes)||7 — ([PT(H)]a,b)2
<|Pr(H)|3rou®(a +b)

Using the standard Bernstein Inequality, we have

H)|2,rop? (a + b) log s

81| P
P |[m7’LPTRQPT(H>—|Q|PT(H)]a,b|>\/| ||| T( ) 3 <2N7P




Take the union bound, we have , with a probability of 1 — 2NV —pt2

9orpp?(a+b)In N
3/€2]

IITLnPTRQPT(H) — Pr(H)[| < \/ [1Pr(H)||o

Q|

If || > Tp, we have
mn 1
H@PTRQPT(H)Hoo < §||PT(H)||oo

1
Next we need to verify that there exists a matrix H that satisfies the conditions in assumption A2,

we follow the idea in [7] and construct F' as follows. We generate a sequence of Hy,t = 1,...,q as
follows

where W; = UVT and W, is defined as
mn
W, =Pr(UVT —H,) = (Pr - TOPTRQtPT)(Wt)

We randomly select g7 entries from 2 and partition the selected entries into ¢ subsets as
4, ..., Q with equal sizes, with |Q;| = Ty, ,¢ =1,...,q. Thus we have H = H, and H = R (H).

Now we are ready to show that H satisfies the other two properties in assumption A2.

Lemma 9 With a probability of 1 — 2¢N ~P*1, it is satisfied that
r
Pr(H)|| </—
1P < [
ifq > qo

Lemma 10 With a probability of 1 — 2¢N ~PT1 — 2gN~P*2 it is satisfied that

[1Pro(H)|| <

N =

ifq > qo
Proof. Because of Lemmal8 we have

mn 1
[Hit1lloo = [I(Pr — TOPTRQPT)HtHoo < §||Ht|\oo'

To bound || Py (||, we have

q
mn
1Pre (H) < Ty |1Pr+ R, Pr(H) |
i=1

q q
1
<a) |Hillo < alHilloo Y 51

i=1 i=1

8opmnualog N [uir
=2a||H < ——"
[Hilloo < \/ 3|19 mn
<9 8opmnpualog N
- 3/€2|

So when |Q2| > w, it could be guaranteed that || Py (H)|| < 1 when

128poppxyr(a+0b)log N

Q>
3

To.



2 e-Recovery Sampling Complexity

Consider the optimization problem below that if the perfect feature matrices X and Y are corrupted
by AX and AY and bounded by a constant || AX||r < s; and ||AY ||z < s, so that we investigate
the following relaxed optimization problem:

%?Wm«X+AXFGOW%ﬂQ—FM%

subjectto E — X' GY € B(0, ¢), ©)
subjectto |Gy <, [E|. <.

where B(0, ¢) C R™*" is a ball with the radius of ¢ and center at 0.

The matrix F;; is assumed to be observed partially i.i.d. from an index set {(iq, jo )} With
unknown distribution.

We denote © = {(G,E) | |G|1 < 8, ||E|l« <~,E = X"GY} as the feasible solution set, and
0 = (G,E) € O as any feasible solution. Let Fy(i, j) = x] Gy; be the estimation function for
F;; with 6 as the parameters, and Fg = {fg | 0 € O} be the set of feasible functions. Denote the

loss function as I where I(f5(i, j), Fi;) = Ro(X'GY — F)? ;. Then, we introduce two “I-risk”
quantities: the expected [-risk

Ri(f) = B[l fo(i, 1), Fij)l,
and the empirical [-risk
1 .
Ri(f) =+ > 1 fa(i, 5), Fij)l.
(4.3)
In this notation, our model is to solve for 6 that parameterizes f* = argminsecp, 7@;( f), and it is

sufficient to show that the recovery can be attained if Ry (f*) approaches to zero. Next we implement
Rademacher complexity, a learning theoretic tool to measure the complexity of a function class.
Then we will derive the sampling rate. To begin with, we cite the following Lemma [[1] to bound the
expected risk.

Lemma 11 (Bound on Expected risk). Let | be a loss function with Lipschitz constant L; in the
compact domain respect to its first argument bounded by B, and p be a constant where 0 < p < 1.
Let R(Fo) be the Rademacher complexity of the function class Fg defined as:

R(Fo) =E[sup - w (3¢, 7
(Fo) = S Z:t t>Jt), F)] (7

where each w; takes values {£1} with equal probability. Then with the probability at least 1 — p,
forall f € Fg we have:

log %

Ri(f) < Ru(f) + 2E[R(Fo)] + B 5

®)

In order to upper-bound R;, both R; and model complexity Eq[R(Fg)] need to be upper-bounded.
The next key lemma shows that what affect the model complexity term Eq[9R(Fo)] in matrix com-
pletion context.

The Rademacher complexity can be bounded in terms of 5 and «y by the following lemma:

Lemma 12 Let X = ||X]|

r Y = ||Y||r and d = max(a,b),

log 2d N \/9dCLlom/abp(\/ﬁ + /1)
s s

E[fﬁ(F@)} < QCoLlﬁXy\/ (51V + 52X +s152)  (9)

For proving clearly we firstly introduce Lemma [T3]as below, which is a special case of Theorem 2
in [3;

10



Lemma 13 Let S, = {W € R™" | |W|. < o} and a = max; ||A;|r, where {A; | A; €

R"X”}ﬁl is an arbitrary set, then:

m

1
E[ sup — w;||[WA;
[Wesw - Z | 1] <

log 2n

(10)
m

By using Lemma|[I3]and Rademacher contraction principle(e.g. Lemma in [4]), we can readily prove
Lemmal[12

Proof. Denote P € R™*™ with each entry P;; = > _ . i o Was which means the ’hit-time’

on the i, j-th element of 2, then we can divide R(Fg) as:

R(Fo) = Eq sup *ZAUZ ;Fij)] + Eo[ sup fZBwl 00 FG
" sero s (i,9) f€Fe 5 (75)

In Eq. (TI) we define

A — Pij7 lfh” >p o 0, lfh” >p
771 0, otherwise. 7| Py;, otherwise.

where h;; = [{a : i, = 4,jo = j}| and p is a thresholding value discussed soon. Recall that
[1(f(4,7),Fij)| < B, from Lemma 10 in [6] we can infer that:

1 B B
Ea’[sup - All(f(la])an)} < 7EU[ ‘Al” < —
et S (zz;) J J s (ZZ]:) J /D (12)
Also we need to bound the other term in Eq. [TT|below by using Lemma[I3] We conduct that
[sup — Z B;;l(f Fij)]
Tieka s ()
L
<STE,| sup > Byux{Gy;+ sup > ByAx]Gy+ (13)
§ HGH1<O‘ (i,) HGH1<0‘(2 7)
sup Z B,;x;] GAy; + sup Z BiijZTGij]
IGIh=e ;5 IGlh=e ;5

Since |G|« < Co||Gll2 < Co||G||1 as the matrix-norm equivalence for any G € R**® while there
always exists a fixed Cy, for the last three terms we can use Holder’s inequality to upper-bound it as
below:

L
= osup Y ByAx Gy, + sup > Bix!GAy;+ sup Y By Ax!GAy)]
§ I\G\Iléa(m) HGH1<04 i,7) HGH1<0‘(1])

LE[|B
< LEIBl] G aXTa@Y .+ sup |XTGAY|. + sup [|AXTGAY.]

5 |Glh<a G <a 1G] <a

VabaLE[||B||2] (14)
< f[”AXTHF”YHF + X FAY[[F + [[AXT || AY | ]

VabaL
S (1Y + 5:X + s515)E[||B]2]

2.2C La/abp
< ave i(\/m—i_ V) (51 + 52X + s152)

where the last inequality is from Lemma 1 in [6].
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Next we bound the term E [sup g, <a 2_(i.j) B;;x] Gy, ]inEq. as:

L . 1<
—l]Eg[ sup Zwaxg;Gyja}ngE[ sup waatr(xg;Gyja)]

s IGl<a ;2 IGli<a S S5

S

1
<L/E[ sup - Zwatr(Gyjaxg;)] < ZCOLlOéHilanHijZTHQ

IGlh<a $ 55

log 2d (15)
s

log 2d

<2CyLiaXy

Combining the above bounds in Eq. (12), Eq. and Eq. (T3) together, with p =
(sB)/[2.2C La/abp(v/m + /n)(s1Y + saX + s1s2)] we can get the bound for E[R(Fg)] as:

log 2d N 9C Lian/abp(y/m + /)
s

E[R(Fo)] < 2CoLiaXY -

(51Y + 52X + s152) (16)

Lemma 15 clarifies the upper-bound of the complexity of f. Additionally, with proper chosen A\g

and )¢, the empirical risk 7@( f) can be sufficiently small. Therefore we conclude the upper bound
of R(f*) as below.

Lemma 14 With a probability at least 1 — p, thje expected l-risk of an optimal solution will be
bounded by:

log ]%

log2d 18CLjav/abpN
Ogs + 1avamp (51y+52X+ 8152) +B

<20, LiaX
R(f*) <2CoLiaXY S %

Now consider another view to upper-bound our model, then we give Lemma I2]as followed,

Lemma 15 Ler X = ||X]

7 Y = |Y|lr and d = max(a,b),

log 2N log 2N log 2d
E[R(Fo)] < 2CoLifyy| 2 +¢\/ = +a\/ EZ @Y+ +as)] (D)

Again, by using Lemma[I3]and Rademacher contraction principle(e.g. Lemma in [4]), we can prove
Lemma

Proof. E(R(Fo)) can be bounded as above, we have

S

1
Eo[sup — » wal(f(asja) Fisj.
(500 3wl o). Fi )

a=1
L S S
S—I}Ea[ sup Zwaxg;(-}yja—l— sup ZwaAXZXGij—&— (18)
5 IGlh <o 5 IGli<e

S S

sup ZwaxiGija—F sup ZwaniGija]
IGll1<e o IGl1<a o3

12



Then one can follow the same approach in Eq. (I5) as

L
—E,[ sup woX; Gy 4+ sup woAXI Gy +
s |\G|\1<az g |\Gul<az ’
S S
sup ZwaXZTGij—i— sup ZwQAXiTGij]
IGl1<a oy IGll1<e o
1 S S
<LE[-( sup watr(Eiajaejan;)Jr sup watr(tﬁiajaejaeg;))Jr
5 |Bll.<v 5= I1®lr<¢ o1 (19)

dlog2d
2Liary | =22 fmax |y A 2 + max | Ay x|z + max | Ay, Ax] |

[log 2N [log 2N /log 2d
<2Ll[ o8 Co(,b o8 + CO o8 51)) + SQX + 5152)]
log 2N log 2N /log 2d
SQCOLZ[’Y\/ gS + ¢\/ gS +« gs (Sly + SQX + 8182)]

where the last equation is derived by applying Lemma So we derive another upper bound of
E[R(Fo)] as

log 2V log 2V log 2d
E[%(F@)]SQOOLZM/OgS +¢\/°g8 +oz\/0g8 (1Y + 52X +s180)]  (20)

Then our Theorem [2] can be attained directly from Lemma[T4]and Lemma[T3]

Theorem 2 Denote ||E||. < v, and the perfect side feature matrices (containing latent
features of F) are corrupted with AX and AY where |AX||p < $1,||AY||r < se and S =
max(sy, 82). To e-recover F that the expected loss B[l(f,F)] < e for a given arbitrarily small
€ > 0, O(min((y2 + ¢?)log N, S2a/N)/€?) observations are sufficient for our model to achieve
an e-recovery when corrupted factors of side information are bounded.

For the goal of investigating the recovery guarantee under the generalized frame of our work, it
is noted that we can replace any norm-regularizers ||G||. of G satisfying that ||G|. <
Therefore it is feasible to further explore more structural priors in various situation.

3 Convergence Analysis

In this subsection, we present the proof of the global convergence for our algorithm.
For conveniently writing, we write the Lagrangian function of our problem as
1
L(E, G, C, My, M, 8) =5 ||Cl[F + Ae|[E|l. + Ac||Gll+

2
(M, B(E) + A(G) + N(C) — D) + §||B(E) + A(G) + N(C) - D%

where B(E) = (QQEE)) A(G) = (_XQGY),N(C) - (g) and D = (Q(OF)) M is the

. M;
multiplier stacked as Mg) .

The proving framework consists of three steps: The first step includes Lemma [16| for the proof of
Lemma|[I7 and Theorem 3; the next step is the proof of Lemma[I7] which indicates the convergence
of our algorithm; the third step is to clarify our algorithm converges to a KKT point of problem (4),
which is also the global minimizer for convex problem, shown in Theorem 3.

Lemma 16 Let G*, E*, C* be the optimal solution for each individual subproblem at the k-th
iteration, then it satisfies that —B,74 (G — GF) — A*(M k+1) € 9||G* Y|y, —Brrp(EF T —
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EF) - B*(M" ) € 8||EFTY|. where M™T = M 4 B,[A(GF) + B(E*!) + N(CF) — D],

M= ME 4 BrlA(GF™) + B(EFT) + N(CF) — D, here 8| - || denotes the subgradient of

an arbitrary || - ||, and A* is the adjoint operator of A.
Note that A* = A” if A is a linear operator while A(X) = AX. This Lemma is directly derived
from the optimality conditions of subproblems when solving G and E individually.

Next we present the lemma implying the convergence.

Lemma 17 Given By is non-decreasing and upper bounded, T4 > ||Al?> 78 > |B|? and
(G*,E*,C*, M*) is any KKT point of problem 21} then:

{rallG" = G*|3 — [A(G* = G")|[% + 75| E* —E*||% +[|C* = C*||r — [N(C" — C)|7-+
ﬁ,;QHMk — M*||%}is non-increasing; and
IG" = GF*HE — 0, |EF — E*FYF = 0,]|C* — CM 1% — 0, |MF — MME - 0.
(22)
For proving the non-increase property of the first sequence, it is equivalent to investigate the follow-
ing inequality:
A GF = G — JAGH = GT)|[F + 75BN — EF||F + (|CFT - CF|p
— [M(CHF = O + 8,2 MM = MR — (14l GF — 7|l — A(GE — G| (23)
+75|EF — E||% + | CY — C7||p — [N(C" =~ C)|F + 5% IM* — M7||3) <0
For proving the above inequality, we list several facts to be used:
MM = MF + B (A(G™) + BEM) + V(CH) - D),
9 <Gk+1 Gt G > IGHL — G*|12 — |G* — G*|1Z + | G*H! — GF|I2,
A(G™)+B(E") + N(C*) —D =0,
(M, A(G)) = (A"(M), >7<M’5’(E)> = (B"(M), E).
Proof.
TG = GTE — JAGH! = G)|IF + T[N — EF[IF + [|CFT - CF[|p — IV(CHHT
B2 IMP = M| — (ral G* = G F — [IA(G® = G™)|7: + 5] E" — E*[[% + [|C* — C*||r
— |M(CF = C)|IF + B2 IMF = M)
—2r, <Gk+1 GG Gk> — 4| GFT — GRI[2 — 2 <A(Gk+1 — G*), A(GM! - Gk)> +

(24)

IA(GH! — GM)|12 + 275 <E’f+1 _E*,EM! E’f> — g |EFY — BF|2 4
27 <ck+1 ENGRN olasi C’“> — A CEFY — CF2 2 <N(Ck+1 _C),N(CHH C’“)> +
INV(CH — CY)|I%
_ {Bk—2HMk+1 . MkH% +7_B||Ek+1 _ EkHF _ 25/;1 <Mk+1 _ Mkﬁ(EkH _ Ek)>}7
(ra GM = GH|F = AGHM! = GF)[I3) — (IC™F! = CF|[F — [N (CM = CY)3) -
251 <Gk+1 — G, [=Bpra(GM — GF) — AT (M k+1)] +A*(M*)>*
251;1 <Ek+1 _E, [*ﬁkTB(EkJrl _ Ek) _ B*(M )N+ B*(M*)> _

28 (O - O [ (CF — ) — (M) A (M)

k+1

(25)

Since 74 > ||.A||?, we can check that
Tall - IIF = AG)IE > 0.

14
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and similarly it is clear that
ﬁk—z”MkH _ Mk”% 4 TBHE’C+1 _ EkH% . 25;1 <Mk+1 _ Mk’B(Ek:Jrl . Ek)> >0

The last three terms in Eq. (25) are nonnegative due to Lemma|[I6]and the monotonicity of subgradi-
ent mapping. So the non-increasing property in Lemma[T7is proved. Because of the non-increasing
property and non-negativity, it has a limit. Then we can see that

Ta| M = GHE — JAGHT — GN|[E — 0,
ICEt — CH|E — IV (CH = Ch)|IE — 0.
ﬁk—Q”MkJrl ~ M*|)% 4+ rp||EFT — EF|2 - 25;:1 <Mk+1 — MF,B(E"! - Ek)> -0

due to their non-negativity. So |G*™ — G*|z — 0 and ||C*™ — C*|| — 0 can be obtained from
the first two limits. Note that

B2 IMST = M3+ 7o B - BFE - 2600 (MFH - MFBEM - BF))
>0, 2IMT = MFF + il BN - BFF - 28, M - MY | BER - BN p
—(87 MM — M| — BB — BY)|1£)? + 75| B! — EX} — |BES - B
>rp||EF! — EX|E — |BEN — EN)|E > 0.

(26)
So we have that |[EF™! — E¥||z — 0. Furthermore,
B2 IMM! — ME|E 4 rp[EF - EFJE - 267 (MFF - MF, BEF - EF))
(5 IM M — R BR - B )4 @)

267 (V7B IMF ! — MY |l BF - BNl — (M - M BEN! - E)))
> (B MM = M| — 7B | B - EF||R)%

So B2||MFL — MF |2 4 75 |EFT! — EF||2 — 257 <M’“+1 ~ M*, B(EFH! — Ek)> 5 0. This

results in || M1 — M¥| » — 0 noting that |[EF** — E¥||z — 0.

Based on Lemma([I6and Lemma|I7] we can derive the following theorem.

Theorem 3 If 5, is non-decreasing and upper-bounded, T4 > ||A|, and 75 > ||B|| then the se-
quence {(C*, GF, EF M")} generated by adaptive LADMM converges to a KKT point of problem
(4).

Proof. By Lemma {(C*,G* E*,M"*)} is bounded, hence there is a subsequence that
(Cki, GFi EF:| Mk) — (C*, G, E>, M*). We accomplish the proof in two steps.

We first prove that (C*°, G*°, E°°, M) is a KKT point of our optimization problem.

By Lemma A(GHM) 4+ BEFT) + N(CFT) — D = g1 (MFT! — M*) — 0. This shows
that any accumulation point of {(C*, G* E* M")} is a feasible solution.

Without the loss of generality, suppose A\g = Ag = % by letting k = k; — 1 in Lemmaand the
subgradient definition, we have

IG5 s + Bl + [C™
<Gy + B[l + €7l + (G — G, =By, ama (G — GR 1) — ()

+ <Ek —E*, By, —175(EM —EFM 1) - B*(Mki)> + <Cki — C*, —Bp,—1(Ch —CF 1 —N*(Mki)>
(28)
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Suppose ¢ — oo, from Lemma we can observe G* — G* =1 — 0 50 that

IG>1 + B[ + |C>|%

<G [l + B[l + [|IC7[[E + (G = G7, —A"(M™))
+ (E* —E', =B (M¥)) + (C* - C*, -N"(M™))

=Gl + B[« + [C7[[F — (A(G™ — G7),M™) (29)
— (B(E™ — E"), M) — (N(C™ — C*), M™)

=Gl + [E*[lx + [C"[[F — (A(G™ — G) + B(E™ — E") + N(C>* — C"),M™)

=1G*[lL + B[l + [C|%

since both (C*°,G* E*) and (C*,G",E") are feasible solutions. So we conclude that
(C™,G™,E™) is an optimal solution to (4).

Similarly we let k = k; — 1 in Lemma[I6]and by the definition of subgradient, we have
IGIls > IG5l + (G — G, —f, 17a(G" — G5 ~1) — (1)) (30)
for any G. Fix G and let ¢ — oo, we see that
1G] =2 |G + (G = G=, —A"(M™))

for any G. So —A*(M*) € 9||G||;. Similarly, —B*(M*°) € 9||E*||... It is also not difficult to
check that —N*(M*°) = C. Therefore, (C*°, G, E>, M) is a KKT point of problem (4).

Next we prove that the whole sequence of {(C* EF GF M*)} converges to
{(C*,E>, G, M™)}.

By choosing (C*,G",E*,M") = (C*,G*,E*, M) in Lemma we have 74||GF —
G™|% + 75|G" — G™|% + B, °IM" — M™||2. — 0. By Lemma we readily have
ralGY = G2 — JAGH — G2 + malMF — M¥|3 + 872MF — M¥[3 - 0.
So (C*,G* EF, M*) — (C*,G®,E®,M™). Since (C®, G, E*, M) can be an ar-
bitrary accumulation point of (Ck,Gk,Ek,Mk),we can conclude that (Ck7 GF E* 7M’f) con-
verges to a KKT point. Since KKT point is the global optimal solution in the convex problem,
(Ck7 G* EF, Mk) converges to a global minimizer. i

4 Algorithm

In this section we establish the derivation for the closed-form solution of each subproblem. The four
steps are noted as Updating C, Updating E, Updating G and Updating M.

Updating C:
1 ,
CH*! = argmin || CJ[} + <M§,Ek - xXTghy - c> + %HE" ~xXTGhy ¢z 31

which has a closed form solution as:

o= (B XTGRY 4 M/ (32)
Br +1
Updating G:
min \c|| G|y + <M2,Ek ~_XTqyY - C’“> + %HEk X'y - CF|Z,  (33)

after adding constant term to Eq. (33) we obtain
min A Gl + 2B - XT@Y — O G4

where BY = EF + M5 /8. By converting the matrix b into a vector g = vec(G), vec(X? GY) =
(Y" @ XT)g . Further we let b¥ = vec(B*) and ® computes the Kronecker product of two
matrices. Thus, if we denote A = (YT ® XT), the above subproblem becomes:

min Acllgll + 2 Ag + ¢ — b3 35)
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Since (33) is a lasso problem, which does not have a closed-form solution and must be solved
iteratively in practice, by utilizing a linearization technique, we have

1 1 . TA
slAg+ct — b3~ llAgh +* —BiIE + (ffg—g") + Zls -5 (36)

where 74 > 0 1is a proximal parameter and

ff = AT(Ag" +c" —bY) = AT(Ag" +c* — e —m3/By) (37)
is the gradient of ||Ag + c* — b%||2 at g,.. Eq. (20) can be re-written as:
. BrTa
min Aclglh + =5~ g — [8" = f/all3 (38)
Obviously the closed-form solution is:
Aa
g"t! =max(|g" — f/mal = —-,0) © sgn(g" — fi'/7a) (39)
7Bk
Updating E:
min Az (B, + (MY, Ra(B - F)) + 2 [Ro(B - F))
E 5 2 (40)
v <M§, E- XTGgHly — c’“> + SIE-XTGH Y - CH
which we can reformulate as:
min Ag B + 2 | Ra(B - BE) 3 + 2B - B3 @)

where B = Rq(F — MY/3;,) and B = XTG*™Y + C* — M5 /3. After linearization, the
problem can be approximately optimized by:

ﬁkTB ﬁkTB
2 2

where f§ and fJ are the gradients of 1||[Ro(E—B5)|/% and 1[[E-B% |2 at E¥, which are illustrated
below:

min Ap|[E[. + IE - (B - f3/7)llF + IE— (E" - f5/m)llF @2

f¥ = Ro(EF — BE) = Ro(E* — F + M} /By),

(43)
fr =g -Bf = EF - XTGF'Y — CF + M} /8.
The closed-form solution is then readily obtainable as
EF = SVT(E" — (f5 + £5)/(278), \6/2(Be7B)) (44)

Here the operator SVT'(E, t) is defined in [2] for soft-thresholding the singular values of an arbitrary
matrix E by t.

Updating M:
My =My + S (Ro(BM — F)),

(45)
M5 =Mb + B (EF — XTGF Y — cFFY,

5 Feature Description Table of Drug Discovery Dataset
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Table 1: Drug corresponding feature.

Label Feature Name

F1 Molecular Weight( g/mol)

F2 XLogP3

F3 Hydrogen Bond Donor Count

F4 Hydrogen Bond Acceptor Count
F5 Rotatable Bond Count

F6 Exact Mass( g/mol)

F7 Monoisotopic Mass( g/mol)

F8 Topological Polar Surface Area
F9 Heavy Atom Count

F10 Complexity

F11 Defined Atom Stereocenter Count
F12  Undefined Atom Stereocenter Count
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