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a b s t r a c t

Many pattern recognition problems confront two sources of annotation ambiguity where (1) multiple
annotators have provided their versions of a class label which may not be consistent with one another,
which forms multi-labeler learning; (2) and meanwhile a class label is associated with a bag of input
vectors or instances rather than each individual instance and a bag is positive for a class label as long as
one of its instances shows an evidence of that class, which is often referred to as multi-instance learning.
Existing methods for multi-labeler learning and multi-instance learning only address one source of the
labeling ambiguity. They are not trivially feasible to tackle the dual ambiguity problem. We hence
propose a novel optimization framework by modifying the hinge loss to employ the weighted consensus
of different labelers' labels and further generalizing the notion of loss functions to bags of multiple
instances. The proposed formulation can be approximately solved by two mathematically tractable
models that accommodate two types of labeling bias. An alternating optimization algorithm has been
derived to efficiently solve the two models. The proposed algorithms outperform existing methods on
benchmark data sets collected for document classification, real-life crowd-sourced data sets, and a
medical problem of heart wall motion analysis with diagnoses from multiple radiologists.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In a variety of real-world problems, ambiguous and inconsistent
annotations of data exist inevitably and bring an important set of
machine learning problems associated with the efficient modeling
and utilization of ambiguous supervision. Data annotation becomes
ambiguous often due to both the labor-intensive and time-con-
suming nature in the labeling process and the difficulty of the
annotation tasks themselves. The mechanism that causes labeling
ambiguity varies from problem to problem, and multiple causes of
ambiguity can exist in a single problem in many practical domains.

Human linguistic annotation is crucial for many natural language
processing (NLP) tasks but can be expensive and time-consuming.
Crowdsourcing methods, such as Amazon Mechanical Turk sys
tem [1] and Crowdflower system [2], recruit non-expert annotators
to label the text documents with a relatively low cost. Internet
annotators, however, can provide notoriously inconsistent labels to a
document [3,4]. In medical applications, medical images are often
assessed by multiple radiologists to improve the diagnostic accuracy
of abnormality. Studies have shown a significant variation between

annotators in the interpretation of diagnostic images [5]. This inter-
labeler variation leads to a source of ambiguity in the supervision
labels.

In document classification with respect to a focused topic, a
document may contain multiple passages that either cover the
corresponding topic or only relate to other topics. Consider a docu-
ment as a bag comprising several passages as its instances. A doc-
ument is often assigned to a topic category as long as one of its
passages or instances is relevant to the topic. Whenwe try to classify a
document, it would be very important to identify the specific passage
in the document that corresponds to the given topic. An image can be
represented as a bag of different regions and can be associated with
the objects that each region dictates. This type of ambiguous annota-
tion leads to the so-called multiple instance learning problem and
usually has labeling bias in between positive and negative classes as
positive labels are commonly based on evidence validation whereas
negative labels indicate either true negative or lack of knowledge.

Many practical learning problems present multi-instance exam-
ples that are labeled by multiple annotators. For instances, a
document can be labeled by many internet labelers in terms of
whether it is relevant to a particular topic. Some labelers may
recognize the passages in the document that correspond to the
topic, whereas others may not, resulting in inconsistent annotati
ons from these labelers. Moreover, if a document is labeled negative
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for a specific topic, it may be truly absent of the topic but can also
indicate that the labeler fails the evidence search. When multiple
labelers annotate if an image contains a specific object, they may
perceive different regions of the image. Hence, some may give
positive labels whereas others label it negative for the object,
leading to a disagreement in the annotation. An example's true
label becomes a latent variable, and multiple versions of its value
are given. In this paper, we solve the problem of constructing a
classifier based on the different versions of a class label to predict if
a multi-instance example is associated with the class label, and to
identify the instances responsible for the class membership. Fig. 1
illustrates this challenging problem.

To the best of our knowledge, existing multiple instance learning
algorithms [6–9] do not cope with the labeling inconsistency if
multiple human experts have labeled the multi-instance examples.
Our problem also differs from the multi-instance multi-label (MIML)
learning problems [10–12] in which each bag as an example may
correspond to multiple labels when the example is labeled based on
different concepts. These labels are all considered as accurate labels
for the example: for instance, in image annotation tasks, a picture of
landscapes may contain the sky, mountain or trees simultaneously,
so this picture may correspond to all these labels. In contrast, for our
problem, an example is labeled based on a single concept, corre-
sponding to one class label, but multiple inconsistent versions of this
class label are given rather than an accurate label (which we call the
true label). Note that some versions may be incorrect labels. The state
of the art in multi-labeler learning methods [13–17] can estimate a
true label from the different versions of the label given by different
labelers, but are not feasible to cope with examples of multiple
instances, especially when different examples consist of different
numbers of instances. In summary, none of the existing methods
have addressed the dual ambiguity issue. Therefore, in this paper we
propose an approach to integrate expertise from multiple labelers
and build classifiers that are able to classify bags of instances, or
multi-instance examples with respect to the estimated true label and
identify true positive instances for positive bags. The major contribu-
tions of this paper are as follows:

� Propose a mechanism to learn the consensus label frommultiple
labelers by modifying the hinge loss which is commonly used in
support vector machines [18].

� Extend the modified hinge loss to bags of multiple instances
with a theoretical analysis to the resulted optimization
problem.

� Two relaxation models are derived that properly approximate the
original optimization formulation based on different assumptions
on labeling bias of different labelers.

� Develop an alternating optimization algorithm to solve the two
models which show superior performance in solving the dual
annotation ambiguity problem.

The paper is organized as follows. We briefly review existing
methods in the relevant areas: multi-instance learning (MIL),
multi-instance multi-label learning (MIML), and learning from
multiple data annotators in Section 2. Section 3 is dedicated to
the derivation of our proposed approach. In Section 3.1, we
propose a bi-convex program to simultaneously estimate reliabil-
ities of labelers and construct classifiers by taking weighted
consensus of labels from different labelers. Section 3.2 gives a
min–max optimization program that effectively deals with labels
given only at the bag level instead of the instance level. Section 3.3
derives two tractable approximation models to the proposed
formulation and describes an alternating optimization algorithm
that solves the two models efficiently. Extensive computational
experiments have been conducted and results are included in
Section 4 to demonstrate the performance of the proposed
approach. We give conclusion and discussions in Section 5.

2. Related works

Although there has been an increasing amount of literatures
related to the ambiguous annotation problem, no existing method
can effectively address the dual annotation ambiguity problem of
our concern.

2.1. Existing methods for multiple instance learning

To date, many methods have been proposed to solve MIL
problems (see a recent review in [19]). These methods can be rou-
ghly divided into two categories: generative and discriminative
approaches. Early methods are dominated by generative approaches
which aim at locating a target region in the instance feature space so
that all positive instances lie in its vicinity and all negative instances
are far away from it. These methods include axis-parallel rectangles
[20], the diverse density (DD) method [21], EM-DD (the expectation–
maximization alternative of DD) [22], and the generalized EM-DD
[23] together with their related theoretical results [24]. The main
drawback against generative approaches is the use of single or a
limited number of regions (prototypes) to represent the target con-
cept for the positive class, which may not be valid in practice.

Later methods work primarily towards a discriminative scheme
that adapts standard supervised learning approaches to the multi-
ple instance setting. The k-nearest neighbor (kNN and Bayesian
kNN [25]), neural networks [26], boosting approaches ([27],
decision trees ([28], logistic regression [29], and support vector
machine (SVM) [30,9,31,32] have all been generalized from their
single instance counterparts to ambiguously supervised multiple
instance learning. Although the generalized formulations perform
competitively on MIL problems, none of them can simultaneously
estimate the true labels from different labeler-annotations when
building multi-instance classifiers. These methods often assume a
distribution model over the instances in an example and link this
model to the (accurate) class labels of each bag (example). The
statistical model will not work in the scenario when true labels are
not given.

2.2. Existing methods for multiple instance multiple label learning

Multi-instance multi-label learning is firstly formalized in [10],
where each training example is associated with multiple instances
and multiple class labels. All of the labels are truly associated with
the examples. MIML learning aims to correctly predict all of the
labels and tries to find every corresponding label for an example.

The early methods [10] either transform the multiple labels of
an example into binary labels, which indicate whether an indivi-
dual label is assigned to an example, and then solve the MIML

Fig. 1. The problem of constructing a classifier from a training data set where each
example is annotated by multiple labelers and the true label is unknown. This
classifier is also expected to identify the instances of the example that are
responsible for the class assignment (i.e., the positive instances).
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problem using regular MIL methods, or transform the multi-
instance examples to be single instances and then solve the MIML
problem using methods that construct multiple classifiers jointly
for all labels. Many algorithms have been proposed for MIML since
then. MIML problems have been addressed by statistical models
[33,34], by metric learning [11], or via the revision of SVM
algorithms by exploring the connections between the instances
and labels of an MIML example [35–37]. Recent work studies the
situations in which there are unlabeled examples [38] or the
examples with partially untagged labels [39].

Even though the MIML learning algorithms allow a single example
to have more than one corresponding labels, these labels are based on
different concepts, and are all accurate labels that can be directly used
in a learning formulation. They cannot address noisy labels where the
true labels need to be derived or estimated from disagreeing versions
of labelers' labels.

2.3. Existing methods for multiple labeler learning

The work related to learning from multiple annotators can be
divided into two sub-areas. One area of the work focuses on modeling
of the annotation process and estimating true labels and error rates of
the labelers independent of any classifiers. The early statistical
methods [40–43] on error rate estimation for repeated but conflicting
test results, and the recent work on evaluating the quality of the
crowdsourced annotation [3,4,44], fall in this area. The latest work
ranks annotators to identify spammers [44], uses Multinomial prob-
abilistic models to quantify the competency of each labeler [45], and
parameterizes labeler expertise or reliabilities as well as the difficulty
of an annotation task in order to model human annotation process
[46–48,13]. However, these methods do not aim to construct a
classifier that is based on the features of the examples to predict
their labels.

Multi-labeler learning (MLL) has recently moved to classifier
estimation from multi-labeler-annotated data. Repeated labeling
methods [49–51] identify the labels that should be reacquired
from some labelers in order to improve classification performance
or data quality. A recent theoretical work [52], however, argues
that the repeated labeling negatively impacts the relative size of
the training sample. Another set of approaches [53,54] assumes
the existence of prior knowledge relating the different labelers,
and the prior is used to identify the samples for each labeler that
are appropriate to be used in the classifier estimation. The latest
methods [55,14,15,56], however, assume neither that labels can be
reacquired, nor existence of any prior on labeler relations. These
approaches rely on certain data distribution, such as Bernoulli
model or Gaussian model on the true labels [56] or two-coin
model for annotators [15], and design an expectation–maximiza-
tion algorithm on logistic regression classifiers. All these methods
are not trivially feasible to deal with multi-instance examples so
that an example's estimated true (bag-level) label can be linked to
appropriate instances in the example, especially when different
examples (bags) contain different numbers of instances.

3. Material and methods

In this section, we propose a novel optimization framework that
can efficiently address the dual annotation ambiguity problem by
modifying the hinge loss to employ the weighted consensus of dif-
ferent labelers' labels and further generalizing the notion of loss
functions to bags of multiple instances.

3.1. A bi-convex program for learning classifiers from multiple
annotators

In the problem of learning from multiple annotators, an input
example xi in training data is annotated with multiple versions
fy1i ; y2i ;…; ymi g of the label yi. Let X¼ fx1; x2;…; xng comprise the n
training examples, where xiARd. We focus on the problem of
binary classification where yiAf�1;1g. The labels from different
labelers y j

i Af�1;1g, jAf1;2;…;mg. We derive a new learning
model by altering the hinge loss ξi ¼ ½1�yiðx>

i wþbÞ�þ ¼ maxf0;
1�yiðx>

i wþbÞg commonly used in SVMs where w is
the weight vector and b is the offset of the linear model to be
determined.

We approximate an example's golden standard yi by a weighted
combination of each labeler's labels. In other words, we estimate yi
by ŷi ¼∑m

j ¼ 1rjy
j
i and each labeler j is associated with a reliability

factor rj where 0rrjr1. If the reliability factors of all labelers are
equal, this combination amounts to the majority voting. If we
require additionally ∑jrj ¼ 1, we approximate yi by a convex
combination of labelers' opinions. These different ways of combi-
nations may all be reasonable, and the most appropriate one may
be problem-specific. If the weighted consensus of all labelers

∑jrjy
j
i 40, the example i is more likely to be in the class of

y¼1; or otherwise, it likely has a true label of y¼ �1.
We modify the hinge loss by replacing the true labels yi, which

are unknown during classifier training, by the weighted consen-
sus. Thus,

ξi ¼ 1� ∑
j
rjy

j
i

 !
ðx>

i wþbÞ
" #

þ
: ð1Þ

When the consistency is high among the labels given by different
labelers, especially by reliable labelers, the magnitude of ∑jrjy

j
i

tends to be large regardless of its sign, showing high annotation
confidence for xi. Minimizing the modified hinge loss Eq. (1)
implies to penalize strongly the errors made on the examples xi

with highly agreed labels. When the labeling consistency is low
among reliable labelers for some examples, assigning these exam-
ples to either class can be a vague guess. The modified hinge loss,
as how it is defined, will give small errors for these examples, and
hence the classification performance on these ambiguous exam-
ples is not emphasized.

To regularize the empirical hinge loss, we minimize an objective
function defined as λJwJ2þ∑i½1�ð∑jrjy

j
i Þðx>

i wþbÞ�þ subject to
the bound constraints on 0rrr1 where λ is a tuning parameter to
balance between empirical errors and the regularization term JwJ2.
It is easy to verify that the objective function is bi-convex (i.e., convex
with respect to ðw; bÞ for fixed r and convex with respect to r for
fixed ðw; bÞ) and the bound constraints give a convex feasible region.
This problem forms a special case of bi-convex optimization. Even
when we include the additional constraint ∑jrj ¼ 1 for convex
combinations of labelers' opinions. This constraint is affine and hence
bi-affine. The resulting problem is still bi-convex. To form a canonical
form of the optimization problem, the hinge loss is translated into a
constraint ð∑jrjy

j
i Þðx>

i wþbÞZ1�ξi for each example i where
ξiZ0, and both r and ðw; bÞ are now variables to be determined in
the optimization problem. Overall, we search for the best w; b; r by
optimizing the following problem:

min
w;b;ξ;r

λJwJ2þ∑
i
ξi

s:t: ∑
j
rjy

j
i

 !
ðw>xiþbÞZ1�ξi;

ξiZ0; 0rrjr1;

i¼ 1;2;…;n; j¼ 1;2;…;m ð2Þ
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where we simply use the bound constraints on r (other constraints
can be used if appropriate). Eq. (2) is also a quadratically constrained
quadratic optimization problem but with one of its constraints
bi-convex. Due to the bi-convexity, efficient algorithms can be
derived to approximate an optimal solution. We will discuss an
algorithm based on alternating optimization in Section 3.3.

3.2. A min–max program for learning with dual annotation
ambiguity

We now derive a learning formulation to address the dual
labeling ambiguity issue where multiple experts or non-experts
are utilized to annotate training examples, each of which consists of
a varying number of instances. We extend the modified hinge loss
equation (1) from the instance level to assessing the loss occurred on
a bag. In the binary classification MIL, a bag is labeled positive if at
least one instance in it is positive, and negative if all the instances in
it are negative. The goal of a MIL problem is to distinguish positive
bags from negative bags. It is also important to infer the labels for
the instances. In the dual annotation ambiguity problem, a bag Bk is
labeled with m versions of the bag-level label ykj , j¼ 1;…;m and
k¼ 1;…;n. If we associate with each labeler a reliability factor rj, the
true label of Bk is estimated by ŷk ¼∑jrjy

j
k . If the combined

consensus of all labelers' opinions ŷk40 for a bag Bk, then Bk is
considered to be a positive bag; or otherwise, Bk is a negative bag.

We propose a min–max framework that aims to infer the labels
of instances from the estimated bag-level true labels by general-
izing the notion of loss functions to bags of multiple instances and
minimizing the loss on bags directly. Let B contain the indices of
the instances in a bag. Due to the asymmetric logic in the MIL
labeling process, if a bag B is “negative”, then yi ¼ �1, 8 iAB,
which corresponds to an “AND” logic among all of the instances in
the bag. If a bag B is “positive”, then ( iAB, such that yi ¼ þ1,
which corresponds to an “OR” logic among instances in the bag.

Now, let us pre-label all instances in a bag with the bag's
estimated true label, or the consensus bag-level label of all labelers.
Let ξik be the hinge loss of the i-th instance of the k-th bag defined as
ξik ¼ ½1�ð∑jrjy

j
k Þðx>

ik wþbÞ�þ . If ξik ¼ 0, the i-th instance is correctly
classified with respect to ŷk. If ξik40, the i-th instance is mis-
classified or classified without a proper margin. For a negative bag,
the AND operation requires all instances in the bag to be correctly
classified, which requires all hinge errors to be 0. In other words,
maxiAB ξik ¼ 0. For a positive bag, the OR operation only requires one
ξ to be 0, which amounts to miniAB ξik ¼ 0. The min or the max
function conditioned on a bag's label can serve as an objective to be
minimized for determining instance-level labels.

We thus construct a classifier by minimizing the integrated and
regularized loss function for the best parameters ðw; b; rÞ, i.e.,
min
w;b;r;ξ

λJwJ2þ ∑
kA fk:ŷk 40g

min
iABk

fξikgþ ∑
kA fk:ŷk r0g

max
iABk

fξikg ð3Þ

where ŷk ¼∑rjy
j
k is the bag-level label estimated from different

labelers' labels for a bag Bk. This formulation classifies bags by
calculating bag-level losses, but ultimately, it infers the labels
of instances in a positive bag Bk as yp ¼ þ1, 8pAfpABkjξpk ¼
miniABk

fξikgg, and otherwise yp ¼ �1.
Eq. (3) is, however, mathematically intractable since (a) the

index sets involved in the two summation terms rely on the
estimated bag labels ŷk, or more precisely, the labeler reliabilities r
that themselves are to be determined; and (b) to evaluate the
objective function, it requires the evaluation of the minimum and
maximum operations in the two summation terms.

We first prove that the evaluation of the minimum and
maximum values in (3) can be completely omitted once estimated
true labels are given (or in other words, once the two index sets
are determined). Then, we develop relaxed forms of (3) that are

tractable formulations and can effectively determine the index sets
used in the two summations. Note that when the reliability of
a labeler is known and fixed, the estimate of the true labels,
ŷk ¼∑jrjy

j
k , is determined and can be used to distinguish positive

bags from negative bags. Then different treatments (min or max)
will be used to compute their losses. We prove an equivalence
between (3) and the following problem when r
is fixed:

min
w;b;ξ;μ

λJwJ2þ ∑
kA fk:ŷk 40g

∑
iABk

μikξikþ ∑
kA fk:ŷk r0g

ηk

s:t: ŷkðw>xikþbÞZ1�ξik; ξikZ0

μikZ0; ∑
iABk

μik ¼ 1; if ŷk40;

ηkZξik; iABk; if ŷkr0;

iABk; k¼ 1;2;…;n: ð4Þ
where n is the total number of bags in the training set. The proof of
this equivalence highlights the equivalence between the logic OR,
i.e., miniABk

ξik, and the convex combination of hinge losses ξik in
the bag Bk.

Theorem 3.1. Any optimal solution ðŵ ; b̂Þ of Problem (3) is optimal
to Problem (4) and vice versa when r is fixed.

Proof. We first prove that an optimal solution of (4) has nonzero
μ's only on the instances for which the classifier w>xþb achieves
minfξik; iABkg; 8kAfk : ŷk40g.

Let ðŵ ; b̂; ξ̂ ; μ̂Þ be the optimal solution of (4). For notational
convenience, denote the objective function of (4) as J ðw; b; ξ;μÞ.
Then let Ĵ be the objective value attained at the optimal solution.
Notice that the hinge loss ξ̂ is uniquely determined by ðŵ ; b̂Þ as
ξ̂ik ¼maxf0;1� ŷkðw>xikþbÞg for each instance xikABk.

If (k0Afk : ŷk40g, and ( i0ABk0 , such that μ̂ i0k0 40 but ξ̂i0k0 a

minfξik0 ; iABk0 g. Then let ξ̂pk0
¼minfξik0 ; iABk0 go ξ̂ i0k0 . Then, re-set

μ̂pk0
¼ 1 and μ̂ i0k0 ¼ 0. Now, ~J ¼ Ĵ � μ̂ i0k0 ξ̂ i0k0 þ μ̂pk0

ξ̂pk0
o Ĵ . This

contradicts to the optimality of ðŵ ; b̂; ξ̂; μ̂Þ.
By this contradiction, 8 i; k, if μik40, the corresponding ξik has

to be the minimum loss that the classifier achieves on the k-th bag.
This implies that at the optimality, the objective of (4) is exactly
equal to

J ¼ λJwJ2þ ∑
kA fk:ŷk 40g

min
iABk

fξikgþ ∑
kA fk:ŷk r0g

max
iABk

fξikg:

To prove the other direction, let ðŵ ; b̂; ξ̂Þ be the optimal solution
of (3). We can simply define μik ¼ 1, if ξik achieves the smallest hinge
loss over the bag Bk, or otherwise μik ¼ 0, for all bags where ŷk40.
Following the same line of thought, we can prove that μ is optimal
to (4), and the solution ðŵ ; b̂; ξ̂ ; μ̂Þ is optimal to (4). □

Eq. (4) is also a bi-convex quadratic program where the
objective function is bi-convex in the sense that it is convex with
respect to ðw; bÞ for fixed μ and is convex with respect to μ for
fixed ðw; bÞ. All constraints of (4) are affine and hence bi-affine.

3.3. Solving the proposed formulation

If we design an iterative algorithm to optimize the proposed
formulation (3), the most significant challenge is how to tackle the
stochastic nature of the objective function. The objective function of
(3) is stochastic (not deterministic) because the min and max
functions are calculated on different sets of bags in different ite-
rations if r varies in the iterations. The difficulty hence lies in the
determination of r's because varying their values would alter
the decision of a bag's label, and correspondingly alter the objective
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function. We hence develop relaxed forms of (3) that are tractable,
and approximate but effective solutions can be efficiently obtained.

In an alternating optimization process, we solve (3) by alternating
between solving two sub-problems: one sub-problem is optimized
for the best classifier characterized by ðw; bÞ with a fixed choice of
reliabilities r; the other sub-problem is optimized for the best r after
obtaining a classifier. The slack variables ξ that measure the hinge
losses will need to be optimized in both sub-problems because they
vary when either ðw; bÞ or r is changed.

3.3.1. Sub-problem 1: building a MIL classifier when labeler
reliabilities are known

If the reliability r of a labeler is known and fixed, Eq. (4) is
optimized for the best classifier ðw; bÞ. The parameters μ are also
correspondingly optimized in order to calculate proper bag-level
hinge losses. An alternating optimization procedure can be devel-
oped to solve (4) that alternates between solving two smaller sub-
problems: one is to fix μ in (4) for the best ðw; bÞ and the other is to
fix ðw;bÞ in (4) for the best μ. The first sub-problem is a convex
quadratic program similar to the standard SVM, and can hence be
solved efficiently. The second sub-problem has an analytical solu-
tion and the optimal μ can be directly obtained by searching for the
smallest ξik for each bag Bk with ŷk40 and setting the correspond-
ing μik ¼ 1 and other μ's to 0.

3.3.2. Sub-problem 2: determining a labeler's reliability when the
instance-level predictions are known

If we fix the classifier parameters ðw; bÞ, the predicted value
w>xþb of every instance x is hence determined. The only
variables in (3) comprise the reliabilities of each labeler that
ultimately determine which bag should use the min loss and
which bag should use the max loss. Converting (3) into a canonical
optimization formulation yields

min
r;ξ;μ

∑
kA fk:ŷk 40g

∑
iABk

μikξikþ ∑
kA fk:ŷ k r0g

ηk

s:t: ∑
j
rjy

j
k

 !
ðw>xikþbÞZ1�ξik; ξikZ0

μikZ0; ∑
iABk

μik ¼ 1; if ŷk40;

ηkZξik; iABk; if ŷkr0;
iABk; k¼ 1;2;…;n: ð5Þ

Eq. (5) is still difficult to solve as the index sets on μ and ξ
depend on the values of r. Two options exist to approximately
solve Sub-problem 2. The first option, which we call the all_min
model, is to estimate r's so all the bags' labels reflect at least the
predicted value (by the current classifier) of one of its instances,
which corresponds to applying an “OR” operation to each bag
regardless the estimated bag labels.

The second option is to compute r's in such a way that we
continue to apply the “OR” operation to those bags estimated to be
positive (i.e., ŷk ¼∑jrjy

j
k 40) in Sub-problem 1, and apply the

“AND” operation to those estimated to be negative. It implies that
we will choose r's so that the new consensus bag labels can be
tuned towards what the current classifier predicts. This option is a
commonly used strategy in iterative algorithms, which means we
fix ŷk in (5) by the one obtained in the previous iteration ŷold

k . We
name this option the selective min_max model.

For the all_min option, only the single instance with the smallest
hinge loss from each bag is used for optimizing r's. For the selective
min_max option, based on the current estimated labels in Sub-
problem 1, each positive bag yields one instance to be used in Sub-
problem 2 whereas all instances in the negative bags are used in
updating r's. This option employs the min and max losses according
to the estimated bag labels used in Sub-problem 1. Hence, it will

update the labelers' reliabilities to best reflect the current estimate of
bag labels. These two relaxation options of (3) lead to mathematically
tractable problems that can be solved efficiently, and their solutions
reflect different assumptions on the labeling bias of the labelers.

Labeling bias is commonly observed in MIL tasks, the all_min
option takes the effect that positive labels may be more accurate
than negative labels. Positive labels are commonly due to the
recognition of an evidence for a class label. If a labeler annotates
a bag with yk ¼ þ1, it is likely that this labeler has witnessed an
evidence from the bag. In contrast, a negative label may be only due
to an insufficient evidence search. The all_min model treats any bag
as potentially a positive bag if one of its labelers gives þ1 and one
of its instances satisfies w>xikþb40. It amounts to requiring an
instance-level “OR” logic over all bags so as to minimize only the
smallest hinge loss occurred on each bag regardless of their labels.
This leads us to the following optimization problem:

min
r;ξ

∑
n

k ¼ 1
min
iABk

ξik

s:t: ∑
j
rjy

j
k

 !
ðw>xikþbÞZ1�ξik; ξikZ0;

iABk; k¼ 1;2;…;n: ð6Þ
However, the all_min model is a strong relaxation to the

original formulation where for a negative bag, all its instances
need to agree with the bag label. The selective min_max model
takes the effect to leverage the classifier outputs (i.e., w>xþb) of
all instances in a currently estimated negative bag. An instance's
predicted label is determined as þ1 if w>xþb40 or �1 other-
wise. The selective min_max model enforces the consensus labels, i.
e., the estimate of groundtruth, to be as consistent as possible to
the predicted labels of all instances in the negative bags returned
by Sub-problem 1.

3.3.3. Demonstration of the different model effects
We have implemented the two models (the all_min and

selective min_max models) to be used in Sub-problem 2. The two
models create distinct effects on the estimated true labels. Fig. 2
uses a simple example to illustrate the difference between the
results of the two models.

As shown on the right-hand side of Fig. 2, three labelers
annotated three bags that contained varying numbers of instances.

Fig. 2. Demonstration of the effects of the all_min and selective min_max models in
the estimation of true bag labels. Three bags containing different numbers of
instances are each labeled by three labelers.
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Assume that a classifier predicts a label (according to whether
y40) for each instance as shown on the left-hand side of Fig. 2,
and this classifier is built using majority voted labels, or in other
words, using the estimated true labels ∑jrjy

j
k where rj's are equal

across different labelers. Under this circumstance, the all_min
model will produce the highest reliability factor for the second
labeler by optimizing (6). It is because the second labeler gives
labels, ½�1; �1;1�, to the bags, that align well with the majority
voted labels. The all_min model minimizes the sum of the hinge
losses occurred on only one of the instances in each bag. These
selected instances obtain the smallest hinge loss in each bag. More
precisely, these instances have their predicted labels agree with
the estimated bag labels. Hence, only the first instance in Bag 1,
the first or the second instance in Bag 2 and the last instance in
Bag 3 would be used to update the reliability factors.

The selective min_max model, however, will raise the first
labeler to be most reliable. This model solves (5) (with ŷk replaced
by the currently estimated ŷold

k ) to update each labeler's reliability.
Because the third bag is currently estimated as positive, the
selective min_max model will use the min loss on this bag which
means that the estimated bag label should be consistent with the
label of just one of its instances. The estimated labels of the first
and the second bags are both y¼ �1. The max loss is used over
the instances in each bag, which requires ∑jrjy

j
k to be in con-

cordance with the predicted labels of a majority of the instances in
the bags. The first labeler gives labels ½1; �1� for these two bags,
which are consistent with 3 out of 4 instances in Bag 1 and 2 out of
3 instances in Bag 2. The consistency of this labeler is the highest
among all labelers. If this labeler's r is raised to a high value but
his/her label on the third bag (which is �1) becomes dominating
in the sum ∑jrjy

j
k , then the sign of this sum may flip. In this case,

because the min loss is used on the third bag, the selective
min_max model will select one of the instances, i.e., the one that
has been predicted the most negative, which will still lead to a
small bag-level loss. Hence, the first labeler will receive a high r
value in the selective min_max model.

3.3.4. The proposed alternating algorithm
Notice that there are two smaller sub-problems involved in

solving Sub-problem 1. We develop an alternating optimization
strategy that solves the three sub-problems (two from Sub-
problem 1) in turns until reaching a fixed point. The resultant
algorithm will output a classifier that can be applied to each
instance and at the same time assess the labelers' reliabilities
which are used to estimate the true bag-level labels. The first Sub-
problem solves for ðw; bÞ with a fixed r, and the second Sub-
problem optimizes with respect to r when the classifier (w; b) is
fixed. Algorithm 1 depicts the details of our algorithm which is
implemented separately for the all_min (Problem (6)) and selective
min_max (Problem (5)) models.

Algorithm 1. An alternating algorithm for dual ambiguity problems.

Input: X with bag index sets, all ykj's and λ
Output: w, b and r
1. Initialize r¼ a constant (evenly assigned to labelers).

2. Determine the bag labels by the weighted consensus ∑jrjy
j
k

based on the current values of r's.
3. Compute μ by finding the smallest ξ for each positive bag

and setting the corresponding μ¼ 1 and other μ¼ 0.
(In the initial step, set μ to 1=jBkj for each positive bag.)

4. Solve (4) with fixed μ for the best ðw; bÞ.
5. Solve the all_minmodel (6) (or the selective min_maxmodel (5)

with ŷk replaced by previously obtained ŷold
k ) with fixed

ðw; bÞ for r.
Repeat steps 2–5 until ðw; bÞ reaches a fixed point.

Since (3) has a stochastic objective function which varies due to
the random effect between taking the min or the max loss
determined by the value of the random variables r, convergence
analysis of our algorithms is difficult. We will leave it for the future
to study techniques in stochastic combinatorial optimization
[57,58] to estimate the probability of the algorithm convergence
in a theoretical form. Empirically, the proposed algorithms can
terminate at a fixed point for the two approximation models
within 20 iterations in all our experiments. Although the proposed
Algorithm 1 solves two relaxed variants of (3), it produces better
classifiers than either regular MIL algorithms or multi-labeler
learning algorithms by actively and effectively handling both
sources of the ambiguity as shown in our experiments.

We briefly analyze the time complexity of Algorithm 1 by
evaluating the computation cost at each iteration. Let ℓ, ℓþ and ℓ�

be the numbers of total instances, and the instances in the
predicted positive and negative bags, respectively. Let n, nþ and
n� be the numbers of all bags, and the positive and negative bags
predicted at the current iteration, and d be the number of features
for each instance. In Algorithm 1, three sub-problems are solved at
each iteration. The first sub-problem finds ðw; bÞ by solving (4). Eq.
(4) is a convex quadratic program. It uses one instance in each
positive bag and all instances in a negative bag to compute slack
variables ξ, so there are nþ þℓ� slack variables. The problem
dimension is ~d ¼ dþ1þnþ þℓ� . The second sub-problem finds μ
once ðw; bÞ and r are fixed. This step has an analytical solution
which only requires to scan through the instances in positive bags,
so it requires a computation cost of Oðℓþ Þ. The last sub-problem is
a linear program to optimize r and update slack variables ξ, and
the problem dimension is ~d ¼mþn for the all_min model and
~d ¼mþnþ þℓ� for the selective min_max model. We used the
simplex method and a simplex-based active set method in the
CPLEX optimization software [59] to, respectively, solve the linear
and quadratic programs. Although the simplex method has the
exponential worst-case complexity [60], its average-case complex-
ity is only polynomial [61,62]. For instance, by assuming a
spherically symmetric distribution on the constraint coefficients,
a widely used polynomial upper bound on the complexity of
simplex was obtained as ~d

2:5
~n1=ð ~d�1Þ where ~n is the number of

constraints in the program [63]. It is well known that the simplex
method performs very efficiently in practice, which is the case
shown in our empirical study (see Section 4.4). Given Algorithm 1
typically stops after 20 iterations, its time complexity would
approximately be a constant times the order of complexity of
simplex.

4. Computational results

We implemented Algorithm 1 in Matlab where (4)–(6) were
solved by calling CPLEX optimization solvers. We tested the proposed
approach against the state of the art on several benchmark data sets
from the natural language processing (NLP) domain, real-world
crowdsourced data sets generated from human facial expression
images and a medical problem that used echocardiograms for heart
wall motion analysis (HWMA). First, we validated if an algorithm that
deals with two sources of labeling ambiguity would improve multi-
ple instance learning by better integrating experts' varying expertise.
Second, we validated if our algorithm that enables multi-labeler
learning methods to deal with examples represented by sets of
instances will improve the study of some real-life crowdsourced data.
Third, we investigated the algorithmic behavior and scalability of the
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proposed approach with respect to large quantities of labelers, which
simulated the effects of large-scale crowdsourcing.

Since existing MIL methods are unable to deal with more than
one version of class labels assigned to an example, following a
common practice, we used majority voted labels in these methods
to train classifiers. Existing MLL methods cannot easily tackle the
situation that different examples have different numbers of
instances. We preprocessed the original data so that examples were
represented using vectors of the same length. In our experiments,
this was achieved by appropriately merging features from the
different instances, so all methods were compared on the basis of
the same amount of data/information for fair comparison.

4.1. Evaluation data sets

The first set of evaluation data was collected for document cat-
egorization, and was widely used for evaluating MIL methods [30].
The second set of data contained facial expression images that were
annotated by multiple online labelers. The third data set contained
HWMA features that were extracted from ultrasound videos, and
was used to diagnose if a human heart had abnormal motion on its
left ventricular wall by multiple radiologists. All data sets were used
to compare the proposed approach against representative MIL
methods. The facial expression image data set and the HWMA data
set, both with real crowdsourced labels, were used to validate the
proposed approach against existing MLL methods.

4.1.1. NLP benchmark data sets
Three sets of NLP data were used with their summary shown in

Table 1.
TREC data sets [30]: Four TREC data sets were downloaded from

the website of National Institute of Standards and Technology, http://
trec.nist.gov/. They were collected from several years of selected MED-
LINE articles. Each article was split into multiple passages using
overlapping windows of maximal 50 words in each window. Since
the TREC data was extremely sparse, we performed a principal
component analysis to reduce the data dimension. We chose the
number of principal components that cumulatively explained 75% of
the total data variance in each data set, which produced 46, 48, 31 and
48 features for the four TREC data sets. All the four data sets had 400
bags including 200 positive bags. The four data sets contained 3224,
3344, 3246 and 3391 total instances.

Newsgroups data sets [29] were composed from 20 Newsgroups
corpus. In this data set, each news post corresponded to an instance.
For each of the 20 news categories, each bag was made up by a
random number of posts. For positive bags, 3% of the posts were
randomly drawn from the target category and the remaining posts
were from other categories. Three categories of these data sets, alt.
atheism, comp.graphics and sci.med, were used in our experiments.
Each of them contained 100 bags including 50 positive bags.

BioCreative data sets [7,64] were derived from the articles pub-
lished in biomedical journals based on the names of human proteins,
and their relatedness to the gene ontology (GO) codes. The gene
ontology consists of 3 hierarchical domains of standardized biological
terms referring to cellular components, biological processes and
molecular functions, and each term was mapped to a unique GO
code. A 〈protein; article〉 pair was labeled with a GO code if the article
contained text that linked the protein to the GO code. Examples
labeled positive for a GO code consisted of documents that were
labeled with that GO code. We used two specific data sets, referred to
as GOcomponent and GOfunction in our experiments.

4.1.2. Facial expression data sets with real crowdsourced labels
We also tested our methods on the Facial Expression data set

previously used in a crowdsourcing study [65]. This data set
contained 585 head-shots of 20 users. For each user, images were
collected in which the user could be looking at 4 directions:
straight, left, right and up, and the user could present four
different kinds of facial expressions in each direction: neutral,
happy, sad and angry. The images were labeled with respect to the
4 types of facial expressions by totally 27 online labelers at the
Amazon Mechanical Turk. On average, each image received labels
from 9 labelers. If a labeler did not annotate an image, we set the
label to be 0, which corresponded to no evidence search for the
corresponding facial expression from the specific labeler, and
would not be used by any method.

We performed experiments to classify, based only on image
features, if an image contained a happy face. We selected a set of
220 images with users looking straight ahead, left and right. We
excluded images inwhich users wore sunglasses. Twenty-four labelers
were involved in labeling the 220 images, of which 55 were associated
with true labels (“þ1”) for the happy facial expression, and others
were hence labeled by “�1”. An early work in [65] estimated the
actual expression labels using majority voting among the 9 labelers,
and reported an accuracy of only 63.3% against the true labels for
happy expression. Hence, this data set represents a very difficult
problem. It can be even more challenging to not only estimate the true
class labels but also simultaneously classify these images based on
image features to the estimated true class.

Each image was represented by a collection of patches (or
instances). Each patch was described by a vector of numerical image
features. Since the original image contains large areas of background
rather than the human face, we adopted the technique used in [9] to
detect salient regions of an image. This has been proved to be a
successful technique for MIL tasks [66,67]. We first searched patches
with a scale between 20 and 50 pixels. The largest detected region
contained mostly the face area. Then, we detected salient regions
only on the face areas with the scale varying from 2 to 8 pixels. This
step gave us 8 to 32 salient regions (instances) for an image. Fig. 3
presents a sample image of the detected salient regions on the
human face. We resized each salient region into 40 �40 pixels. The
Local Binary Pattern (LBP) method [68] was used to extract features
(58 of them) from each patch. The central location and scale of the
detected salient region were also used as features. Totally, 61 features
were computed for each patch or instance. In order to compare with
algorithms that were only able to handle single instance examples,
we divided the subregion containing mainly the human face into
patches within a grid, and then LBP features were extracted for each
patch. The LBP features from all patches were concatenated to form a
single-instance example.

4.1.3. Medical image data sets with diagnoses from multiple
radiologists

The goal of HWMA was to analyze and predict if a patient heart
had abnormal motion based on image features extracted from two

Table 1
Statistics of NLP data sets.

Data sets Bags Positive bags Features AVG. Ins/Baga

Trec1 400 200 46 8
Trec2 400 200 48 8
Trec3 400 200 31 8
Trec4 400 200 48 8
alt.altheism 100 50 200 54
comp.graphics 100 50 200 31
sci.med 100 50 200 30
GOcomponent 718 359 200 18
GOfunction 770 385 200 17

a AVG. Ins/Bag: rounded average instance number per bag.
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sets of ultrasound images: base-dose and peak-dose, collected in stress
tests. The wall of left ventricle is medically segmented into 16
segments, corresponding to 16 instances. Fig. 4 shows 6 of the 16
wall segments seen from the apical 4 chamber (A4C) view of an
ultrasound clip. For each segment, 25 features were extracted. We also
concatenated the features from each of the 16 segments to form a
single-instance example. Base-dose image set contained 220 heart
cases. The peak-dose set had 208 cases where 12 cases were dropped
from this set due to poor image quality. The feature extraction process
was described in more detail in our early works [69].

Five expert radiologists rated each segment of each heart case
in terms of the severity of abnormality ranging from 1 to 5. If a
rating was greater than 1, the segment was abnormal, and hence
its label y¼ þ1, and otherwise y¼ �1. If one of the segments was
rated abnormal, the entire heart was rated abnormal. Groundtruth
labels are usually difficult to acquire for HWMA. Researchers
generally treat the consensus of expert readings as the ground-
truth. Hence, the majority voted segment-level labels were used in
our experiments as groundtruth, based on which the bag-level
groundtruth labels were induced.

4.2. Comparison to existing multi-instance learning algorithms

The NLP data sets were originally designed for testing MIL
methods with groundtruth labels. In this paper, however, the goal
of the study is to evaluate if dealing with dual annotation ambiguity
yields better learning performance. In other words, we deal with the
kind of problem where no groundtruth labels are available, and
instead multiple versions of a label are given and associated with a
bag of instances. The NLP data sets were chosen to use in our
experiments because by means of their groundtruth labels we could
objectively evaluate the accuracy of our models.

We hence simulated 20 labelers from the groundtruth labels of
these NLP data sets. Each labeler's labels were created following
the same procedure discussed in [15]. We first specified two
parameters for each labeler, the sensitivity α and specificity β.
Four of the labelers were specified to have both sensitivity and
specificity close to 0.5. In other words, these labelers' performance
was close to random guess. Six of the labelers were given equal

sensitivity and specificity in the values of 0.6, 0.65, 0.7, 0.75,
0.8 and 0.85. The rest ten labelers were prejudicial in the sense
that half of them had higher sensitivity than specificity, i.e.,
½α;β� ¼ ½0:8;0:3�, ½0:75;0:3�, ½0:75;0:4�, ½0:7;0:4�, and ½0:6;0:4�, and
the other half had the exactly opposite parameter values. Once the
parameters were specified for a labeler, a random number was
generated uniformly from ½0;1� for each example (a bag). When
the true label was þ1 (or �1), if the random number was not
bigger than the labeler's α (or β), this labeler chose the original
label; or otherwise, (s)he flipped the sign of the label.

Although HWMA data set received crowdsourced diagnoses
from five radiologists, we simulated 20 labelers in the same way
as described above to increase noise level. Because the facial
expression data set already came with 24 labelers' annotation, we
did not simulate labelers for this data set. The experiment on facial
expression data was done on three selected sets of the images
where faces oriented in three different directions. Therefore 220
facial expression images were used and the performance was
averaged over the three sets.

We compared our approach with four representative MIL meth-
ods listed below. These methods were implemented in PRTools [70]
and its extension with MIL toolbox [71] except the MIL method, MIL-
hinge, in [72] which was solved using CPLEX:

� mi-SVM [30] based on a mixed integer program, with a linear
kernel.

� MILBoost [73] based on AdaBoost, with 100 rounds as the
maximum number of iterations.

� MILES [9] based on a conversion to a single-instance example
and the application of sparse SVMs.

� The MIL-hinge model in [72] based on a revision to the hinge
loss.

These MIL methods cannot handle crowdsourced labels. To show
that the ability of estimating true labels is important in the multi-
instance learning setting, we used majority voted labels for the MIL
methods (which is a common practice if an algorithm can only take
one version of the labels), and let our methods automatically
estimate the true labels. If the proposed methods perform better
than the standard MIL methods, it demonstrates that the estimated
labels by our models are more accurate than majority votes, and our
models are better alternatives when dual ambiguity exists.

Because MIML learning is related to our learning problem, the
following two representative MIML methods were also used in our
comparison. (Their open-source codes were obtained from the
authors' website.) However, MIML learning solves a different pro-
blem that constructs multiple classifiers altogether by jointly con-
sidering related MIL classification problems. It is not designed for
integrating crowdsourced labels to construct a single classifier for
only one target label. In our experiments with the MIML methods,
we treated each labeler's label as a target label in the multi-label
setting. In other words, if we have 20 labelers, a MIML method will
report 20 classifiers, each corresponding to a labeler (although these
classifiers were jointly built). Hence, the performance of a MIML
method was compared by reporting the accuracy of the best classifier
among the 20 classifiers that it constructed.

� M3MIML [37] based on a quadratic program to maximize the
classification margin, with a linear kernel.

� MIMLSVM [10] based on a revision to the SVM formulation,
with a linear kernel.

Five-fold cross validation (CV) was performed to test all of the
methods. There was no tuning parameter in the MILBoost method
except we set its maximum number of iterations to 100. Other
methods, mi-SVM, MILES, M3MIML, MIMLSVM, had a tuning

Fig. 4. Left: an ultrasound image of Apical 4 Chamber (A4C) view; right: the 6 heart
segments seen from the A4C view.

Fig. 3. An exemplar facial expression image which is represented by a bag of
multiple instances (patches) as shown in circles.
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parameter named C. The MIL-hinge method had a tuning parameter
γ. The two proposed methods had a hyperparameter λ. All these
parameters were tuned in the same procedure within the training
data. An internal three-fold CV was performed within each training
phase to select a proper hyperparameter value for each of the
methods from the choices of 2k; k¼ �10; �9;…;6.

Table 2 shows the comparison on the averaged prediction acc-
uracies for the bag-level labels and the standard deviation based on
five separate trials of CV. The highest averaged accuracies were
shown in bold fonts. As shown in Table 2, our methods obtained
better classification accuracies than MIL methods on 10 out of the 12
experiments. On the rest two data sets, comp.graphic and sci.med,
our methods achieved comparable performance with the best
results. In particular, the two MIML methods showed worse perfor-
mance in general than standard MIL methods that used majority
voted labels. The MIML methods employed all the 20 versions of
labels and used them to learn classifiers jointly for each labeler. As
majority of the labelers were simulated with low accuracies, even
though we reported the best classifier's accuracy, the performance
was contaminated by other labelers' performance. This result pro-
vided an evidence that a method for MIML learning would not be a
solution for the dual ambiguity problem. All these results demon-
strate the effectiveness of our methods and validate the hypothesis
that better integration of annotators' expertise can improve multi-
instance learning in a crowdsourcing scenario.

Although our approach handles both multi-instance examples
and crowdsourced labels, it is worth investigating how the
proposed MIL component works by itself, which also sheds light
on what causes the performance improvement in Table 2. We
performed additional experiments to compare the performance of
the four MIL methods with that of our methods when groundtruth
labels were provided. Note that when only one version of the
labels, i.e. the groundtruth labels, is provided to our methods, the
second Sub-problem in Algorithm 1 will be omitted because the
only reliability parameter r will be set to 1 automatically. The two
models, all_min and selective min_max, will be identical. In this
situation, our approach is treated merely as another MIL approach.
In this set of experiments, we observed that our method per-
formed most similar to MIL-hinge with an average test classifica-
tion accuracy 76:2% and standard deviation 3:1% over the 12 data
sets. The four MIL methods, mi-SVM, MILBoost, MILES, and MIL-
hinge, reported average classification accuracies of 75:3%ð3:2%Þ,
75:7%ð2:4%Þ, 76:6%ð3:2%Þ, and 76:2%ð3:1%Þ, respectively, over the
12 data sets. We see that the performance of our MIL component is
comparable to other state-of-the-art MIL methods. This observa-
tion confirms that the performance improvement in Table 2 is due
to the ability of our methods to handle dual ambiguity.

We also examined the quality of the labeler's reliability factors
estimated by our methods. In the experiments, only our methods
could report the reliability of each labeler. Spearman's correlation

coefficients, showing the agreement between the estimated relia-
bility and the simulated labelers' accuracy, are given in Table 3 as in
the ρ columns. A correlation coefficient ranges from �1 to þ1 with
higher values indicating higher levels of agreement. Typically, ρ¼ 0
means that the two variables, a labeler's estimated reliability and
the simulated accuracy, are not correlated at all. A negative ρmeans
that the two variables are inversely proportional. All correlation
coefficients were positive for both of our methods on all data sets.
The consistency is statistically significant on more than half of the
data sets as shown in the paired t-test p-values. Using a standard
threshold pr0:05, the all_min model and the selective min_max
model had significant results on 7 and 6 data sets, respectively.
Hence, our models are capable of assessing the reliability of a
labeler in the absence of knowledge about true labels.

4.3. Comparison to existing multi-labeler learning algorithms

We compared our methods with three recently published MLL
algorithms as listed below. Note that many other learning-from-
crowds algorithms do not aim to build classifiers rather than to
study the nature of the crowd behaviors. The three MLL methods
we chose all construct classifiers by integrating expert expertise
and are most suitable for comparison with our methods.

� Expectation–maximization (EM) method with a two-coin
model as labeler accuracy prior [15].

� EM method with Gaussian prior on labeler accuracy [56].
� EM method with Bernoulli prior on labeler accuracy [56].

In the multi-labeler learning context, the best possible classifier would
be obtained by training a classifier against the true labels if they are

Table 2
Comparison on TEST accuracies (%) for predicting bag labels between our approach and MIL, MIML methods.

Data sets mi-SVM MILBoost MILES MIL-hinge M3MIML MIMLSVM all_min selective min_max

Trec1 82.0(1.0) 85.3(4.0) 87.8(1.3) 86.3(2.1) 80.0(4.2) 77.5(3.9) 92.0(2.6) 92.5(1.3)
Trec2 69.2(1.7) 73.0(1.8) 72.5(3.0) 66.0(1.4) 70.2(1.2) 67.5(2.2) 73.0(1.5) 72.0(1.5)
Trec3 70.7(0.8) 73.7(1.8) 71.8(2.1) 65.3(3.3) 70.0(1.4) 65.5(4.2) 75.5(2.6) 74.0(1.9)
Trec4 75.5(1.8) 76.5(1.8) 68.0(2.2) 66.0(1.2) 77.5(3.5) 67.5(2.9) 80.0(2.5) 79.5(0.6)
alt.atheism 64.6(2.1) 62.8(2.2) 58.0(2.4) 63.0(1.6) 63.0(1.4) 62.0(2.7) 64.0(2.9) 69.0(2.6)
comp.graphic 54.0(2.2) 58.0(3.9) 54.0(2.6) 54.0(1.1) 57.0(0.7) 56.7(2.8) 56.0(2.1) 55.0(1.9)
sci.med 62.0(3.3) 65.0(3.7) 68.0(3.2) 62.0(2.1) 59.3(4.3) 59.0(4.6) 68.0(3.4) 67.0(3.7)
GOcomponent 74.5(3.0) 78.0(1.5) 78.0(3.3) 72.1(1.1) 71.6(4.1) 70.7(2.1) 79.4(2.6) 80.0(2.8)
GOfunction 80.7(1.7) 77.7(2.5) 77.9(2.2) 74.8(0.6) 69.1(2.5) 65.8(2.1) 80.9(2.2) 76.6(2.9)
HWMA(base) 69.5(1.3) 70.9(1.5) 69.5(2.6) 70.1(2.6) 70.0(2.4) 69.1(3.4) 74.6(0.9) 72.7(1.5)
HWMA(peak) 72.1(1.1) 72.6(2.0) 73.4(1.9) 74.2(1.0) 68.3(4.4) 73.6(2.4) 83.6(1.2) 77.4(2.2)
FacialExpression 56.3(1.3) 57.0(1.3) 60.4(2.2) 54.2(1.1) 54.0(4.0) 53.8(2.2) 61.1(2.6) 58.6(2.1)

Table 3
Spearman's correlation coefficients ρ between a labeler's accuracy as simulated and
the labeler's reliability factor estimated by our methods.

Data sets all_min selective min_max

ρn p-value ρn p-value

Trec1 0.63 0.36e�2 0.64 0.29e�2
Trec2 0.70 0.84e�3 0.69 0.10e�2
Trec3 0.45 0.53e�1 0.46 0.47e�1
Trec4 0.63 0.36e�2 0.62 0.46e�2
alt.atheism 0.59 0.50e�2 0.68 0.88e�3
comp.graphic 0.59 0.50e�2 0.52 0.17e�2
sci.med 0.61 0.50e�2 0.47 0.42e�1
GOcomponent 0.55 0.14e�1 0.53 0.19e�1
GOfunction 0.47 0.42e�1 0.56 0.12e�1
HWMA(base) 0.49 0.33e�1 0.52 0.22e�1
HWMA(peak) 0.67 0.14e�2 0.62 0.36e�2
Facial expression 0.52 0.15e�1 0.47 0.49e�1

n ρA ½�1;1�. A ρ value closer to 1 indicates that the two variables are more
correlated.
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known. A baseline model could be the classifier trained with respect
to the simple majority votes across all labelers. Hence, we also built
MIL classifiers [72] using the groundtruth labels and majority voted
labels as the best possible model and a baseline model.

In the experiments with the facial expression data set, only our
methods can run on examples with varying numbers of patches as
detected. To make single-instance examples, we resized the face
area of each image into 120�120 pixels and split into 6�6 grid
cells. Then, each image had the same number of 36 instances. The
same 15 LBP features were extracted from each patch. Hence, this
process transformed each image into a vector of the same length
(with 540 features). Five-fold CV was performed on this data set
where our methods used the 36 instances in each bag and other
methods used single instances of 540 features. The averaged
performance was reported. Table 4 shows the averaged Area-
Under-the-ROC-Curve (AUC) and the standard deviations over the
five folds in the CV. Since the facial expression data set was
extremely difficult, all methods had modest AUCs, but the pro-
posed methods still outperformed other methods.

In the experiments with the HWMA data set, we combined the
16 segments of each heart case to form single-instance examples.
Given each segment was represented by 25 image features, we
obtained 400 features for each heart example. In order to more
closely examine the reliability estimates of the different methods,
we used 3 simulated labelers and 2 actual radiologists. The three
simulated labelers had sensitivity of [0.6, 0.65, 0.7] and specificity of
[0.4, 0.65, 0.7]. The first simulated labeler was the least competent
labeler. Based on the groundtruth labels, there were 77 and 71
positive bags, respectively, from the base-dose and peak-dose image
sets. The HWMA data set was split by the five radiologists to form a
test set for each dose. We draw receiver operating characteristic
(ROC) curves [74] to measure the test performance of each classifier.

Fig. 5 shows the ROC curves of the classifiers built by different
methods on HWMA data sets. AUCs were also computed and given in
the two figures. Notice that only the models trained with ground-
truth, majority voted labels and two of our methods were obtained
based on multi-instance examples. The other three methods ran on
single-instance examples because they could not handle multi-
instance examples. The empirical results on all the data sets show
that the classifiers trained with groundtruth performed the best as
expected. All classifiers obtained by multi-labeler learning methods
performed better than the baseline model.

On both of the facial expression and HWMA data sets, the five
MLL methods achieved similar prediction accuracies where our
methods performed slightly better. However, only our methods
were able to identify the positive instances, including the essential
micro patterns that revealed the facial expression, and the abnor-
mal segments that were responsible for the abnormality of a heart
whereas other MLL methods could not identify the regions
responsible for the positive label of an image. Fig. 6 shows the
instances that were identified to be responsible for the “happy”
label to three face images by both of our methods.

Figs. 7 and 8 show the reliability estimates of the internet labelers
in the Facial Expression data and the radiologists for HWMA,
respectively. Shown in the figures are the estimates averaged over
the five CV folds. The labeler reliabilities estimated by our methods
were comparable to the labeling accuracies estimated by the two-coin
model [15]. The two coin model returned us two parameters for each
labeler named as α and β, corresponding to the sensitivity and the
specificity of a labeler, respectively. With these two parameters and
the groundtruth predicted by the two-coin model, labeling accuracies
can be computed as ðαnþ þβn� Þ=n where nþ , n� and n are the
numbers of positive examples, negative examples and total examples,
respectively. The estimated accuracies were normalized to be in the
same scale with our reliability estimates. The methods with Gaussian
and Bernoulli models [56] did not report reliability estimates because
they built classifiers for each individual labeler to represent a labeler's
reliability [56].

Since the crowdsourced labels of facial expression data set were
collected from real labelers, their competency was unknown before-
hand. As shown in Fig. 7, both all_min and selective min_max models
reported reliabilities with large variation between different labelers. In
comparison, the reliabilities from the two-coin model did not vary that
much among different labelers. Overall, there was a certain level of
agreement across the three methods in the estimated reliabilities
although our methods would perform better to screen out redundant
or spammer labelers given the high variance of its reliability estimates.

Table 4
Averaged AUCs over the 5 folds of cross validation on the facial expression data set.

Algorithms Averaged AUC Standard deviation

Groundtruth 0.63 0.04
all_min 0.61 0.01
selective min_max 0.59 0.02
Two-coin model in [15] 0.56 0.02
Gaussian model in [56] 0.55 0.01
Bernoulli model in [56] 0.55 0.01
Majority voting 0.53 0.01

The best two values obtained by the MLL methods are indicated by bold fonts.

Fig. 5. ROC comparison among different methods for the HWMA base-dose images (left) and peak-dose images (right).
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For the HWMA labelers, as shown in Fig. 8, the first two labelers (the
real radiologists) were rated consistently higher than the third and the
forth labelers (simulated labelers) by all models. Among the simulated
labelers (the last three labelers), the first one (the least competent
labeler) was rated the lowest, and the last one was simulated with
good accuracy, and hence received a higher rating.

We examined the quality of the estimated true labels calculated
by our methods as ŷk ¼∑m

j ¼ 1rjy
j
k based on the averaged reliability

estimates. The estimated ŷ is a real-valued variable due to the real-
valued reliabilities r, and hence can be tested against the true
labels via a ROC plot. The estimated ŷ can be treated as the like-
lihood that an example is positive. Fig. 9 shows the ROC curves of

the estimated ŷ against the true labels on the facial expression
data. Fig. 10 shows the curves for HWMA base-dose and peak-dose
data. The two models of our approach reported very similar ŷ
on the two HWMA data sets. On the facial expression data set,

Fig. 6. An example of the instance-level prediction for three facial images where the user looks to different directions. The identified positive instances are shown in red
circles and the corresponding patches are enumerated at the bottom.

Fig. 7. The reliability estimates by the different methods averaged over the five folds of cross validation on the facial expression images.

Fig. 8. The reliability estimates by the different methods averaged over the five folds of cross validation. Left: on HWMA base-dose images; right: on HWMA peak-dose
images.
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the selective min_max model performed slightly better than the
all_min model. Overall, these models all reached high accuracies in
the groundtruth estimation with AUCs over 0.9, demonstrating the
effectiveness of our approach.

4.4. The scalability of the proposed methods

For all of the above experiments, the runtime of our algorithm
was in seconds. In a general crowdsourcing scenario, many more
labelers may be utilized to annotate data. We hence tested the
scalability of our models by increasing the number of labelers. We
simulated 20, 100, 500, and 1000 labelers, respectively, for the
HWMA data sets following the similar procedure as described in
Section 4.2. In particular, 15% of the simulated labelers were set to
have specificities and sensitivities close to a random guess, and
20% of the labelers were simulated as prejudicial with 10%
possessing greater sensitivity than specificity and the rest were
in the opposite case. Table 5 shows the AUCs achieved by each of
the MLL algorithms using 5-fold CV. Hyper-parameters were tuned
within the training data. The proposed all_min model and selective
min_max model consistently achieved the best accuracies when
the number of labelers varied.

For the experiments using 100 and 500 labelers, the two-coin
model in [15] achieved the same AUC as that of the proposed
model. However, when we increased the number of labelers, the
two-coin model became numerically unstable. The two-coin
model updates the estimated groundtruth denoted by μ, a prob-
ability of the true label being þ1, based on the multiplications of
two accuracy parameters 0rαo1 and 0rβo1 of all labelers,
e.g., α1α2⋯αm and β1β2⋯βm assuming that there are m labelers.
These products become extremely small with large m, conse-
quently, the μ becomes oscillating between 0 and 1 since these

two products are used in the numerator and denominator of the
updating formula for μ. Experimental results show that great
sparsity existed in the reliability factors estimated by our models
when a large number of labelers were included, which means that
the estimated label ∑jrjy

j
k was based on few labelers and informa-

tion from other labelers might be redundant. Hence, our models
could automatically select few labelers whose labels were valid to
make accurate estimates of the groundtruth and exclude corre-
lated or redundant labelers.

Fig. 11 shows the runtime for one iteration of each method
when the number of labelers varies. Although all methods
required longer runtime as the number of labelers was increased,
our methods were generally more scalable with the number of
labelers (shown as flatter lines). It is likely because increasing the
number of labelers only affects the optimization of Sub-problem
2 in our approach which is however a simple linear program. Our
algorithms typically terminated within 20 iterations, which was
similar to the two coin model in [15] but significantly less than the
methods in [56].

To further test the time efficiency of the proposed approach, we
used the full set of 585 head-shots in the facial expression data set
in an experiment to classify happy faces from the rest. We used the
40� 40¼ 1600 raw intensity features for each instance. Each of the
585 bags contained 8 to 32 instances as described in Section 4.1.
This created a rather large data set. There were totally 27 labelers
involved in labeling these images. We evaluated the runtime of each
iteration of our algorithms. The averaged runtime for solving the
first Sub-problem was 1.8 s. The runtime for solving the second
Sub-problemwas 0.7 s for the all_minmodel and 1.5 seconds for the
selective min_max model. Both models finished the training in 10
iterations, so the training phase of our approach overall required

Fig. 9. ROC curves of estimated labels obtained by our methods drawn against
groundtruth bag-level labels on facial expression images.

Fig. 10. ROC curves of estimated labels obtained by our methods drawn against groundtruth bag-level labels. Left: on base-dose images; right: on peak-dose images.

Table 5
AUC comparison between MLL algorithms on the HWMA data set with the number
of labelers ranging from 20 to 1000.

Algorithms 20 100 500 1000

HWMA base dose
Two-coin model in [15] 0.87 0.91 0.90 0.91
Gaussian model in [56] 0.90 0.87 0.88 0.89
Bernoulli model in [56] 0.89 0.86 0.88 0.88
all_min 0.91 0.91 0.90 0.92
selective min_max 0.86 0.88 0.87 0.89

HWMA peak dose
Two-coin model in [15] 0.86 0.88 0.87 0.88
Gaussian model in [56] 0.85 0.88 0.87 0.86
Bernoulli model in [56] 0.83 0.86 0.86 0.87
all_min 0.87 0.88 0.88 0.89
selective min_max 0.87 0.89 0.88 0.89

The best performance obtained on each data set is indicated by bold fonts.
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25–33 s. This is considered relatively efficient if we compare it with
the cost of the two MIML algorithms when they ran on the exactly
same data with both multi-instance examples and multiple labelers'
labels. On average, M3MIML and MIMLSVM spent 260 and 110 s,
respectively, to finish their training processes.

5. Conclusion

We have derived an effective approach to construct classifiers
when multiple annotators with varying expertise are utilized to
label bags of instances. In many practical applications, dual
labeling ambiguity presents where one kind of ambiguity comes
from the inconsistency of multiple labelers' labels and the other
comes from the inability of labeling individual instances of an
example. We first modify the hinge loss to employ the weighted
consensus of different labelers' labels and then use min–max
optimization to extend the loss from instance-level to bag-level,
which creates a solution to the dual labeling ambiguity issue. An
alternating optimization algorithm is designed to optimize the
proposed formulation after relaxing it to two approximation
variants. We have compared the proposed models to the state of
the art multi-instance learning and multi-labeler learning meth-
ods. Empirical results on NLP benchmark data sets and two real-
world crowdsourced problems have demonstrated the effective-
ness of the proposed approach over existing methods and proved
the need for such a technique to address the dual ambiguity
problem.

There are several limitations of the current work. We have not
examined other potential solvers that explore the bi-convexity
property of the proposed formulation (2), which may motivate
better relaxations to the integrative formulation (3). Given the sto-
chastic nature of the formulated optimization (3) and its relaxa-
tions (e.g., the sub-problem in (5)), we are unable to provide a
convergence proof for Algorithm 1. More extensive empirical
evaluation on real-life data sets with accessible input features
and a large number of labelers may better assess the strength and
weakness of the proposed approach. (Notice that many crowd-
sourced data sets do not provide input features for classifier
training). Besides the proposed all_min and selective min_max
models for estimating the true labels and labeler reliabilities,
alternative models may exist to further enhance the algorithm.
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