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Here we present the proof of the three theoretical parts related to our work, including the exact
recovery analysis, ε-recovery analysis and the convergence analysis. Algorithm details are followed
from the theoretical part. The feature description table of the drug discovery dataset is displayed in
the last section.

1 Exact Recovery Sampling Complexity

Theorem 1 Let µ = max(µ0, µXY), σ = max(‖Σ−1
X ‖∗, ‖Σ

−1
Y ‖∗). µ0, µXY are calculated

from F. Denote q0 = 1
2 (1 + log a − log r), T0 = 128p

3 σµmax(µ1, µ)r(a + b) logN and
T1 = 8p

3 σ
2µ2(ab + r2) logN . Assume T1 ≥ q0T0, X and Y are orthonormal. For any p > 1,

with a probability at least 1− 4(q0 + 1)N−p+1 − 2q0N
−p+2, G0 and E0 are the unique optimizer

to the problem (3) in our formulation if

|Ω| ≥ 64p

3
σµmax(µ1, µ)(1 + log a− log r)r(a+ b) logN

For proving Theorem 1, we introduce the Lemma 1 stating two deterministic conditions for G0 and
E0 to be the unique minimizer of our problem. It can be proved in Lemma 2, Lemma 9 and Lemma
10 that under a high probability the assumption A1 and A2 hold. So let us first give Lemma 1 as
below:

Lemma 1 We assume that for any M 6= 0, M ∈ Rm×n satisfying RΩ(M) = 0 and M =
PXMPY, then we have

A1 ‖PT (M)‖F ≤ ζ‖PT⊥(M)‖F ,
where

ζ ≤
√

a

2r

And assume that there exists a matrix H ∈ Rm×n such that

A2 RΩ(H) = H, ‖PT (H)−UVT ‖F ≤
√

r

2a
, ‖PT⊥(H)‖ < 1

2

Moreover we assume that there exists a constant C0 such that

A3 ‖G0‖1 = s <
λG( 1

2 − ζ
√

r
2a )

CλE
,

where C < C0, then G0 and E0 are the unique minimizer to our optimization problem.
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Proof. Assuming the solution is not unique, there exists another solution G0 + ∆G and E0 + ∆E
with ∆G,∆E 6= 0. Basically our aim is to prove the contradiction that ‖G0 + ∆G‖1 + ‖E0 +
∆E‖∗ ≥ ‖G0‖1 + ‖E0‖∗.
In order to prove the contradiction, we illustrate several useful facts below:

(1) RΩ(XT (G0 +∆G)Y) = RΩ(XTG0Y) and XT (G0 +∆G)Y = PX(XT (G0 +∆G)Y)PY,
as G0 + ∆G minimizes the original problem.

(2) XT∆GY 6= 0, since XXT∆GYYT 6= 0 for X and Y are full row rank.

(3) XT∆GY = PX(XT∆GY)PY, RΩ(X∆GY) = 0.

(4) ‖PT (XT∆GY)‖F ≤ ζ‖PT (XT∆GY)‖F ≤ ζ‖PT⊥(XT∆GY)‖∗ since XTG0Y 6= 0 with
Condition A1.

(5) U⊥ and V⊥ are the left and right singular vectors of PT (XT∆GY), while UTU⊥ = 0 and
VTV⊥ = 0.

Denote λ = λG/λE for simplicity, then we can obtain that

‖E0 + ∆E‖∗ + λ‖G0 + ∆G‖1
=‖XT (G0 + ∆G)Y‖∗ + λ‖G0 + ∆G‖1
=‖XT (G0 + ∆G)Y‖∗‖UVT + U⊥VT

⊥‖+ λ‖G0 + ∆G‖1

since the ‖UVT + U⊥VT
⊥‖ = 1, where the norm is the operator norm. Then

‖XT (G0 + ∆G)Y‖∗‖UVT + U⊥VT
⊥‖+ λ‖G0 + ∆G‖1

≥
〈
XT (G0 + ∆G)Y,UVT + U⊥VT

⊥

〉
+ λ‖G0 + ∆G‖1

=
〈
XTG0Y,UVT

〉
+
〈
XTG0Y,U⊥VT

⊥

〉
+〈

XT∆GY,UVT + U⊥VT
⊥

〉
+ λ‖G0 + ∆G‖1

=‖E0‖∗ +
〈
XT∆GY,UVT + U⊥VT

⊥ −H
〉

+ λ‖G0 + ∆G‖1

This is obtained from the assumption A2 and matrix norm inequality. One can obtain the derivation
by the norm inequality as follows,〈

XT∆GY,UVT + U⊥VT
⊥ −H

〉
+ λ‖G0 + ∆G‖1

=
〈
PT (XT∆GY),UVT − PT (H)

〉
+
〈
PT⊥(XT∆GY),U⊥VT

⊥ − PT⊥(H)
〉

+ λ‖G0 + ∆G‖1

≥‖PT⊥(XT∆GY)‖∗ − ‖PT (XT∆GY)‖F ‖UVT − PT (H)‖F
− ‖PT⊥(H)‖F ‖PT⊥(XT∆GY)‖∗ + λ‖G0 + ∆G‖1

(1)

using the assumption A1 and A2 then organizing the terms, we could get

‖E0 + ∆E‖∗ + λ‖G0 + ∆G‖1

>‖E0‖∗ + ‖PT⊥(XT∆GY)‖∗(
1

2
− ζ
√

r

2a
) + λ‖G0 + ∆G‖1

≥‖E0‖∗ + ‖PT⊥(XT∆GY)‖∗(
1

2
− ζ
√

r

2a
) + λ‖G0‖1 − λs

≥‖E0‖∗ + λ‖G0‖1 + ‖PT⊥(XT∆GY)‖∗(
1

2
− ζ
√

r

2a
)− λs

(2)

Since ‖PT⊥(XT∆GY)‖∗( 1
2−ζ

√
r
2a ) ≥ 0 which is implied from assumption A2, by observing Eq.

(2), once (i) λ(‖G0 + ∆G‖1) ≥ λs ≥ λ‖G0‖1, or (ii) ‖PT⊥(XT∆GY)‖∗( 1
2 − ζ

√
r
2a )− λs ≥ 0

is proved, the result could lead to a contradiction. We prove it by separating the problem into two
cases.
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If the case (i) holds, we can directly obtain from Eq. (2) that ‖E0 + ∆E‖∗ + λ‖G0 + ∆G‖1 ≥
‖E0‖∗ + λ‖G0‖1.

In the contrary case of case (i), let us assume λ(‖G0 + ∆G‖1) < λ‖G0‖1. First consider the case
if the possible minimizers G’s exist in the small ε-ball Bε(G0) as a continuous neighbour of G0,
such that ε < mini,j |Gij |. Then for each Gs = {G0 + ∆G ∈ Bε(G0)}, it satisfies ‖Gs‖1 ≥
‖G0‖1 − abε. Hence λ(‖G0 + ∆G‖1) ≥ λs− abλε. Since ε is arbitrary, λ(‖G0 + ∆G‖1) ≥ λs.
Therefore, in this case the condition (i) is satisfied, which leads to the contradiction.

Otherwise, consider the minimizers G’s exist outside of the ε-ball Bε(G0), which means G0 is an
isolated minimizer. Let us assume that there exists a constant C ′ such that for all ∆G,

‖PT⊥(XT∆GY)‖F ≥ C ′ > C > 0.

Here from the assumption A3 we can derive

‖PT⊥(XT∆GY)‖∗(
1

2
− ζ
√

r

2a
)− λs

≥‖PT⊥(XT∆GY)‖F (
1

2
− ζ
√

r

2a
)− λs

≥C(
1

2
− ζ
√

r

2a
)− λs

≥0

Thus the condition (ii) is satisfied.

Suppose there is no such a constant C ′ satisfying the above condition. This implies that there exists
infinite minimizers and we can obtain a sub-sequence {∆Gtk}∞k=1 satisfying

lim
k=∞

‖PT⊥(XT∆GtkY)‖F = 0 (3)

Due to the nuclear norm inequality and the fact (4) we further infer that

0 ≤ lim
k=∞

‖PT (XT∆GtkY)‖F ≤ lim
k=∞

‖PT⊥(XT∆GtkY)‖F = 0 (4)

Combining Eq.(3) and Eq.(4) we have

lim
k=∞

‖XT∆GtkY‖F = 0 (5)

Eq.(5) implies that the infinite sequence {G + ∆Gt}∞t=N ⊂ Bε(G0), which is contradicted to the
fact that no minimizers G’s exist within the ε-ball Bε(G0). Therefore, the above all clarify the truth
that the E0 + ∆E and G0 + ∆G are not the minimizer for our optimization problem.

1.1 A1 holds with high probability

In this subsection we prove that Lemma 2 holds with some certain probability. Lemma 2 roots from
combining the results from Lemma 5 and Lemma 6, which upper-bounds ‖PT (M)‖F and lower-
bounds ‖PT⊥(M)‖F and clarify the inequality between them. Lemma 3 and 4 are cited from [7] to
facilitate the proof.

Let’s first illustrate Lemma 2 as below.

Lemma 2 With a certain probability at least 1− 4N−p+1, for any M 6= 0, M ∈ Rm×n satisfying
RΩ(M) = 0 and M = PXMPY we have

‖PT (M)‖F ≤ ζ‖PT⊥(M)‖F ,

where ζ is the same as in Lemma 1, if T0 ≤ |Ω| ≤ T1.

Proof. Since RΩ(M) = 0 and M = PXMPY, we have RΩPT (M) = −RΩPT⊥(M). Then we
could attain

mn

|Ω|
〈M, PTRΩPT (M)〉 =

mn

|Ω|
〈M, PT⊥RΩPT⊥(M)〉
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First, according to Lemma 5 and Lemma 6, with a probability at least 1− 4N−p+1, we have

1

2
‖PT (M)‖2F ≤

mn

|Ω|
〈M, PTRΩPT (M)〉

≤16σ2pµ2(ab+ r2) logN

3|Ω|
‖PT⊥(M)‖2F

≤16σ2pµ2(ab+ r2) logN

3T0
‖PT⊥(M)‖2F

=
1

2
‖PT⊥(M)‖2F

finally we have
1

2
‖PT (M)‖F ≤

1√
2
‖PT⊥(M)‖F

while r ≤ a, we have 1√
2
≤
√

a
2r , so the lemma proved.

Before we prove Lemma 5 and Lemma 6, which we which upper-bounds ‖PT (M)‖F and lower-
bounds ‖PT⊥(M)‖F on certain conditions, we first need to illustrate Lemma 3,Lemma 4 derived
from the Bernstein Inequality [5].

Lemma 3 Let X1, ..., XL be independent zero-mean random matrices of dimension d1 × d2. Sup-
pose ρ2

k ≥ max{‖E[XkX
T
k ]‖, ‖XT

kXk‖} and ‖Xk‖ ≤M almost surely form all k. If we assume

M2 log
d1 + d2

ξ
≤ 3

8

∑
ρ2
k,

then with a certain probability at least 1− ξ, we have,

‖
L∑
k=1

Xk‖ ≤

√√√√8

3
ln
d1 + d2

ξ

L∑
k=1

ρ2
k.

We can also give Lemma 4 which can be derived from Lemma 3 as below;

Lemma 4 Let X1, ..., XL be independent zero-mean random matrices of dimension d1 × d2. Sup-
pose ρ2

k ≥ max{‖E[XkX
T
k ]‖, ‖XT

kXk‖} and ‖Xk‖ ≤M almost surely form all k. If we assume

M2 log
d1 + d2

ξ
≤ 3

8

∑
ρ2
k,

then with a certain probability at least 1− ξ, we have,

‖
L∑
k=1

Xk‖ ≤
8

3
M log

d1 + d2

ξ
.

next we will bound ‖PT − mn
|Ω| PTRΩPT ‖ by using Lemma 3 and Lemma 4.

Lemma 5 With a certain probability at least 1− 2N−p+1, we have∥∥∥∥PT − mn

|Ω|
PTRΩPT

∥∥∥∥ ≤
√

8pµ2r(a+ b) logN

3|Ω|

if |Ω| ≥ 8p
3 µ

2r(a+ b) logN and therefore, for any M ∈ Rm×n,

mn

|Ω|
〈M, PTRΩPT (M)〉 ≥ 1

2
‖PT (M)‖2F

if |Ω| ≥ T0.
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Proof. For any M ∈ Rm×n, we have

PTRΩPT (M) =
∑

(i,j)∈Ω

〈
PT (M), eie

T
j

〉
PT (eie

T
j ) =

∑
(i,j)∈Ω

〈
M, PT (eie

T
j )
〉
PT (eie

T
j ).

For any i ∈ [m] and j ∈ [n], define linear operator Ti,j as

Ti,j(M) =
〈
M, PT (eie

T
j )
〉
PT (eie

T
j ) = PTR(i,j)PT (M),

where R(i,j)(M) = eie
T
j Mi,j . So that

PTRΩPT (M) =
∑

(i,j)∈Ω

PTR(i,j)PT (M) =
∑

(i,j)∈Ω

Ti,j(M).

To implement Lemma 3, we need to give M and the corresponding ρ2. Since ‖PT − mn
|Ω|PTRΩPT ‖

can be viewed as the spectral norm of |Ω| independent zero-mean random variables 1
|Ω|PT−

mn
|Ω|Ti,j ,

then we have

‖ 1

|Ω|
PT −

mn

|Ω|
Ti,j‖ ≤ max{‖ 1

|Ω|
PT ‖, ‖

mn

|Ω|
Ti,j‖}

= max{‖ 1

|Ω|
PT ‖,

mn

|Ω|
arg max
‖M‖F=1

‖
〈
M, PT (eie

T
j )
〉
PT (eie

T
j )‖F }

= max{‖ 1

|Ω|
PT ‖,

mn

|Ω|
arg max
‖M‖F=1

〈
M, PT (eie

T
j )
〉
‖PT (eie

T
j )‖F }

= max{‖ 1

|Ω|
PT ‖,

mn

|Ω|
‖PT (eie

T
j )‖F }

To bound ‖PT (eie
T
j )‖F , we get

‖PT (eie
T
j )‖F =

〈
PT (eie

T
j ), eie

T
j

〉
=
〈
PX(eie

T
j )PV, eie

T
j

〉
+
〈
PU(eie

T
j )PY, eie

T
j

〉
−
〈
PU(eie

T
j )PV, eie

T
j

〉
=‖PX(eie

T
j )PV‖F + ‖PU(eie

T
j )PY‖F − ‖PU(eie

T
j )PV‖F

≤‖PXei‖F ‖PVej‖F + ‖PUei‖F ‖PYej‖F

≤‖XTVXΣ−2
X VT

X‖F
aµXY

m

rµ0

n
+ ‖YTVYΣ−2

Y VT
Y‖F

rµ0

m

bµXY

n

≤‖Σ−1
X ‖∗

aµXY

m

rµ0

n
+ ‖Σ−1

Y ‖∗
rµ0

m

bµXY

n

≤σ rµ0µXY(a+ b)

mn
≤ σrµ2(a+ b)

mn
.

Therefore

‖ 1

|Ω|
PT −

mn

|Ω|
Ti,j‖ ≤ max{‖ 1

|Ω|
PT ‖,

mn

|Ω|
‖PT (eie

T
j )‖F }

≤max{‖ 1

|Ω|
PT ‖,

σrµ2(a+ b)

mn
} = max{ 1

|Ω|
,
σrµ2(a+ b)

mn
}

= max{ 1

|Ω|
,
σrµ2(a+ b)

mn
} =

σrµ2(a+ b)

mn
= M
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Since that 1
|Ω|E[PTRΩPT (M)] = 1

mnPT (M), the corresponding ρ2
i,j can be calculated as

ρ2
i,j =‖E[(

1

|Ω|
PT −

mn

|Ω|
Ti,j)

T (
1

|Ω|
PT −

mn

|Ω|
Ti,j)]‖

=‖E[
1

|Ω|2
PTPT +

m2n2

|Ω|2
Ti,jTi,j −

2mn

|Ω|2
PTTi,j ]‖

=‖ 1

|Ω|2
PT +

m2n2

|Ω|2
E[Ti,jTi,j ]−

2mn

|Ω|2
PTE[Ti,j ]‖

=‖ 1

|Ω|2
PT +

m2n2

|Ω|2
E[Ti,jTi,j ]−

2mn

|Ω|2
PT

1

mn
PT ‖

=‖m
2n2

|Ω|2
E[Ti,jTi,j ]−

1

|Ω|2
PT ‖ ≤ max{m

2n2

|Ω|2
E[Ti,jTi,j ],

1

|Ω|2
PT }

≤max{m
2n2

|Ω|2
E[‖PT (eie

T
j )‖F ‖Ti,j‖],

1

|Ω|2
}

≤max{m
2n2

|Ω|2
σrµ2(a+ b)

mn

1

mn
‖PT ‖],

1

|Ω|2
}

=
σrµ2(a+ b)

|Ω|2

By Lemma 4, let M = σrµ2(a+b)
mn and ρ2 = σrµ2(a+b)

|Ω|2 , we conclude with a certain probability
1− 2N−p+1,

‖PT −
mn

|Ω|
PTRΩPT ‖ ≤

√
8

3
log

m+ n

2N−p+1

σrµ2(a+ b)

|Ω|
≤

√
8σprµ2(a+ b) logN

3|Ω|

which also should satisfy the condition that

σ2r2µ4(a+ b)2

|Ω|2
log

m+ n

2N−p+1
≤ 3

8

σrµ2(a+ b)

|Ω|

which means

|Ω| ≥ 8σprµ2(a+ b) logN

3
.

Moreover, if |Ω| ≥ T0 ≥ 32σprµ2(a+b) logN
3 , then∥∥∥∥PT − mn

|Ω|
PTRΩPT

∥∥∥∥ ≤
√

8σpµ2r(a+ b) log τ

3|Ω|
≤ 1

2
,

By utilizing the property of matrix norm, we have〈
M, PT (M)− mn

|Ω|
PTRΩPT (M)

〉
≤ 1

2
‖PT (M)‖2F

So that

〈M, PT (M)〉 − 1

2
‖PT (M)‖F ≤

〈
M,

mn

|Ω|
PTRΩPT (M)

〉
,

which we can easily derive

1

2
‖PT (M)‖2F ≤

mn

|Ω|
PTRΩPT (M).

Following the similarly outline of the proof as Lemma 5, we can prove the following Lemma 6.
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Lemma 6 With a certain probability at least 1− 2N−p+1, we have∥∥∥∥PT⊥ − mn

|Ω|
PT⊥RΩPT⊥

∥∥∥∥ ≤ 8σ2pµ2(ab+ r2) logN

3|Ω|

if |Ω| ≥ T0 = 8
3σµ

2pr(a+ b) logN and therefore, for any M ∈ Rm×n,

mn

|Ω|
〈M, PT⊥RΩPT⊥(M)〉 ≤ 16σ2pµ2(ab+ r2) logN

3|Ω|
‖PT⊥(M)‖2F

Then based on Lemma 5 and 6, we can prove that A1 holds with a certain high probability.

1.2 A2 holds with high probability

In this subsection we aim to investigate the condition when A2 holds with the high probability.
Like the similar approach we propose above, we also need to bound the following two terms
mn
|Ω| ‖PT⊥RΩPT (H)‖F and ‖PT (H)− mn

|Ω|PT⊥RΩPT (H)‖∞ in Lemma 7 and 8 respectively where
‖ · ‖∞ is the maximum entry of a matrix.

Lemma 7 For a fixed H ∈ Rm×n, with a probability 1− 2N−p+1, we have

mn

|Ω|
‖PT⊥RΩPT (H)‖ ≤ ‖PT (H)‖∞

√
8σpmnµa logN

3|Ω|
,

if |Ω| ≥ T0.

Proof. We write

PT⊥RΩPT (F ) =
∑

(i,j)∈Ω

〈
H, PT (eie

T
j )
〉
PT⊥(eie

T
j ) =

∑
(i,j)∈Ω

Ti,j ,

where Ti,j(H) =
〈
H, PT (eie

T
j )
〉
PT⊥(eie

T
j ). Evidently,

E[PT⊥RΩPT (H)] = 0.

To use Lemma 3, we compute M and ρ2 as,

M = max
i∈[m]j∈[n]

‖Ti,j‖

≤ max
i∈[m]j∈[n]

max
‖F‖F=1

‖
〈
H, PT (eie

T
j )
〉
PT⊥(eie

T
j )‖F

≤ max
i∈[m]j∈[n]

〈
H, PT (eie

T
j )
〉
PT⊥(eie

T
j )

≤‖PT (H)‖∞ max
i∈[m]j∈[n]

‖PT⊥(eie
T
j )‖F

≤‖PT (H)‖∞

√
µ2σ2(ab+ r2)

mn

and

ρ2
i,j = max{‖E[Ti,j , T

T
i,j ]‖, ‖E[TTi,j , Ti,j ]‖}

=‖PT (H)‖2∞max{‖E[PT⊥(eie
T
j )TPT⊥(eie

T
j )]‖, ‖E[PT⊥(eie

T
j )PT⊥(eie

T
j )T ]‖}

=‖PT (H)‖2∞max{‖E[PY⊥eje
T
i PX⊥eie

T
j PY ⊥ ]‖, ‖E[PX⊥eie

T
j PY ⊥eje

T
i PX⊥ ]‖}

≤‖PT (H)‖2∞max{σµXYa

m
‖E[PY⊥eje

T
j PY ⊥ ]‖, σµXYb

n
‖E[PX⊥eie

T
i PX⊥ ]‖, }

≤‖PT (H)‖2∞σmax{µXYa

m
‖PY⊥E[eje

T
j ]PY ⊥‖,

µXYb

n
‖PX⊥E[eie

T
i ]PX⊥‖, }

≤‖PT (H)‖2∞σmax{µXYa

mn
‖PY⊥PY ⊥‖,

µXYb

mn
‖PX⊥PX⊥‖, }

≤‖PT (H)‖2∞
σµXY max{a, b}

mn
.
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To prove simply without loss of the generality, we assume b ≤ a, so we can get

ρ2
i,j ≤ ‖PT (H)‖2∞

σµXYa

mn
≤ ‖PT (H)‖2∞

σµa

mn

By Lemma 3, we have, if

‖PT (H)‖2∞
σ2µ2(ab+ r2)

mn
log

2N

2N−p+1
≤ 3

8
‖PT (H)‖2∞

σµa|Ω|
mn

that is
8σµ(ab+ r2)p logN

3a
≤ |Ω|,

therefore, with a probability of 1− 2N−p+1,

mn

|Ω|
≤mn
|Ω|
‖PT (H)‖∞

√
8σpρ2|Ω| logN

3

≤mn
|Ω|
‖PT (H)‖∞

√
8σpµa|Ω| logN

3mn

=‖PT (H)‖∞

√
8σmnpµa logN

3|Ω|

by Lemma 2, we need to use the condition |Ω| ≥ T0, and then

|Ω| ≥ T0 ≥
32σprµ2(a+ b) logN

3
≥ 8σp(ab+ r2)µ logN

3a

which is because µ ≥ 1, a ≥ b, and a � r. Then under the condition |Ω| ≥ T0, we complete the
proof.

Lemma 8 For a fixed H ∈ Rm×n, with a probability 1− 2N−p+2, we have

‖
(
PT −

mn

|Ω|PTRΩPT

)
(H)‖∞ ≤

√
8σprµ2(a+ b) logN

3|Ω|
‖PT (H)‖∞

and therefore if |Ω| ≤ T0,

‖
(
PT −

mn

|Ω|PTRΩPT

)
(H)‖∞ ≤

1

2
‖PT (F)‖∞

Proof. For each matrix index (a, b), sample (i, j) uniformly at random to define the random vari-
able ηa,b = [mnPTRΩPT (H)− PT (H)] We have

E[ηa,b] = 0,

ηa,b ≤ ‖PTRi,jPT − PT ‖‖PT (H)‖∞ ≤ rσµ2(a+ b)‖PT (H)‖∞
and

E[η2
a,b] =E[([mnPTRi,jPT (H)− PT (H)]a,b)

2]

=E[([m2n2PTRi,jPT (H)]a,b)
2] + ([PT (H)]a,b)

2 − 2mnE[([PTRi,jPT (H)]a,b[PT (H)]a,b)
2]

=m2n2E[(PTRi,jPT (H)]a,b)
2]− ([PT (H)]a,b)

2

=m2n2E[(
〈
eae

T
b , PT (eie

T
j )
〉 〈

H, PT (eie
T
j )
〉
)2]− ([PT (H)]a,b)

2

=mn‖PT (H)‖2F ‖PT (eaeb)‖2F − ([PT (H)]a,b)
2

≤‖PT (H)‖2∞rσµ2(a+ b)

Using the standard Bernstein Inequality, we have

P

|[mnPTRΩPT (H)− |Ω|PT (H)]a,b| >

√
8|Ω|‖PT (H)‖2∞rσµ2(a+ b) log 2

2N−p

3

 ≤ 2N−p
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Take the union bound, we have , with a probability of 1− 2N−p+2

‖mn
|Ω|

PTRΩPT (H)− PT (H)‖∞ ≤

√
9σrpµ2(a+ b) lnN

3|Ω|
‖PT (H)‖∞

If |Ω| ≥ T0, we have

‖mn
|Ω|

PTRΩPT (H)‖∞ ≤
1

2
‖PT (H)‖∞

Next we need to verify that there exists a matrix H that satisfies the conditions in assumption A2,
we follow the idea in [7] and construct F as follows. We generate a sequence of Ht, t = 1, ..., q as
follows

Ht =
mn

T0

t∑
i=1

RΩi(Wi),

where W1 = UVT and Wt+1 is defined as

Wt+1 = PT (UVT −Ht) = (PT −
mn

T0
PTRΩtPT )(Wt)

We randomly select qT0 entries from Ω and partition the selected entries into q subsets as
Ω1, ...,Ωqwith equal sizes, with |Ωi| = T0, , i = 1, ..., q. Thus we have H = Hq and H = RΩ(H).

Now we are ready to show that H satisfies the other two properties in assumption A2.

Lemma 9 With a probability of 1− 2qN−p+1, it is satisfied that

‖PT (H)‖ ≤
√

r

2a

if q ≥ q0

Lemma 10 With a probability of 1− 2qN−p+1 − 2qN−p+2, it is satisfied that

‖PT⊥(H)‖ ≤ 1

2

if q ≥ q0

Proof. Because of Lemma 8 we have

‖Ht+1‖∞ = ‖(PT −
mn

T0
PTRΩPT )Ht‖∞ ≤

1

2
‖Ht‖∞.

To bound ‖PT⊥(H)‖, we have

‖PT⊥(H)‖ ≤
q∑
i=1

mn

T0
‖PT⊥RΩiPT (Hi)‖

≤α
q∑
i=1

‖Hi‖∞ ≤ α‖H1‖∞
q∑
i=1

1

2i−1

=2α‖H1‖∞ ≤ 2

√
8σpmnµa logN

3|Ω|

√
µ1r

mn

≤2

√
8σpmnµa logN

3|Ω|

So when |Ω| ≥ 128σµ1rpµa logN
3 , it could be guaranteed that ‖PT⊥(H)‖ ≤ 1

2 when

|Ω| ≥ 128pσµµXYr(a+ b) logN

3
= T0.
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2 ε-Recovery Sampling Complexity

Consider the optimization problem below that if the perfect feature matrices X and Y are corrupted
by ∆X and ∆Y and bounded by a constant ‖∆X‖F ≤ s1 and ‖∆Y‖F ≤ s2, so that we investigate
the following relaxed optimization problem:

min
G
‖RΩ((X + ∆X)TG(Y + ∆Y)− F)‖2F

subject to E−XTGY ∈ B(0, φ),

subject to ‖G‖1 ≤ α, ‖E‖∗ ≤ γ.

(6)

where B(0, φ) ⊂ Rm×n is a ball with the radius of φ and center at 0.

The matrix Fij is assumed to be observed partially i.i.d. from an index set {(iα, jα)}mα=1 with
unknown distribution.

We denote Θ = {(G,E) | ‖G‖1 ≤ β, ‖E‖∗ ≤ γ,E = XTGY} as the feasible solution set, and
θ = (G,E) ∈ Θ as any feasible solution. Let Fθ(i, j) = xTi Gyj be the estimation function for
Fij with θ as the parameters, and FΘ = {fθ | θ ∈ Θ} be the set of feasible functions. Denote the
loss function as l where l(fθ(i, j),Fij) = RΩ(XTGY − F)2

i,j . Then, we introduce two “l-risk”
quantities: the expected l-risk

Rl(f) = E(i,j)[l(fθ(i, j),Fij)],

and the empirical l-risk

R̂l(f) =
1

s

∑
(i,j)

[l(fθ(i, j),Fij)].

In this notation, our model is to solve for θ that parameterizes f∗ = arg minf∈FΘ
R̂l(f), and it is

sufficient to show that the recovery can be attained if R̂l(f∗) approaches to zero. Next we implement
Rademacher complexity, a learning theoretic tool to measure the complexity of a function class.
Then we will derive the sampling rate. To begin with, we cite the following Lemma [1] to bound the
expected risk.

Lemma 11 (Bound on Expected risk). Let l be a loss function with Lipschitz constant Ll in the
compact domain respect to its first argument bounded by B, and p be a constant where 0 < p < 1.
Let R(FΘ) be the Rademacher complexity of the function class FΘ defined as:

R(FΘ) =E[ sup
f∈FΘ

1

s

s∑
t=1

ωtl(f(it, jt),F)] (7)

where each ωt takes values {±1} with equal probability. Then with the probability at least 1 − p,
for all f ∈ FΘ we have:

Rl(f) ≤ R̂l(f) + 2E[R(FΘ)] +B

√
log 1

p

2s
. (8)

In order to upper-boundRl, both R̂l and model complexity EΩ[R(FΘ)] need to be upper-bounded.
The next key lemma shows that what affect the model complexity term EΩ[R(FΘ)] in matrix com-
pletion context.

The Rademacher complexity can be bounded in terms of β and γ by the following lemma:

Lemma 12 Let X = ‖X‖F , Y = ‖Y‖F and d = max(a, b),

E[R(FΘ)] ≤ 2C0LlβXY
√

log 2d

s
+

√
9dCLlα

√
abp(
√
m+

√
n)

s
(s1Y + s2X + s1s2) (9)

For proving clearly we firstly introduce Lemma 13 as below, which is a special case of Theorem 2
in [3];

10



Lemma 13 Let Sσ = {W ∈ Rn×n | ‖W‖∗ ≤ σ} and a = maxi ‖Ai‖F , where {Ai | Ai ∈
Rn×n}mi=1 is an arbitrary set, then:

E[ sup
W∈Sw

1

m

m∑
i=1

ωi‖WAi‖∗] ≤ 2aσ

√
log 2n

m
. (10)

By using Lemma 13 and Rademacher contraction principle(e.g. Lemma in [4]), we can readily prove
Lemma 12.

Proof. Denote P ∈ Rm×n with each entry Pij =
∑
α:iα=i,jα=j ωα, which means the ’hit-time’

on the i, j-th element of Ω, then we can divide R(FΘ) as:

R(FΘ) = Eσ[ sup
f∈FΘ

1

s

∑
(i,j)

Aij l(f(i, j),Fij)] + Eσ[ sup
f∈FΘ

1

s

∑
(i,j)

Bij l(f(i, j),Fij)] (11)

In Eq. (11) we define

Aij =

{
Pij , if hij > p
0, otherwise. Bij =

{
0, if hij > p

Pij , otherwise.

where hij = |{α : iα = i, jα = j}| and p is a thresholding value discussed soon. Recall that
|l(f(i, j),Fij)| ≤ B, from Lemma 10 in [6] we can infer that:

Eσ[ sup
f∈FΘ

1

s

∑
(i,j)

Aij l(f(i, j),Fij)] ≤
B

s
Eσ[
∑
(i,j)

|Aij |] ≤
B
√
p (12)

Also we need to bound the other term in Eq. 11 below by using Lemma 13. We conduct that

Eσ[ sup
f∈FΘ

1

s

∑
(i,j)

Bij l(f(i, j),Fij)]

≤Ll
s
Eσ[ sup
‖G‖1≤α

∑
(i,j)

Bijx
T
i Gyj + sup

‖G‖1≤α

∑
(i,j)

Bij∆xTi Gyj+

sup
‖G‖1≤α

∑
(i,j)

Bijx
T
i G∆yj + sup

‖G‖1≤α

∑
(i,j)

Bij∆xTi G∆yj ]

(13)

Since ‖G‖∗ ≤ C0‖G‖2 ≤ C0‖G‖1 as the matrix-norm equivalence for any G ∈ Ra×b while there
always exists a fixed C0, for the last three terms we can use Holder’s inequality to upper-bound it as
below:

Ll
s

[ sup
‖G‖1≤α

∑
(i,j)

Bij∆xTi Gyj + sup
‖G‖1≤α

∑
(i,j)

Bijx
T
i G∆yj + sup

‖G‖1≤α

∑
(i,j)

Bij∆xTi G∆yj ]

≤ LlE[‖B‖2]

s
sup
‖G‖1≤α

[‖∆XTGY‖∗ + sup
‖G‖1≤α

‖XTG∆Y‖∗ + sup
‖G‖1≤α

‖∆XTG∆Y‖∗]

≤
√
abαLE[‖B‖2]

s
[‖∆XT ‖F ‖Y‖F + ‖XT ‖F ‖∆Y‖F + ‖∆XT ‖F ‖∆Y‖F ]

≤
√
abαL

s
(s1Y + s2X + s1s2)E[‖B‖2]

≤ 2.2CLα
√
abp(
√
m+

√
n)

s
(s1Y + s2X + s1s2)

(14)

where the last inequality is from Lemma 1 in [6].
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Next we bound the term Eσ[sup‖G‖1≤α
∑

(i,j) Bijx
T
iα

Gyjα ] in Eq. (13) as:

Ll
s
Eσ[ sup
‖G‖1≤α

s∑
α=1

ωαxTiαGyjα ] ≤ LlE[ sup
‖G‖1≤α

1

s

s∑
α=1

ωαtr(x
T
iαGyjα)]

≤LlE[ sup
‖G‖1≤α

1

s

s∑
α=1

ωαtr(GyjαxTiα)] ≤ 2C0Llαmax
i,j
‖yjxTi ‖2

√
log 2d

s

≤2C0LlαXY
√

log 2d

s

(15)

Combining the above bounds in Eq. (12), Eq. (14) and Eq. (15) together, with p =
(sB)/[2.2CLα

√
abp(
√
m +

√
n)(s1Y + s2X + s1s2)] we can get the bound for E[R(FΘ)] as:

E[R(FΘ)] ≤ 2C0LlαXY
√

log 2d

s
+

9CLlα
√
abp(
√
m+

√
n)

s
(s1Y + s2X + s1s2) (16)

Lemma 15 clarifies the upper-bound of the complexity of f . Additionally, with proper chosen λE
and λG, the empirical risk R̂(f) can be sufficiently small. Therefore we conclude the upper bound
ofR(f∗) as below.

Lemma 14 With a probability at least 1 − p, thje expected l-risk of an optimal solution will be
bounded by:

R(f∗) ≤ 2C0LlαXY
√

log 2d

s
+

18CLlα
√
abpN

s
(s1Y + s2X + s1s2) +B

√
log 1

p

2s

Now consider another view to upper-bound our model, then we give Lemma 12 as followed,

Lemma 15 Let X = ‖X‖F , Y = ‖Y‖F and d = max(a, b),

E[R(FΘ)] ≤ 2C0Ll[γ

√
log 2N

s
+ φ

√
log 2N

s
+ α

√
log 2d

s
(s1Y + s2X + s1s2)] (17)

Again, by using Lemma 13 and Rademacher contraction principle(e.g. Lemma in [4]), we can prove
Lemma 15.

Proof. E(R(FΘ)) can be bounded as above, we have

Eσ[ sup
f∈FΘ

1

s

s∑
α=1

ωαl(f(iα, jα),Fiαjα)]

≤Ll
s
Eσ[ sup
‖G‖1≤α

s∑
α=1

ωαxTiαGyjα + sup
‖G‖1≤α

s∑
α=1

ωα∆xTiαGyjα+

sup
‖G‖1≤α

s∑
α=1

ωαxTiαG∆yjα + sup
‖G‖1≤α

s∑
α=1

ωα∆xTiαG∆yjα ]

(18)
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Then one can follow the same approach in Eq. (15) as

Ll
s
Eσ[ sup
‖G‖1≤α

s∑
α=1

ωαxTi Gyj + sup
‖G‖1≤α

s∑
α=1

ωα∆xTi Gyj+

sup
‖G‖1≤α

s∑
α=1

ωαxTi G∆yj + sup
‖G‖1≤α

s∑
α=1

ωα∆xTi G∆yj ]

≤LlE[
1

s
( sup
‖E‖∗≤γ

s∑
α=1

ωαtr(EiαjαejαeTiα) + sup
‖Φ‖F≤φ

s∑
α=1

ωαtr(ΦiαjαejαeTiα))+

2Llαr

√
d log 2d

s
[max
i,j
‖yj∆xTi ‖2 + max

i,j
‖∆yjx

T
i ‖2 + max

i,j
‖∆yj∆xTi ‖2]

≤2Ll[γ

√
log 2N

s
+ C0φ

√
log 2N

s
+ C0α

√
log 2d

s
(s1Y + s2X + s1s2)]

≤2C0Ll[γ

√
log 2N

s
+ φ

√
log 2N

s
+ α

√
log 2d

s
(s1Y + s2X + s1s2)]

(19)

where the last equation is derived by applying Lemma 13. So we derive another upper bound of
E[R(FΘ)] as

E[R(FΘ)] ≤ 2C0Ll[γ

√
log 2N

s
+ φ

√
log 2N

s
+ α

√
log 2d

s
(s1Y + s2X + s1s2)] (20)

Then our Theorem 2 can be attained directly from Lemma 14 and Lemma 15.

Theorem 2 Denote ‖E‖∗ ≤ α, ‖G‖1 ≤ γ, and the perfect side feature matrices (containing latent
features of F) are corrupted with ∆X and ∆Y where ‖∆X‖F ≤ s1, ‖∆Y‖F ≤ s2 and S =
max(s1, s2). To ε-recover F that the expected loss E[l(f,F)] < ε for a given arbitrarily small
ε > 0, O(min((γ2 + φ2) logN,S2α

√
N)/ε2) observations are sufficient for our model to achieve

an ε-recovery when corrupted factors of side information are bounded.

For the goal of investigating the recovery guarantee under the generalized frame of our work, it
is noted that we can replace any norm-regularizers ‖G‖∼ of G satisfying that ‖G‖∼ ≤ ‖G‖1.
Therefore it is feasible to further explore more structural priors in various situation.

3 Convergence Analysis

In this subsection, we present the proof of the global convergence for our algorithm.

For conveniently writing, we write the Lagrangian function of our problem as

L(E,G,C,M1,M2, β) =
1

2
‖C‖2F + λE‖E‖∗ + λG‖G‖1+

〈M,B(E) +A(G) +N (C)−D〉+
β

2
‖B(E) +A(G) +N (C)−D‖2F

(21)

where B(E) =

(
Ω(E)

E

)
, A(G) =

(
0

−XTGY

)
, N (C) =

(
0
C

)
and D =

(
Ω(F)

0

)
. M is the

multiplier stacked as
(

M1

M2

)
.

The proving framework consists of three steps: The first step includes Lemma 16 for the proof of
Lemma 17 and Theorem 3; the next step is the proof of Lemma 17 which indicates the convergence
of our algorithm; the third step is to clarify our algorithm converges to a KKT point of problem (4),
which is also the global minimizer for convex problem, shown in Theorem 3.

Lemma 16 Let Gk, Ek, Ck be the optimal solution for each individual subproblem at the k-th
iteration, then it satisfies that −βkτA(Gk+1 −Gk) − A∗(M̄k+1

) ∈ ∂‖Gk+1‖1,−βkτB(Ek+1 −
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Ek) − B∗(M̂
k+1

) ∈ ∂‖Ek+1‖∗ where M̄
k+1

= Mk + βk[A(Gk) + B(Ek+1) + N (Ck) − D],

M̂
k+1

= Mk + βk[A(Gk+1) + B(Ek+1) +N (Ck) −D], here ∂‖ · ‖ denotes the subgradient of
an arbitrary ‖ · ‖, and A∗ is the adjoint operator of A.

Note that A∗ = AT if A is a linear operator while A(X) = AX. This Lemma is directly derived
from the optimality conditions of subproblems when solving G and E individually.

Next we present the lemma implying the convergence.

Lemma 17 Given βk is non-decreasing and upper bounded, τA > ‖A‖2, τB > ‖B‖2, and
(G∗,E∗,C∗,M∗) is any KKT point of problem 21, then:

{τA‖Gk −G∗‖2F − ‖A(Gk −G∗)‖2F + τB‖Ek −E∗‖2F + ‖Ck −C∗‖F − ‖N (Ck −C∗)‖2F+

β−2
k ‖M

k −M∗‖2F }is non-increasing; and

‖Gk −Gk+1‖2F → 0, ‖Ek −Ek+1‖2F → 0, ‖Ck −Ck+1‖2F → 0, ‖Mk −Mk+1‖2F → 0.
(22)

For proving the non-increase property of the first sequence, it is equivalent to investigate the follow-
ing inequality:

τA‖Gk+1 −G∗‖2F − ‖A(Gk+1 −G∗)‖2F + τB‖Ek+1 −E∗‖2F + ‖Ck+1 −C∗‖F
− ‖N (Ck+1 −C∗)‖2F + β−2

k ‖M
k+1 −M∗‖2F − (τA‖Gk −G∗‖2F − ‖A(Gk −G∗)‖2F

+ τB‖Ek −E∗‖2F + ‖Ck −C∗‖F − ‖N (Ck −C∗)‖2F + β−2
k ‖M

k −M∗‖2F ) ≤ 0

(23)

For proving the above inequality, we list several facts to be used:

Mk+1 = Mk + βk(A(Gk+1) + B(Ek+1) +N (Ck+1)−D),

2
〈
Gk+1 −G∗,Gk+1 −Gk

〉
= ‖Gk+1 −G∗‖2F − ‖G

k −G∗‖2F + ‖Gk+1 −Gk‖2F ,

A(G∗) + B(E∗) +N (C∗)−D = 0,

〈M,A(G)〉 = 〈A∗(M),G〉 , 〈M,B(E)〉 = 〈B∗(M),E〉 .

(24)

Proof.
τA‖Gk+1 −G∗‖2F − ‖A(Gk+1 −G∗)‖2F + τB‖Ek+1 −E∗‖2F + ‖Ck+1 −C∗‖F − ‖N (Ck+1 −C∗)‖2F+

β−2
k ‖M

k+1 −M∗‖2F − (τA‖Gk −G∗‖2F − ‖A(Gk −G∗)‖2F + τB‖Ek −E∗‖2F + ‖Ck −C∗‖F
− ‖N (Ck −C∗)‖2F + β−2

k ‖M
k −M∗‖2F )

=2τA

〈
Gk+1 −G∗,Gk+1 −Gk

〉
− τA‖Gk+1 −Gk‖2F − 2

〈
A(Gk+1 −G∗),A(Gk+1 −Gk)

〉
+

‖A(Gk+1 −Gk)‖2F + 2τB

〈
Ek+1 −E∗,Ek+1 −Ek

〉
− τB‖Ek+1 −Ek‖2F+

2τN

〈
Ck+1 −C∗,Ck+1 −Ck

〉
− τA‖Ck+1 −Ck‖2F − 2

〈
N (Ck+1 −C∗),N (Ck+1 −Ck)

〉
+

‖N (Ck+1 −Ck)‖2F
=− {β−2

k ‖M
k+1 −Mk‖2F + τB‖Ek+1 −Ek‖F − 2β−1

k

〈
Mk+1 −Mk,B(Ek+1 −Ek)

〉
}−

(τA‖Gk+1 −Gk‖2F − ‖A(Gk+1 −Gk)‖2F )− (‖Ck+1 −Ck‖2F − ‖N (Ck+1 −Ck)‖2F )−

2β−1
k

〈
Gk+1 −G∗, [−βkτA(Gk+1 −Gk)−A∗(M̄k+1

)] +A∗(M∗)
〉
−

2β−1
k

〈
Ek+1 −E∗, [−βkτB(Ek+1 −Ek)− B∗(M̂

k+1
)] + B∗(M∗)

〉
−

2β−1
k

〈
Ck+1 −C∗, [−βk(Ck+1 −Ck)−N ∗(Mk+1)] +N ∗(M∗)

〉
(25)

Since τA ≥ ‖A‖2, we can check that

τA‖ · ‖2F − ‖A(·)‖2F ≥ 0.
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and similarly it is clear that

β−2
k ‖M

k+1 −Mk‖2F + τB‖Ek+1 −Ek‖2F − 2β−1
k

〈
Mk+1 −Mk,B(Ek+1 −Ek)

〉
≥ 0

The last three terms in Eq. (25) are nonnegative due to Lemma 16 and the monotonicity of subgradi-
ent mapping. So the non-increasing property in Lemma 17 is proved. Because of the non-increasing
property and non-negativity, it has a limit. Then we can see that

τA‖Gk+1 −Gk‖2F − ‖A(Gk+1 −Gk)‖2F → 0,

‖Ck+1 −Ck‖2F − ‖N (Ck+1 −Ck)‖2F → 0.

β−2
k ‖M

k+1 −Mk‖2F + τB‖Ek+1 −Ek‖2F − 2β−1
k

〈
Mk+1 −Mk,B(Ek+1 −Ek)

〉
→ 0

due to their non-negativity. So ‖Gk+1−Gk‖F → 0 and ‖Ck+1−Ck‖F → 0 can be obtained from
the first two limits. Note that

β−2
k ‖M

k+1 −Mk‖2F + τB‖Ek+1 −Ek‖2F − 2β−1
k

〈
Mk+1 −Mk,B(Ek+1 −Ek)

〉
≥β−2

k ‖M
k+1 −Mk‖2F + τB‖Ek+1 −Ek‖2F − 2β−1

k ‖M
k+1 −Mk‖F ‖B(Ek+1 −Ek)‖F

=(β−1
k ‖M

k+1 −Mk‖F − ‖B(Ek+1 −Ek)‖F )2 + τB‖Ek+1 −Ek‖2F − ‖B(Ek+1 −Ek)‖2F
≥τB‖Ek+1 −Ek‖2F − ‖B(Ek+1 −Ek)‖2F ≥ 0.

(26)

So we have that ‖Ek+1 −Ek‖F → 0. Furthermore,

β−2
k ‖M

k+1 −Mk‖2F + τB‖Ek+1 −Ek‖2F − 2β−1
k

〈
Mk+1 −Mk,B(Ek+1 −Ek)

〉
(β−1
k ‖M

k+1 −Mk‖F −
√
τB‖Ek+1 −Ek‖F )2+

2β−1
k (
√
τB‖Mk+1 −Mk‖F ‖Ek+1 −Ek‖F −

〈
Mk+1 −Mk,B(Ek+1 −Ek)

〉
)

≥ (β−1
k ‖M

k+1 −Mk‖F −
√
τB‖Ek+1 −Ek‖F )2.

(27)

So β−2
k ‖M

k+1 −Mk‖2F + τB‖Ek+1 −Ek‖2F − 2β−1
k

〈
Mk+1 −Mk,B(Ek+1 −Ek)

〉
→ 0. This

results in ‖Mk+1 −Mk‖F → 0 noting that ‖Ek+1 −Ek‖F → 0 .

Based on Lemma 16 and Lemma 17, we can derive the following theorem.

Theorem 3 If βk is non-decreasing and upper-bounded, τA > ‖A‖, and τB > ‖B‖ then the se-
quence {(Ck,Gk,Ek,Mk)} generated by adaptive LADMM converges to a KKT point of problem
(4).

Proof. By Lemma 17, {(Ck,Gk,Ek,Mk)} is bounded, hence there is a subsequence that
(Cki ,Gki ,Eki ,Mki)→ (C∞,G∞,E∞,M∞). We accomplish the proof in two steps.

We first prove that (C∞,G∞,E∞,M∞) is a KKT point of our optimization problem.

By Lemma 17, A(Gk+1) + B(Ek+1) + N (Ck+1) −D = β−1
k (Mk+1 −Mk) → 0. This shows

that any accumulation point of {(Ck,Gk,Ek,Mk)} is a feasible solution.

Without the loss of generality, suppose λG = λE = 1
2 . by letting k = ki − 1 in Lemma 16 and the

subgradient definition, we have

‖Gki‖1 + ‖Eki‖∗ + ‖Cki‖F

≤‖G∗‖1 + ‖E∗‖∗ + ‖C∗‖F +
〈
Gki −G∗,−βki−1τA(Gki −Gki−1)−A∗(M̄ki)

〉
+
〈
Eki −E∗,−βki−1τB(Eki −Eki−1)− B∗(M̂

ki
)
〉

+
〈
Cki −C∗,−βki−1(Cki −Cki−1)−N ∗(Mki)

〉
(28)
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Suppose i→∞, from Lemma 17, we can observe Gki −Gki−1 → 0 so that

‖G∞‖1 + ‖E∞‖∗ + ‖C∞‖2F
≤‖G∗‖1 + ‖E∗‖∗ + ‖C∗‖2F + 〈G∞ −G∗,−A∗(M∞)〉

+ 〈E∞ −E∗,−B∗(M∞)〉+ 〈C∞ −C∗,−N ∗(M∞)〉
=‖G∗‖1 + ‖E∗‖∗ + ‖C∗‖2F − 〈A(G∞ −G∗),M∞〉
− 〈B(E∞ −E∗),M∞〉 − 〈N (C∞ −C∗),M∞〉

=‖G∗‖1 + ‖E∗‖∗ + ‖C∗‖2F − 〈A(G∞ −G∗) + B(E∞ −E∗) +N (C∞ −C∗),M∞〉
=‖G∗‖1 + ‖E∗‖∗ + ‖C∗‖2F

(29)

since both (C∞,G∞,E∞) and (C∗,G∗,E∗) are feasible solutions. So we conclude that
(C∞,G∞,E∞) is an optimal solution to (4).

Similarly we let k = ki − 1 in Lemma 16 and by the definition of subgradient, we have

‖G‖1 ≥ ‖Gki‖1 +
〈
G−Gki ,−βki−1τA(Gki −Gki−1)−A∗(M̄ki)

〉
(30)

for any G. Fix G and let i→∞, we see that
‖G‖1 ≥ ‖G∞‖1 + 〈G−G∞,−A∗(M∞)〉

for any G. So −A∗(M∞) ∈ ∂‖G∞‖1. Similarly, −B∗(M∞) ∈ ∂‖E∞‖∗. It is also not difficult to
check that −N ∗(M∞) = C. Therefore, (C∞,G∞,E∞,M∞) is a KKT point of problem (4).

Next we prove that the whole sequence of {(Ck,Ek,Gk,Mk)} converges to
{(C∞,E∞,G∞,M∞)}.

By choosing (C∗,G∗,E∗,M∗) = (C∞,G∞,E∞,M∞) in Lemma 17, we have τA‖Gki −
G∞‖2F + τB‖Gk − G∞‖2F + β−2

ki
‖Mki − M∞‖2F → 0. By Lemma 17, we readily have

τA‖Gk − G∞‖2F − ‖A(Gk − G∞)‖2F + τB‖Mk − M∞‖2F + β−2
k ‖M

k − M∞‖2F → 0.
So (Ck,Gk,Ek,Mk) → (C∞,G∞,E∞,M∞). Since (C∞,G∞,E∞,M∞) can be an ar-
bitrary accumulation point of (Ck,Gk,Ek,Mk),we can conclude that (Ck,Gk,Ek,Mk) con-
verges to a KKT point. Since KKT point is the global optimal solution in the convex problem,
(Ck,Gk,Ek,Mk) converges to a global minimizer.

4 Algorithm

In this section we establish the derivation for the closed-form solution of each subproblem. The four
steps are noted as Updating C, Updating E, Updating G and Updating M.

Updating C:

Ck+1 = arg min
C

1

2
‖C‖2F +

〈
Mk

2 ,E
k −XTGkY −C

〉
+
βk
2
‖Ek −XTGkY −C‖2F (31)

which has a closed form solution as:

Ck+1 =
βk

βk + 1
(Ek −XTGkY + Mk

2/βk) (32)

Updating G:

min
G

λG‖G‖1 +
〈
M2,E

k −XTGY −Ck
〉

+
βk
2
‖Ek −XTGY −Ck‖2F , (33)

after adding constant term to Eq. (33) we obtain

min
G

λG‖G‖1 +
βk
2
‖Bk −XTGY −Ck‖2F (34)

where Bk
1 = Ek + Mk

2/βk. By converting the matrix b into a vector g = vec(G), vec(XTGY) =

(YT ⊗ XT )g . Further we let bk = vec(Bk) and ⊗ computes the Kronecker product of two
matrices. Thus, if we denote A = (YT ⊗XT ), the above subproblem becomes:

min
g
λG‖g‖1 +

βk
2
‖Ag + ck − bk1‖22 (35)
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Since (35) is a lasso problem, which does not have a closed-form solution and must be solved
iteratively in practice, by utilizing a linearization technique, we have

1

2
‖Ag + ck − bk1‖22 ≈

1

2
‖Agk + ck − bk1‖22 +

〈
fk1 ,g − gk

〉
+
τA
2
‖g − gk‖22 (36)

where τA > 0 is a proximal parameter and

fk1 = AT (Agk + ck − bk1) = AT (Agk + ck − ek −mk
2/βk) (37)

is the gradient of 1
2‖Ag + ck − bk1‖22 at gk. Eq. (20) can be re-written as:

min
g
λG‖g‖1 +

βkτA
2
‖g − [gk − fk1 /τA]‖22 (38)

Obviously the closed-form solution is:

gk+1 = max(|gk − fk1 /τA| −
λG
τAβk

, 0)� sgn(gk − fk1 /τA) (39)

Updating E:

min
E
λE‖E‖∗ +

〈
Mk

1 , RΩ(E− F)
〉

+
βk
2
‖RΩ(E− F)‖2F

+
〈
Mk

2 ,E−XTGk+1Y −Ck
〉

+
βk
2
‖E−XTGk+1Y −Ck‖2F

(40)

which we can reformulate as:

min
E
λE‖E‖∗ +

βk
2
‖RΩ(E−Bk

2)‖2F +
βk
2
‖E−Bk

3‖2F (41)

where Bk
2 = RΩ(F −Mk

1/βk) and Bk
3 = XTGk+1Y + Ck −Mk

2/βk. After linearization, the
problem can be approximately optimized by:

min
E
λE‖E‖∗ +

βkτB
2
‖E− (Ek − fk2 /τB)‖2F +

βkτB
2
‖E− (Ek − fk3 /τB)‖2F (42)

where fk2 and fk3 are the gradients of 1
2‖RΩ(E−Bk

2)‖2F and 1
2‖E−Bk

3‖2F at Ek, which are illustrated
below:

fk2 = RΩ(Ek −Bk
2) = RΩ(Ek − F + Mk

1/βk),

fk3 = Ek −Bk
3 = Ek −XTGk+1Y −Ck + Mk

2/βk.
(43)

The closed-form solution is then readily obtainable as

Ek+1 = SV T (Ek − (fk2 + fk3 )/(2τB), λE/2(βkτB)) (44)

Here the operator SV T (E, t) is defined in [2] for soft-thresholding the singular values of an arbitrary
matrix E by t.

Updating M:
Mk+1

1 =Mk
1 + βk(RΩ(Ek+1 − F)),

Mk+1
2 =Mk

2 + βk(Ek+1 −XTGk+1Y −Ck+1).
(45)

5 Feature Description Table of Drug Discovery Dataset
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Table 1: Drug corresponding feature.
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