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Abstract. An automated detection system is constructed for detecting pulmonary
embolism from computed tomographic pulmonary angiographic images. Our pre-
vious work has presented novel effective algorithms to identify suspicious PE re-
gions from images and reduce false detections by designing powerful classifiers.
However, these techniques have to take effects in conjunction with discriminative
features used to characterize each identified PE candidate. This paper investigates
three sets of novel features: 1. features based on local candidate co-occurrence
matrices to remove false detections due to noise and poorly mixed contrast; 2.
features characterizing vessel properties to eliminate candidates outside of ves-
sel; 3. features discriminating between arteries and veins to remove candidates
from veins. We tested these features in our multiple instance learning classifica-
tion setting, and they constantly demonstrated performance improvement when
the 3 sets of features are included sequentially. The resulted PE CAD system has
capabilities of incrementally reporting any detection immediately once becoming
evident during searching, offering real-time support and achieving 85% sensitiv-
ity at 5 false positives.

1 Introduction

Computer aided detection of pulmonary embolism (PE) in computed tomographic pul-
monary angiographic (CTPA) images has received growing attention in recent years.
Pulmonary embolism (PE) is the third most common cause of death in the US, with
at least 650,000 cases occurring annually, although treatment with anti-clotting med-
ications is highly effective. Each year more than 400,000 PE cases are not correctly
diagnosed, and approximately 100,000 patients die who would have survived with the
proper diagnosis and treatment. CTPA has emerged as the first-line diagnostic tool for
PE. In CTPA, an embolus appears as dark regions residing in bright vessel lumen as il-
lustrated in Fig. 1. A CTPA volume consists of hundreds slices of the lung. The accurate
and efficient interpretation of such a large image volume is complicated by various PE
look-alikes and also limited by human factors, such as attention span and eye fatigue.
It is highly desirable to have an automated detection system to assist radiologists in de-
tecting and characterizing emboli in an accurate, efficient and reproducible way. Such a
CAD system must satisfy stringent real-time requirement since PE cases often occur in
emergency room. It must achieve high detection sensitivity with as few false positives
as possible to acquire clinical acceptance, because the inaccurate use of anti-clotting
medications can lead to subsequent hemorrhage and bleeding.

PE detection has been attacked by several groups [1–4]. All the existing meth-
ods in the literature require sophisticated vessel segmentation. Vessel segmentation is
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Fig. 1. Acute (a,b) and chronic (c) pulmonary emboli.

computationally time-consuming, has been problematic in small vasculature where sub-
segmental PEs often occur, and further complicated by PE if exists. None of these ap-
proaches can meet the real-time requirement. To circumvent the problem, our early
work developed an effective system to search for all suspicious PE regions within the
entire lung without segmenting the vessels, and then reduce non-PE regions by distin-
guishing them from true PE candidates. However, image features designed to charac-
terize various candidate properties are essential to make this system work.

We investigates three sets of novel features in this paper. First, features based on
local candidate cooccurrence matrices are calculated to remove false detections due
to noise and poorly mixed contrast. Second, Hessian-based features are designed to
characterize vessel properties to eliminate candidates outside of vessel. Last, image
features discriminating between arteries and veins are computed to remove candidates
from veins. These features were tested in the multiple instance classification setting.
Together with our candidate generation and classification algorithms, the overall ap-
proach forms a comprehensive and clinically usable PE CAD system which is capable
of reporting the first detection if any within 30 seconds and achieving 85% sensitivity
under 5 false positives on average across a large number of cases.

2 Retrospect of candidate identification and classification

When the vascular structure is not segmented, a major challenge for automatic PE de-
tection is to effectively separate the emboli from the vessel wall and to quickly remove
partial volume effects around the vessel boundaries while correctly preserving the PE
pixels, since all the voxels in those areas have the same original CT values as those in
the PE regions. To this end, we first reported an approach based on basic toboggan-
ing in [6] with a simple operation called “sliding”: A pixel v with intensity P (v) and
neighbors N(v) slides down to pixel g = arg mint∈N(v)∪{v} P (t). The idea is treated
the image as a landscape and let pixels slide within the landscape. Almost all the pixels
along the vessel wall in the same intensity range as true PEs will merge into air regions
and the true PE regions will stand out automatically. However, this basic tobogganing
approach requires to scan the whole volume two times and cannot meet the real-time
requirement for PE detection. To accelerate the tobogganing process, we developed a
concentration-oriented tobogganing algorithm, achieving the same sensitivity as basic



tobogganing but reducing computation time from originally 2 minutes to 27 seconds.
Readers can consult with [5] for a complete description of our tobogganing algorithm.

We validated the tobogganing algorithm through a clinical study of 177 cases (col-
lected from multiple medical institutions) with 872 clots marked by expert chest radi-
ologists. These cases were divided into two sets: training (45 cases with 156 clots) and
test (132 cases with 716 clots). This algorithm successfully detected 90.38% (141/156)
of the PE in the training set and 90.1%(645/716) of the PE in the test set. However, it
also produces false positives—candidates that do not intersect with any PEs. On aver-
age, 47.5 and 40.3 false positives for each case were generated for the training set and
the test set, respectively. Our false positive distribution is shown in Tab. 1.

Classification techniques are used to reduce a great amount of false positives in
order for the automated system to be clinically acceptable. Standard classification ap-
proaches treat candidates with equal importance. However for PECAD, multiple candi-
dates exist to associate with a single PE and often times if only one of the candidates
is correctly classified, the radiologist can easily trace out the entire PE. We have hence
designed a so-called multiple instance classification approach which focuses on iden-
tifying at least one true hit for each PE instead of all TP candidates, thus enabling to
reduce much greater false positives as shown in [7]. This classification approach will
be employed to validate our newly-designed features described in subsequent sections.

3 Local candidate characteristic features

As shown in Tab. 1, there are many false positives generated from vessels which are of-
ten due to noise or poorly mixed contrast material. One way to distinguished these false
positives from true PE candidates is to design features based on the spatial distributions
of intensity values computed within the candidate cluster. Therefore, in addition to the
basic intensity distribution features including mean, variance, skewness and kurtosis,
we compute a number of features according to gray level cooccurrence matrices.

The co-occurrence matrices are widely used in texture analysis to capture the spatial
dependence of intensity values within an image using second-order statistics. For a
given 3D volume I of n1×n2×n3 and a number of intensity levels N , a co-occurrence
matrix C is an N ×N matrix and acts as an accumulator over the image I . Specifically,
a co-occurrence matrix along a direction (dx, dy, dz) is defined as follows:

Cd(i, j) =
n1∑

x=1

n2∑
y=1

n3∑
z=1

{
1, ifI(x, y, z) = i & I(x + dx, y + dy, z + dz) = j,
0, otherwise. (1)

Haralick [8] proposed fourteen statistical features computed from the co-occurrence
matrices. Based on our experiments, the following four features have the most discrim-

FP types in vein in artery on lymph on artery wall between vessels vein wall as Nodule at bifurcation others
percentage 39.06% 20.24% 12.00% 9.88% 4.71% 4.47% 3.29% 2.82% 3.53%

Table 1. False positive distributions based a meticulous analysis of training cases.



inative power in capturing the spatial dependence of intensity values within a PE can-
didate:

– Entropy, E = −∑N
i

∑N
j Cd(i, j) log Cd(i, j), measures the randomness of a

gray-level distribution and is expected to be high if the gray levels are distributed
randomly within a PE candidate.

– Energy, G = −∑N
i

∑N
j C2

d(i, j), measures the number of repeated pairs of gray
levels, and is expected to be high if co-occurrence concentrates on certain pairs
(i, j).

– Contrast, C = −∑N
i

∑N
j (i−j)2Cd(i, j), measures the amount of local variations

within a PE candidate and is expected to be low if the gray levels of each pixel pair
are similar.

– Homogeneity, O = −∑N
i

∑N
j Cd(i, j)/(1 + |i − j|), measures the smoothness

of a PE candidate and is expected to be large if the gray levels of each pixel pair
are similar.

Based on these definitions, we expect that true PE candidates have lower entropy, higher
energy, lower contrast and larger homogeneity, so as to be distinguished from those
false positives due to noise or poorly mixed contrast material. These features serve as
the basic set of image features. We validate these features by evaluating the PE detec-
tion performance using a developed classification algorithm [7]. Figure 2 shows test
performance of 60% sensitivity at 5 false positive per volume with these features, and
hence this set of features is not sufficient to meet our goal.
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Fig. 2. ROC plot using local candidate features.



4 Vesselness characteristic features

Again as shown in Tab. 1, we have 12% of false positives generated from the connective
(lymph) tissues located outside of the arteries. To eliminate this type of false positives,
we design a set of features to determine if a candidate is located inside of a vessel based
on the multi-scale Hessian vessel-likelihoods. Ideally, if a voxel is within a vessel, the
Hessian matrix H formed from second derivatives of intensity in the neighborhood of
this voxel will have two negative eigenvalues and a third one is close to zero. The
eigenvectors corresponding to the first two eigenvalues lie in a plane orthogonal to the
central axis of the vessel, and the eigenvector corresponding to the third eigenvalue
is in a line with this central axis. Based on the eigenvalues, vessel-likelihoods can be
computed based on the Frangi [9], Sato [10] and Lorenz [11] methods. However, this
idea works only if the vessel does not have PEs. So, we precede this procedure by filling
the detected regions (candidates) with high intensity values, to simulate the inside of a
PE-ridden artery. To accommodate the different vessel radii, three vessel-likelihoods are
computed at five different scales and the maximal response for each vessel-likelihood
is taken across the five scales. In summary, our Hessian-based vesselness features are
computed as follows:

1. Fill the detected candidates with high intensity values
2. Compute vessel-likelihood features for each voxel x in the candidate by:

(a) Constructing the Hessian matrix H(x, s) based on the second derivatives in
scale s at voxel x

(b) Decomposing H into eigenvalues λ1, λ2, and λ3 with |λ1| ≤ |λ2| ≤ |λ3| in
scale s

(c) Computing three vessel-likelihoods in scale s at voxel x:

F(x, s) =

[
1− e

− 1
2 (

λ2
αλ3

)2
]

e
− 1

2|λ2λ3| (
λ1
β

)2

[
1− e

−λ2
1+λ2

2+λ2
3

2γ2

]
(2)

S(x, s) =





σ2|λ3|
(

λ2
λ3

)ξ (
1 + λ1

|λ2|

)τ

, λ3 ≤ λ2 ≤ λ1 ≤ 0

σ2|λ3|
(

λ2
λ3

)ξ (
1− ρ λ1

|λ2|

)τ

, λ3 ≤ λ2 ≤ 0 ≤ λ1 ≤ |λ2|
ρ

(3)

L(x, s) = ση

∣∣∣∣
λ2 + λ3

2

∣∣∣∣ (4)

(d) Maximizing vessel-likelihoods at voxel x across scale s:

F(x) = max
s
F(x, s), S(x) = max

s
S(x, s), L(x) = max

s
L(x, s) (5)

3. Compute statistical features (i.e., maximum, minimum, mean, median and standard
deviation) based on the computed three vessel-likelihoods for all the voxels in the
candidate.

True PE candidates have much higher vessel-likelihoods in magnitude than those gener-
ated in the outside of vessels (e.g., lymph false positives). We plot the training and test
detection performance of our classification algorithm in Fig. 3 with these vesselness
features in addition to the basic features. It clearly shows the improvement of around
20% increase on sensitivity at 5 false positive when vesselness features are included.
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Fig. 3. ROC plot using vesselness features in addition to local candidate features.

5 Vein/Artery characteristic features

We have nearly 40% false positives generated in veins. In CTPA images, we found that
the veins have different intensity distribution and texture patterns from arteries. Further-
more, those false positives within arteries were generated mainly due to poorly mixed
contrast material, demonstrating distinct intensity and texture patterns. Therefore, we
design a set of features to capture the intensity and texture patterns of veins and arteries
to eliminate false detections from veins. To do so, we extract a segment of vessel from
a given candidate and then compute a set of features based on the extracted vessel seg-
ment. While taking advantage of the benefits of vessel segmentation, our approach is
to only segment the relevant areas around the candidate, thereby avoiding an expensive
complete segmentation of the complete pulmonary vessel tree.

5.1 Vessel segment extraction

Each PE candidate generated by our CG is a connected component, consisting of a set
of voxels. In this step, we first extract the candidate boundary surface and then obtain
the vessel segment with a modified Dijkstra’s algorithm. The PE candidate boundary
surface is extracted by checking the neighbors of each voxel of the candidate. If any of
its neighbors does not belong to the candidate, then the voxel is on the boundary surface
and is recorded. The vessel segment containing the candidate component is extracted
by a graph-searching based iterative region-growing process by taking the extracted
boundary points of the PE candidate as initial seeds. This process creates a minimum
cumulative cost path map. The cost is set to the Euclidean distance from the boundary
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Fig. 4. ROC plot using the entire set of features.

of the candidate component. The growth occurs from the voxel with the lowest cumula-
tive distance cost on the boundary of the growing region. In the growing process, only
those voxels with intensity value above a threshold (100 HU) are considered, so that the
growth is along the contrast enhanced vessels. As a result, the extracted region grows
in layers (equal distance to the boundary of the candidate component) and stops if the
vessel length is larger than a given value (30 mm in our case).

5.2 Vessel feature computation

Once the vessel segment is extracted, similarly we can compute the basic intensity dis-
tribution features (mean, variance, skewness and kurtosis) and texture features based
on gray level cooccurrence matrices from the extracted vessel segment as described in
Sec. 3. In addition, we compute wavelet-based texture features. In the case of volumet-
ric images, the discrete wavelet decomposition is obtained by applying a pair of wavelet
filters: a lowpass filter h and a highpass filter g, along the x, y, and z direction of the
volumetric image. In a one-level decomposition of the 3D discrete wavelet transform
(DWT), the particular pair of filters h and g corresponds to a particular type of wavelet
used and ↓x 2 stands for downsampling by 2 along x direction, generating nine subvol-
umes from the input volumetric image. For example, subvolume LLL corresponds to
the lowest frequencies and subvolume LHH gives the low frequency along x direction
and high frequencies along y and z directions. A multi-level DWT decomposition is
obtained by repeating the same procedure to the subvolume LLL until the desired level
is reached. In our application, we used Daubechies 8-tap filters and a 2-level decompo-
sition of 3D DWT to compute the wavelet subvolumes. Then for each subvolume, the



energy feature is calculated from its wavelet coefficients,

W =
1

NxNyNz

∑
x

∑
y

∑
z

|w(x, y, z)| (6)

where Nx, Ny, and Nz are dimensions of the subvolume and w(...) is a wavelet coeffi-
cient within the subvolume. For each candidate, we have nine energy features computed
from the nine subvolumes.

We validate the third set of features by incrementally including them into our train-
ing process. Hence the final set of features include co-occurrence based features in
Section 3 and features described in Sections 4 and 5. The final system achieves 85%
test sensitivity at 5 false positives per volume.

6 Conclusion

We have developed three sets of new local characteristic features for eliminating false
positives in automated PE detection. The developed features have been fully integrated
into our PE CAD system and validated on over 130 cases, showing that the PE CAD
system performance has been incrementally improved by more than 20% at the ROC
operating point with our second and third set of the features, respectively, in our mul-
tiple instance learning framework. Our approach has a set of distinguished features,
requiring no vessel segmentation, reporting any detection incrementally in real time,
and detecting both acute and chronic pulmonary emboli, achieving a sensitivity of 85%
at 5 false positives, resulting in a clinically usable PE CAD system, which has been
deployed in many clinical sites around the world.
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