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Abstract— Depression is a serious health disorder. In this
study, we investigate the feasibility of depression screening
using sensor data collected from smartphones. We extract
various behavioral features from smartphone sensing data and
investigate the efficacy of various machine learning tools to
predict clinical diagnoses and PHQ-9 scores (a quantitative
tool for aiding depression screening in practice). A notable
feature of our study is that we leverage a dataset that includes
clinical ground truth. We find that behavioral data from
smartphones can predict clinical depression with good accuracy.
In addition, combining behavioral data and PHQ-9 scores
can provide prediction accuracy significantly exceeding each
in isolation, indicating that behavioral data captures relevant
features that are not reflected by PHQ-9 scores. Finally, we
develop multi-feature regression models for PHQ-9 scores that
achieve significantly improved accuracy compared to direct
regression models based on single features.

I. INTRODUCTION

Depression is a common, but serious, health disorder. It is
directly related to poor physical health [11], [15], [29] and
additionally affects psychological functioning and results in
loss of productivity [3]. As a public health issue, depression
is a particular challenge as symptoms may be inconspicuous
and vary over time; in particular, diagnosis (and treatment)
typically requires the persistent and direct attention of a
skilled clinician.

In this article we explore the possibility of depression
screening via sensor data collected from smartphones. Clinical
practice has long appreciated the statistical relationship
between behavior and depression; indeed, the PHQ-9 health
questionnaire [16]—a quantitative tool for aiding depression
screening and diagnosis—explicitly relies on certain behaviors
as indicators for depression. This suggests the attractive
possibility that smartphones, which can collect rich behavioral
data and are in widespread use, could serve as a platform for
ubiquitous, automated depression screening.

We study the efficacy of various machine learning tools
(regression and Support Vector Machine (SVM) based classi-
fiers) to predict clinical diagnoses and PHQ-9 scores based
on behavioral data. To the best of our knowledge, our study
is the first to leverage a dataset which includes clinical
ground truth (as well as sensor data and PHQ-9 questionnaire
responses). This allows us to separately study the relationship

between sensor data, clinically diagnosed depression, and
PHQ-9 responses. To briefly summarize our results:

• We find that behavioral data can predict depression with
good accuracy; furthermore, we find that an aggregate
model, based on both behavioral data and PHQ-9 scores,
can predict clinical depression with accuracy significantly
exceeding each in isolation. This suggests that behavioral
data captures relevant features that are not reflected by
PHQ-9 results.

• We additionally explore direct prediction of PHQ-9
scores based on behavioral data. This has been previously
studied in some detail, and our results for prediction
based on individual behavioral features are roughly
consistent with previous work. Curiously, in this setting
previous work has not been able to identify multi-feature
models that significantly improve over single feature
regression models. For the first time—by focusing on `2
regularization—we demonstrate multi-feature regression
models that significantly improve over single-feature
regression models.

Our dataset is comprised of 79 college-age participants. We
remark that the college-age population has heightened risk
of mental health issues including depression [30]. According
to [24], 10% of college students suffer depression, an estimate
consistent with our sample population. Clinically depressed
participants are necessarily under treatment during our study.
For each participant, we collect depression diagnoses from
a trained clinician, periodic PHQ-9 results, and smartphone
sensor data.

Section II below surveys related work; this is followed by
Section III, which describes our data collection infrastructure.
The major analytic results are presented in Sections IV and V,
which describe the feature extraction process, learning models,
and statistical analyses. We conclude and briefly describe
future work in Section VI.

II. RELATED WORK

Smartphones have been widely adopted and typically
provide a comprehensive array of built-in sensors. The data
collected from such sensors can naturally reflect user behavior,
which has led to a variety of innovative applications that detect



interesting patterns in sensor data [10], [8], [19], [12], [25],
[9] and attempt to infer certain behavior [20], [22], [10], [31].

Data collected from smartphones has also been analyzed for
smart health applications, focusing on physical, behavioral,
or mental health. For instance, BeWell [17] is a personal
health monitoring app which analyzes physical activity, sleep
and social interaction in order to provide feedback on user
lifestyle. The study [4] automatically recognizes stress from
smartphone’s social interaction data, weather data and self-
reported personality information. The study [21] examines
the effect of illness and stress on behavior. Specifically, it
analyzes communication and co-location data, extracted from
smartphones, to study the change in behavior with the onset
of disease. Related work from the same group [22] analyzes
the effect of social interactions on weight change.

Using smartphone sensor data to predict depressive mood
or depression is relatively a new research area [6], [31], [26].
Research has largely relied on self-reported surveys (e.g.,
PHQ-9 responses) in order to train and assess predictive
models. The study [31] reported a significant correlation
between depressive mood and social interaction (specifically,
conversation duration and number of co-locations). The study
[26] extracted features from phone usage and mobility patterns
and found a significant correlation with (self-)reported PHQ9
scores. The relationship between depression and mobility
patterns has been further studied in [6]: using mobility
features, they trained both general and individual SVM
models, and found individual models to outperform multi-
feature models.

Our study uses smartphone sensor data to predict depres-
sion. It differs from existing studies in several important
aspects. To the best of our knowledge, our study is the first to
augment direct-reporting with clinical ground truth and thus
the first that can individually study correlations (and predictive
power) of behavioral features and self-reported symptoms.
Our statistical findings reaffirm existing results for regression
of single features vs. PHQ-9 values. Additionally, we develop
new regression models for PHQ-9 scores, where we find
that multi-feature models can provide significantly improved
correlation, and we develop SVM models for clinical ground
truth based on behavioral features and PHQ-9 values.

III. DATA COLLECTION

Figure 1 summarizes our high-level approach to data
collection and analysis. This section describes data collection;
data analysis is deferred to later sections.

The data was collected from October 2015 to May 2016.
Three types of data were collected: smartphone sensing data,
PHQ-9 questionnaire responses, and clinician assessment.
Specifically, smartphone sensing data was collected through
an app running in the background on a participant’s phone;
PHQ-9 questionnaires were filled in periodically (every two
weeks) by each participant through another smartphone app;
and clinician assessment was provided by a clinician when
she met the participants. We next describe how we collect
these three types of data. At the end of the section, we briefly
describe participant recruitment and other related issues.

A. Smartphone Sensing Data

Smartphone sensing data is collected by a smartphone
sensing app, called LifeRhythm, that we developed. Given
the wide variety of phones in the market, one approach is to
develop the app for a specific platform, pre-install the app
on such phones, and then provide the phones to participants
in order for them to participate in the study. An alternative
approach is to develop the app to be directly usable (without
altering the operating systems) on major smartphone platforms
so that participants can use their own phones to participate in
the study. We opt to use the second approach since our target
participants are college students and most of them possess
their own smartphones. This approach is advantageous since
a participant can use her own phone and will not be burdened
to carry another phone. It also makes our study easier to scale
since we do not need to provide phones to the participants.
On the flip side, we need to spend more time testing and
debugging the app to ensure that it can run smoothly for
different varieties and models of phones.

Because iOS (the operating system used by the iPhone)
and Android are the two predominant smartphone platforms,
we developed separate apps for each of these. For iOS, our
app is developed using Swift [2], and can be used on iOS 8
and above (which has dominant market share compared to
other iOS versions [1]). For Android, our minimum operating
system requirement is 4.0, which covers the majority of
Android users. Android allows apps to read data from a vast
array of phone sensors, while iOS has a much stricter policy,
only allowing third party apps to collect data from a very
limited set of sensors. In the rest of the paper, we consider
location and activity information, which can be collected
directly on both platforms (we have also collected other types
of data on Android phones, which are not used in this paper).

1) Location: Each location sample contains the longitude
and latitude information of a participant with accuracy
in meters at a particular point of time. On Android, this
information is collected through Android’s location services,
sensed periodically every 10 minutes. Our app uses an existing
publicly available library (Emotion Sense library [18]), which
can sense location through both GPS and network information.
On iPhones, no APIs are provided to schedule periodic data
collection. Instead, our app subscribes to the location services
provided by the operating system as detailed below.

On iPhones, our app uses an event based mechanism to
collect location data. Specifically, location updates occur
after a user has traveled a certain distance. When such
an event occurs, the app will sense and record the event.
Location sensing requires two parameters: desired accuracy
and distance filter. The desired accuracy parameter defines
the accuracy of location updates, whereas the distance filter
defines the distance threshold after which location update
event will fire. To optimize battery and location update
frequency, we change these parameters dynamically based on
a user’s activity. Specifically, we define 5 modes: stationary,
moving, verification, vehicle-city, and vehicle-highway. The
mode is based primarily on a user’s instantaneous speed, as



Fig. 1: High-level overview of our approach.

shown in Table I (moving includes both walking and running).
The desired accuracy of all the modes (except verification
mode) is set to 10 meters. The distance filter is larger for
higher speed, and is set empirically to 50 meters, 100 meters,
0.5 mile, and 1 mile for stationary, moving, vehicle-city,
and vehicle-highway, respectively. The verification mode is
entered when we suspect that a user is in a moving vehicle
(either vehicle-city or vehicle-highway). We introduce this
mode to reduce the impact that a user is wrongly classified
as in a moving vehicle (which will increase the distance filter
to 0.5 - 1 mile, and miss many location samples when that
is not the case).

2) Activity: The sensed activity at a particular point of
time can be stationary, walking, running, cycling, in-vehicle,
or unknown, associated with a confidence value. For Android,
activity is sensed using the Google’s Activity Recognition
API, through which the app listens and records events. In
particular, activity information is sensed every 10 minutes. For
iPhones, the app collects user activity at the time of location
update (it is infeasible to do so periodically). Specifically,
depending on the phone model, user activity is collected in
one of the following two ways. For phone models 5s and
above, we use Apple’s core motion API to collect activity
information using the phone’s motion co-processors. This is
a background service, managed by iOS, that continuously
collects activity information from the phone. On each location
update event, our app will query the activity information
from core motion API for the interval. For iPhone 5c and
below, since built-in motion co-processors are not available,
using Apple’s core motion API is infeasible. Instead, the app
estimates user activity using the instantaneous speed at the
time of a location update, as shown in Table I, where the
speed ranges are set empirically.

B. PHQ-9 Questionnaire Responses

PHQ-9 is a 9-item self-reported questionnaire that assists
clinicians in diagnosing and monitoring depression. Each of

Activity Speed (meter per second)
Stationary 0 < x < 0.95
Walking 0.95 < x < 2.3
Running 2.3 < x < 11.18
Vehicle (city) 11.18 < x < 22.4
Vehicle (highway) > 22.4

TABLE I: Activity inference based on instantaneous speed
(used as activity information for iPhone 5c and below, and
for setting parameters in location update for all iPhones).

the nine questions evaluates a person’s mental health on one
aspect of major depressive disorder. A participant fills in a
PHQ-9 questionnaire during the initial assessment, and then
on her (his) phone every 14 days. We develop a PHQ-9 app
for both iPhone and Android platforms. The app generates a
notification when a PHQ-9 questionnaire is due.

C. Clinical Assessment

Using a Diagnostic Statistical Manual (DSM-V) based
interview and PHQ-9 evaluation, a clinician associated with
our study classifies a participant as either depressed or not
during the initial screening. A participant with depression
must be in treatment to remain in the study. Some participants
were classified as non-depressed during the initial screening,
and later on their PHQ-9 scores reached above 10 or they
had suicidal intent due to academic or personal stresses.
For all such participants, an appointment with our clinician
was scheduled promptly. The clinician verified whether they
exhibited depression symptoms, and if so, suggested them to
participate in treatment.

D. Recruitment and Data Collection

Before the start of the recruitment, the study was approved
by the University of Connecticut (UConn)’s Institutional
Review Board (IRB). To recruit, we advertised the study
in September 2015 using an undergraduate mailing list and



flyers that were posted in all major buildings within UConn
the campus. Participation was completely voluntary, and
participants can exit the study whenever they want. To
compensate participants for their time, a $15 Amazon gift
card was given for every two weeks of active participation.
Every participant needs to sign a written consent form before
we install the apps on her (his) phone, and schedule an
initial screening appointment for the participant to meet
with the clinician. The purpose of the initial screening is
to clinically verify whether a participant is depressed or not.
For the participants with depressive symptoms, we schedule
regular follow-up meetings for them to meet with the clinician
(for every two weeks or one month, as determined by the
clinician).

To preserve privacy of the participants, we anonymize the
participants by assigning each of them a random user ID. The
data collected by the apps is encrypted before being stored on
the phone, and then sent to a secure server. The data uploading
is through WiFi whenever the operating system deems best.
Empirically, this occurs sufficient number of times per day to
be effective. Uploading data only through WiFi is a design
consideration, since WiFi networks are widely and freely
available, especially on campus. To ensure the quality of the
data, we continuously monitor the data received on the server.
If no sensing data has been received from a participant for
three consecutive days, we send an email to the participant
to check the status. Similarly, when we have not received a
PHQ-9 questionnaire from a participant three days after the
due date, we send an email reminder to the participant.

We recruited 79 participants from October 2015 until
late February 2016 for our study. The participants are aged
18 - 25 and enrolled as full time students at UConn. Of
them, 73.9% are female and 26.1% are male. In terms
of ethnicity, 62.3% are white, 24.6% Asian, 5.8% African
American, and 5.8% have more than one race. The majority
of the participants are undergraduates, only 5% are graduate
students. All participants use their own smartphones (either
iOS or Android) except for two participants (who do not
have smartphones and borrowed Android phones from us).
Overall, our study group has 25 Android users with phone
manufacturers including Samsung, Nexus, HTC, Xiaomi,
Motorola and Huawei; and 54 iPhone users. Since almost all
the participants used their own phone, we expect to collect
data with a reasonably good quality, as people tend to carry
and actively use their own phones.

Of the 25 Android users, 6 were classified as depressed and
19 were classified as non-depressed; of the 54 iPhone users,
13 were classified as depressed and 41 were classified as
non-depressed. Fig. 2 shows the histogram of average PHQ-9
scores of the participants, where for each participant, we use
her average PHQ-9 score during the data collection period.
The participants with depression and those without depression
are marked with different colors. We see that participants
with depression indeed tend to have higher PHQ-9 scores.
Thanks to treatment, the PHQ-9 scores of the participants
with depression in general decrease over time; some had been
in treatment prior to our study, and had relative low scores

Fig. 2: Histogram of the PHQ-9 scores of the participants.

even at the beginning of their participation.

IV. FEATURE EXTRACTION

We extract a number of features from location and activity
data captured by smartphones. Broadly, these features are in
three categories, one based on raw GPS data, one based on
location clusters, and the other based on activity data. We
next describe these features and the related data preprocessing
tasks.

A. Features based on Raw GPS Data

Each GPS location sample is associated with an error (in
meters). The distribution of the errors indicates that 90% of
the errors is below 100 meters, 96.4% of the errors is below
165 meters, while the remaining errors can be large. We
therefore filter out all the samples that have errors larger than
165 meters to retain most of the samples while eliminating
the samples with large errors.

Another data preprocessing procedure is dealing with
missing data. This task is particularly important for iPhones
since the location capture is event based. In other words, if we
observe two consecutive locations samples that are far apart
in time, it might be because no location update event has
been triggered (i.e., the participant has not moved much), or
because the app has stopped collecting data during that time
period. We use the following heuristic to differentiate these
two types of scenarios. Let T be a threshold. If the interval
between two consecutive location samples is above T , then
we assume some data is missing. Specifically, suppose L1 and
L2 are consecutive location samples, taken at times t1 and t2,
respectively. If t2 − t1 > T , then we assume that the location
is L1 from t1 to t1 +T , and the location data from t1 +T to
t2 is unknown (and hence we ignore the time period from
t1 +T to t2). We set T to be time dependent: during 7am -
10pm, it is 4 hours for weekdays and is relaxed to 6 hours for
weekends; other than 7am - 10pm, it is set to 8 hours. This
heuristic is determined based on the approximate schedules
of college students (all our participants are college students).
For Android, missing data is easier to detect since location
is sensed periodically every 10 minutes. Due to the variation
in phone’s sensing cycle, the intervals of two consecutive
location samples can be larger than 10 minutes. On the other
hand, we observe that most of the intervals are within 15
minutes. We therefore set T to 15 minutes for Android.

After preprocessing the data, we extract the following
features from the raw GPS data:



Location variance. This feature [26] measures the variability
in a participant’s location. It is calculated as

Locvar = log(σ2
long +σ

2
lat) (1)

where σ2
long and σ2

lat represent respectively the variance of
the longitude and latitude of the GPS coordinates.

Time spent in moving. The feature, denoted as Move,
represents the percentage of time that a participant is moving.
We differentiate moving and stationary samples using the
same approach as that in [26]. Specifically, we estimate the
moving speed at a sensed location. If the speed is larger than
1km/h, then we classify it as moving; otherwise, we classify
it as stationary.

Total distance. Given the longitude and latitude of two
consecutive location samples for a participant, we use
Harversine formula [28] to calculate the distance traveled
in kilometers between these two samples. The total distance
traveled during a time period, denoted as Distance, is the
total distance normalized by the time period.

Average moving speed. In PHQ-9 questionnaire, one ques-
tion evaluates the mental health of a person based on whether
she is moving too slowly or quickly. Inspired from this, we
define average moving speed, AMS, as another feature.

B. Features based on Location Clusters

To identify the major locations where a participant spends
time, we use clustering techniques to identify location clusters.
Before applying a clustering algorithm, we first need to
preprocess the location data collected on iPhones. This
is because location collection on iPhones is event based.
Therefore, for a sensed location sample, the amount of time
spent at the location is not a constant value (unlike the location
data collected on Android phones, which is periodic, and
hence the amount of time at a location sample can be assume
to be a constant). To deal with this issue, we add uniform
samples at the interval of 1 minute. Specifically, suppose L1
and L2 are consecutive location samples, taken at minutes
t1 and t2, respectively. If t2 − t1 > 1, then we divide the
interval between t1 and t2 into multiple 1-minute bins, and add
additional location samples of L1 for every minute between
t1 and t2 (based on the data capture mechanism, there is no
significant location change before t2). The choice of 1 minute
is empirical (we do not choose 10 minutes as in Android
since the interval between two consecutive location samples
can be much smaller than 10 minutes).

We apply clustering techniques to the stationary points
(i.e., whose with moving speed less than 1km/h). Specifically,
we experiment with two widely used clustering algorithms:
DBSCAN [13] and K-means, and find that DBSCAN is more
suitable for clustering our location data. Fig. 3 shows an
example. We see that DBSCAN considers the low density
regions as outliers (marked as red points), which suits our
interests in clustering frequently visited places (K-means
does not mark outliers). In addition, we see that DBSCAN
successfully identifies several nearby buildings as separate

clusters, while K-means identifies them as a single cluster
only (marked by the blue circles in Fig. 3). We use DBSCAN
to cluster locations in the rest of the paper. It requires
two parameters, epsilon (the distance between points) and
minimum number of points that can form a cluster (i.e.,
minimum cluster size). Empirically, we find epsilon to be
0.0005 and the minimum number of points to be the number
of location samples corresponding to around 2.5 to 3 hours’
stay.

Fig. 3: Location clusters using DBSCAN (left) and K-means
(right), where different colors represent different clusters; in
the results of DBSCAN, red points represent outliers.

We use the following features based on location clusters.
They are similar to those in [26] except that the clustering is
based on DBSCAN instead of K-means as described earlier.
Number of unique locations. This feature, denoted as Nloc,
is the number of unique clusters from the DBSCAN algorithm.

Entropy. Entropy measures the variability of time that a
participant spends at different locations. Let pi denote the
percentage of time that a participant spends in location cluster
i. The entropy is calculated as

Entropy =−∑(pi log pi) (2)

Normalized entropy. Since the number of location clusters
varies among the participants and entropy increases as
the number of location clusters increases, we also adopt
normalized entropy[26], which is invariant to the number of
clusters and depends solely on the distribution of the visited
location clusters. It is calculated as

EntropyN = Entropy/ logNloc (3)

where Nloc is the number of unique clusters.

Time spent at home. We use the approach described in
[26] to identify “home” for a participant as the location that
the participant is most frequently found between 12am to
6am. After that, we calculate the percentage of time when a
participant is at home, denoted as Home.

C. Features based on Activity Data

We remove all activity samples that are sensed with low
confidence. These correspond to the samples marked with
confidence below 50% for Android and marked with “low”
for iPhones. We then represent activity as either active,
inactive or unknown, where inactive represents stationary
state, active coarsely represents non-stationary states (i.e.,



walking, running, cycling, and driving), and unknown state
is when the API cannot determine the state. This coarse
grain classification of activity is helpful in dealing with the
heterogeneity of the phone models and potential inaccuracy
in classifying activity into fine-grain categories.

The feature based on activity data is percentage of time
in a state, specifically Tactive and Tinact, representing
respectively the percentage of time when a participant is
active and inactive. Note that their summation is not one
since some states are identified as unknown.

V. DATA ANALYSIS

Our data analysis aims to answer the following three
questions: (1) what behavior features are strongly correlated
with PHQ-9 scores? (2) can behavior features predict PHQ-9
scores? and (3) can behavior features predict whether one
is depressed or not with accuracy comparable to clinical
ground truth? In the following, we first present the overall
methodology and then present the analysis results in detail.

A. High-level Methodology

We consider a “PHQ-9 interval” that ends with the day
when a participant fills in a PHQ-9 questionnaire and the
previous 14 days (the PHQ-9 questionnaire asks a participant
to reflect their behavior in the past 14 days). In other words,
each PHQ-9 interval is 15 days long. We regard the amount
of sensing data during a PHQ-9 interval as sufficient if there
are data in at least 13 days and there are at least 50% of data
points for the days with data. Based on the above criteria, we
filter out PHQ-9 intervals that do not have sufficient amount
of sensing data, and then obtain the various behavior features
for each of the remaining PHQ-9 intervals. Visualizing GPS
data on Google maps indicates that some participants traveled
extraordinarily long distance (e.g., from the US to Europe)
during certain PHQ-9 intervals, leading to extreme values (or
outliers) in certain behavior features (such as location variance
and distance traveled). We identify and remove such extreme
values through a combination of visual inspection and outlier
analysis. Specifically, a sample (the distance traveled during
a PHQ-9 interval) is considered as an outlier if it is larger
than three times of the interquartile range of all the samples.
The PHQ-9 intervals with traveling distances classified as
outliers are removed and not used for further analysis.

After the above data filtering, for GPS related features, we
have 148 and 202 valid PHQ-9 intervals for Android and iOS,
respectively; for activity related features, we have 190 and
255 valid PHQ-9 intervals for Android and iOS, respectively.
While the number of iOS users is around twice as that of
Android users, the amount of data is not as large since the
iOS app encountered an unexpected data collection problem
in the middle of the study; while the problem was resolved
eventually, sensing data was not collected successfully during
that time period.

Since the data collection on iOS (iPhones) and Android
follows different methodologies, we analyze the results for
these two platforms separately. For each PHQ-9 interval,
we obtain the various behavior features during the interval,

and correlate them with the corresponding PHQ-9 score. In
addition, we develop multi-feature regression models, using
a collection of behavior features as input and the PHQ-9
score as response, to investigate whether behavior features
can be used to predict PHQ-9 scores. Last, we use Support
Vector Machine (SVM) based classification to investigate
whether behavior features can be used to differentiate between
depressed and non-depressed participants, and compare the
classification results with clinical ground truth. Throughout,
multi-feature modeling is done solely with GPS-based features
(the first 8 features in Table II), as the last two “activity-based”
features have incomplete coverage in the dataset and would
have further reduced the relevant sample size.

B. Correlation Analysis

Table II presents Pearson’s correlation coefficients between
smartphone features and PHQ-9 scores along with p-values
(obtained using significance level α = 0.05). The results for
iPhones and Android are presented in the table. We first
present the results for Android and relate the results with
those in existing studies, and then present the results for
iPhones (no existing study uses locked iPhones on a large
scale as in our study).

The correlation results for Android indicate that entropy,
normalized entropy, time spent at home and location variance
are correlated with PHQ-9 scores. The significant negative
correlation between entropy (as well as normalized entropy)
and PHQ-9 scores indicates that participants with relatively
high PHQ-9 scores tend to have unbalanced routines (they
tend to spend more time in a few locations; and the
positive correlation between time spent at home and PHQ-
9 scores suggests that they tend to spend more time at
home). The observation is further confirmed by negative
correlation between location variance and PHQ-9 scores. The
correlation between the average moving speed and PHQ-
9 scores, while negative, has a large p-value. This might
be because correlation is measured against the total PHQ-9
score instead of the scores of the individual PHQ-9 questions
that particularly relate to this feature. Correlating behavioral
features and individual PHQ-9 question scores is left as future
work.

Our individual-feature correlation results are largely con-
sistent with the findings in [26], which also finds that entropy,
normalized entropy, time spent at home and location variance
are correlated with PHQ-9 scores. On the other hand, the
magnitudes of the correlations observed in our study are lower
than those in [26]). In addition, the study in [26] also finds
that time spend moving is correlated with PHQ-9 scores,
while the correlation is not significant in our study. The
differences in findings between our study and that in [26]
might be because our dataset represents a college-student
population, most of whom are living on campus so that their
routine activities are centered around the campus. In addition,
we use DBSCAN (instead of K-means as in [26]) for location
clustering.

For iPhones, we find significant negative correlation
between the number of unique locations and PHQ-9 scores,



which is not surprising since depression is associated with
social isolation [5], [27]. The negative correlation between
the time spending moving and PHQ-9 scores is also intuitive,
as studies (e.g., [23]) have reported that clinically depressed
people tend to be less physically active. For iPhones and
Android, we find different features correlated with PHQ-9
scores, which might be because of the different data collection
mechanisms (i.e., event-based versus periodic data collection)
on these two platforms.

Android iOS
Features r-value p-value r-value p-value
LocVar −0.15 0.07 −0.03 0.68
Distance −0.13 0.11 −0.05 0.48
AMS −0.09 0.28 −0.04 0.59
Move 0.06 0.43 −0.13 0.07
Entropy −0.16 0.05 −0.11 0.11
EntropyN −0.21 0.01 −0.08 0.26
Home 0.18 0.03 0.07 0.33
Nloc −0.09 0.28 −0.19 0.007
Tactive −0.11 0.12 −0.09 0.15
Tinact 0.10 0.16 0.06 0.36
Multi-feature
model (linear) 0.26 0.001 0.29 10−5

Multi-feature
model (RBF) 0.23 0.006 0.25 0.0004

TABLE II: Correlation between PHQ-9 score and features
extracted from smartphones.

C. Multi-linear Regression Results

To investigate if there exists an amplified collective rela-
tionship between (sensor data) behavioral features and PHQ-9
score, we applied both `2-regularized ε-SV (support vector)
multivariate regression [14] and radial basis function (RBF)
ε-SV multivariate regression [7], using the features described
above, to estimate PHQ-9 scores for the participants. Through-
out, we used leave-one-out cross validation to optimize model
parameters and report on the resulting correlation. (For `2-
regularized ε-SV regression this entails optimization of the
cost parameter C and the margin ε ; for RBF ε-SV regression,
this entails optimization of cost parameter C, the margin ε ,
and the parameter γ of the radial basis functions.) To assess
the performance for each model, we calculated Pearson’s
correlation after cross validation. Table II summarizes these
results; the last two rows reflect the r and p values for the
multi-linear models discussed above. We note that the `2-
regularized model exhibits stronger correlation (and smaller p-
values) than any individual feature; the RBF ε-SV regression
model achieves similar performance as the `2-regularized
model.

D. Classification Results

We trained SVM models with an RBF kernel [7] to assess
if the behavioral features extracted from smartphones can
monitor and predict clinical depression. The SVM classifiers
were trained using the clinical ground truth. For the iOS

F1 Score P R S
Features (iOS) 0.81(0.03) 0.93(0.08) 0.73(0.06) 0.97(0.05)
Features (Android) 0.82(0.05) 0.84(0.04) 0.83(0.08) 0.92(0.02)
PHQ-9 Score &
Features (iOS) 0.84(0.04) 0.86(0.02) 0.84(0.08) 0.94(0.01)
PHQ-9 Score &

Features (Android) 0.86(0.04) 0.83(0.03) 0.89(0.06) 0.91(0.02)
PHQ-9 Score 0.55 0.42 0.79 0.84

TABLE III: Classification results, where P, R and S represents
precision, recall and specificity, respectively.

dataset, 55 of the 202 samples (PHQ-9 intervals) were
from clinically depressed participants (labeled by +1, and
otherwise labeled by −1). For the Android dataset, 38 of
the 148 instances were labeled +1. Due to the unbalanced
nature of our problem, we treated false positives differently
from false negatives. Thus, there were two hyperparameters
in our SVM algorithm: the cost parameter C and the
parameter γ of the radial basis functions. We used a three-
fold cross validation (CV) procedure to choose the values
of C and γ . Specifically, we selected both C and γ from
the following choices 2−15,2−14, . . . ,214,215, and choose the
values that gave the best validation F1 score. The F1 score, =
2(precision× recall)/(precision+ recall), can be interpreted
as a weighted average of the precision and recall, ranges from
0 to 1, and the higher, the better. After choosing the best
choices of C and γ in the first round of CV, we repeated the
three-fold CV ten times with the chosen values, and reported
the average and standard deviation of the ten F1 scores.

We repeated the above SVM training procedure in four set-
tings: two for iOS experiments and the other two for Android
experiments. In the first experiment, we only used sensing
features as predictors whereas in the second experiment,
we included PHQ-9 scores as an additional predictor. We
observed an average score of 0.81 and 0.82 with a standard
deviation of 0.03 and 0.05 for iOS and Android respectively
when only sensing features were used in the classifiers. When
PHQ-9 scores were used as an additional input feature, the
F1 scores were improved significantly with an average value
of 0.84 and 0.86 with a standard deviation of 0.04 and 0.04
for iOS and Android respectively. We additionally tested if
PHQ-9 scores alone can be a good predictor in predicting
clinical diagnosis. The best F1 score based on thresholding
PHQ-9 scores in the union of iOS and Android users was 0.55
where the optimal threshold was 11. Table III summarizes the
results, where the values in parenthesis represent the standard
deviations, and P, R and S represent precision, recall and
specificity, respectively.

We further used 5 and 10 as cutoff values to threshold PHQ-
9 scores to classify clinically depressed subjects from other
participants. These thresholds are generally used in clinical
settings to identify mild and moderate depression. The F1
score was 0.51 and 0.52, respectively. All these experiments
show that smartphone sensing data can be valuable to improve
clinical diagnosis of depression in addition to the widely-used
PHQ-9 scores.



VI. CONCLUSION AND FUTURE WORK

In this paper, we have collected smartphone sensing
data, PHQ-9 questionnaire responses and clinical assessment
to study the efficacy of various machine learning tools
(regression and SVM classifiers) to predict clinical diagnoses
and PHQ-9 scores based on behavioral data. Our results
suggest that behavioral data from smartphones captures
relevant features that are not reflected by PHQ-9 scores,
and hence, combined with machine learning techniques, can
provide a promising direction for automatically detecting
depression on a large scale.

Our future work is in several directions. Firstly, it would be
interesting to explore leading or lagging correlations, which
(among other things) might lead to the discovery of causal
relationships, which could then lead to proactive interventions.
Secondly, our current study does not consider the severity of
depression; taking depression severity into consideration is
an interesting future direction. Thirdly, we will identify more
behavioral features and investigate other machine learning
models to predict depression.

ACKNOWLEDGEMENT

This work was partially supported by National Science
Foundation grants IIS-1407205 and IIS-1320586. Any opin-
ions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation. We
would also like to thank the anonymous reviewers and our
shepherd, Dr. John Lach, for their insightful comments. We
would also like to thank UConn Counseling & Mental Health
Services (CMHS) and the Computer Science & Engineering
Department for providing space for this project.

REFERENCES

[1] Share for iOS. http://www.cnet.com/news/
ios-8-adoption-shoots-past-80-percent/.

[2] Swift for iOS. https://developer.apple.com/swift/.
[3] A. Beck, A. L. Crain, L. I. Solberg, J. Unützer, R. E. Glasgow, M. V.

Maciosek, and R. Whitebird. Severity of depression and magnitude of
productivity loss. The Annals of Family Medicine, 9(4):305–311, 2011.

[4] A. Bogomolov, B. Lepri, M. Ferron, F. Pianesi, and A. S. Pentland.
Daily stress recognition from mobile phone data, weather conditions and
individual traits. In Proceedings of the ACM International Conference
on Multimedia, pages 477–486. ACM Press, 2014.

[5] J. T. Cacioppo, L. C. Hawkley, and R. A. Thisted. Perceived social
isolation makes me sad: 5-year cross-lagged analyses of loneliness and
depressive symptomatology in the Chicago health, aging, and social
relations study. Psychology and aging, 25(2):453, 2010.

[6] L. Canzian and M. Musolesi. Trajectories of depression: Unobtrusive
monitoring of depressive states by means of smartphone mobility traces
analysis. In Proc. of ACM UbiComp, pages 1293–1304, 2015.

[7] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector
machines. ACM Transactions on Intelligent Systems and Technology,
2:27:1–27:27, 2011. Software available at http://www.csie.ntu.
edu.tw/~cjlin/libsvm.

[8] Z. Chen, M. Lin, F. Chen, N. D. Lane, G. Cardone, R. Wang, T. Li,
Y. Chen, T. Choudhury, and A. T. Campbell. Unobtrusive sleep
monitoring using smartphones. In Pervasive Computing Technologies
for Healthcare (PervasiveHealth), pages 145–152. IEEE, 2013.

[9] Y. Chon, N. D. Lane, F. Li, H. Cha, and F. Zhao. Automatically char-
acterizing places with opportunistic crowdsensing using smartphones.
In Proc. of ACM UbiComp, pages 481–490. ACM, 2012.

[10] Y. Chon, E. Talipov, H. Shin, and H. Cha. Mobility prediction-based
smartphone energy optimization for everyday location monitoring. In
Proc. of ACM conference on embedded networked sensor systems,
pages 82–95. ACM, 2011.

[11] P. Cuijpers and F. Smit. Excess mortality in depression: A meta-analysis
of community studies. Journal of Affective Disorders, 72(3):227–236,
2002.

[12] T. M. T. Do and D. Gatica-Perez. GroupUs: Smartphone proximity
data and human interaction type mining. In Annual International
Symposium on Wearable Computers (ISWC), pages 21–28, June 2011.

[13] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm
for discovering clusters in large spatial databases with noise. In ACM
KDD, volume 96, pages 226–231, 1996.

[14] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin.
LIBLINEAR: A library for large linear classification. The Journal of
Machine Learning Research, 9:1871–1874, 2008.

[15] W. Katon and P. Ciechanowski. Impact of major depression on chronic
medical illness. Journal of Psychosomatic Research, 53(4):859–863,
2002.

[16] K. Kroenke, R. L. Spitzer, and J. B. Williams. The PHQ-9. Journal
of General Internal Medicine, 16(9):606–613, 2001.

[17] N. D. Lane, M. Lin, M. Mohammod, X. Yang, H. Lu, G. Cardone,
S. Ali, A. Doryab, E. Berke, A. T. Campbell, et al. BeWell: Sensing
sleep, physical activities and social interactions to promote wellbeing.
Mobile Networks and Applications, 19(3):345–359, 2014.

[18] N. Lathia, K. Rachuri, C. Mascolo, and G. Roussos. Open source
smartphone libraries for computational social science. In Proc. of ACM
UbiComp, UbiComp ’13 Adjunct, pages 911–920, 2013.

[19] Y.-S. Lee and S.-B. Cho. Activity recognition using hierarchical hidden
Markov models on a smartphone with 3D accelerometer. In Hybrid
Artificial Intelligent Systems, pages 460–467. Springer, 2011.

[20] R. LiKamWa, Y. Liu, N. D. Lane, and L. Zhong. Can your smartphone
infer your mood? In PhoneSense workshop, pages 1–5, 2011.

[21] A. Madan, M. Cebrian, D. Lazer, and A. Pentland. Social sensing for
epidemiological behavior change. In Proc. of ACM UbiComp, pages
291–300. ACM, 2010.

[22] A. Madan, S. T. Moturu, D. Lazer, and A. S. Pentland. Social sensing:
Obesity, unhealthy eating and exercise in face-to-face networks. In
Wireless Health, pages 104–110, 2010.

[23] E. W. Martinsen. Benefits of exercise for the treatment of depression.
Sports Medicine, 9(6):380–389, 1990.

[24] C. Morgan and S. R. Cotten. The relationship between Internet
activities and depressive symptoms in a sample of college freshmen.
CyberPsychology & Behavior, 6(2):133–142, 2003.

[25] L. Pei, R. Guinness, R. Chen, J. Liu, H. Kuusniemi, Y. Chen, L. Chen,
and J. Kaistinen. Human behavior cognition using smartphone sensors.
Sensors, 13(2):1402–1424, 2013.

[26] S. Saeb, M. Zhang, C. J. Karr, S. M. Schueller, M. E. Corden, K. P.
Kording, and D. C. Mohr. Mobile phone sensor correlates of depressive
symptom severity in daily-life behavior: An exploratory study. Journal
of Medical Internet Research, 17(7), 2015.

[27] C. E. Sanders, T. M. Field, D. Miguel, and M. Kaplan. The relationship
of Internet use to depression and social isolation among adolescents.
Adolescence, 35(138):237, 2000.

[28] B. Shumaker and R. Sinnott. Astronomical computing: 1. computing
under the open sky. 2. virtues of the haversine. Sky and telescope,
68:158–159, 1984.

[29] G. E. Simon. Social and economic burden of mood disorders. Biological
Psychiatry, 54(3):208–215, 2003.

[30] R. J. Turner and W. R. Avison. Status variations in stress exposure:
Implications for the interpretation of research on race, socioeconomic
status, and gender. Journal of Health and Social Behavior, pages
488–505, 2003.

[31] R. Wang, F. Chen, Z. Chen, T. Li, G. Harari, S. Tignor, X. Zhou,
D. Ben-Zeev, and A. T. Campbell. StudentLife: Assessing mental
health, academic performance and behavioral trends of college students
using smartphones. In Proc. of ACM Ubicomp, pages 3–14, 2014.

http://www.cnet.com/news/ios-8-adoption-shoots-past-80-percent/
http://www.cnet.com/news/ios-8-adoption-shoots-past-80-percent/
https://developer.apple.com/swift/
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

	Introduction
	Related Work
	Data Collection
	Smartphone Sensing Data
	Location
	Activity

	PHQ-9 Questionnaire Responses
	Clinical Assessment
	Recruitment and Data Collection

	Feature Extraction
	Features based on Raw GPS Data
	Features based on Location Clusters
	Features based on Activity Data

	Data Analysis
	High-level Methodology
	Correlation Analysis
	Multi-linear Regression Results
	Classification Results

	Conclusion and Future Work
	References

