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Abstract

We study the joint feature selection problem when learning
multiple related classification or regression tasks. By im-
posing an automatic relevance determination prior on the
hypothesis classes associated with each of the tasks and reg-
ularizing the variance of the hypothesis parameters, similar
feature patterns across different tasks are encouraged and
features that are relevant to all (or most) of the tasks are
identified. Our analysis shows that the proposed probabilis-
tic framework can be seen as a generalization of previous re-
sult from adaptive ridge regression to the multi-task learn-
ing setting. We provide a detailed description of the pro-
posed algorithms for simultaneous model construction and
justify the proposed algorithms in several aspects. Our ex-
perimental results show that this approach outperforms a
regularized multi-task learning approach and the traditional
methods where individual tasks are solved independently on
synthetic data and the real-world data sets for lung cancer
prognosis.

1 Introduction

Multi-task learning, other than traditional single task
learning which treats each task separately and indepen-
dently, is a machine learning method that tries to esti-
mate models for several tasks in a joint manner. Facing
a sparse data set, multi-task learning could be beneficial
by compensating for small sample size by using addi-
tional samples from related tasks. Therefore, multi-task
learning can be seen as a way to reduce the variance of
the model estimate by introducing a little bias. From
the hierarchical Bayesian viewpoint, multi-task learn-
ing is essentially trying to learn a good prior over all
tasks to capture task dependencies. Previous empirical
work has shown that using data from related tasks does
improve prediction performance [4, 8, 5].

Multi-task learning becomes necessary and can po-
tentially enhance performance when the tasks are sim-
ilar enough to make joint learning beneficial whereas
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they are not identical that learning a specific model for
each task leads to better predictive capacity. Although
almost all existing multi-task learning methods assume
some relatedness among tasks, the definition of relat-
edness varies. In previous work [8], task relationship is
modeled through the assumption that noise for differ-
ent regression estimates are correlated. Another work
[1] considers learning multiple tasks in a semi-supervised
setting and assumes a common hidden structure for all
related tasks. One of the natural ways to capture the
task relatedness is through hierarchical Bayesian mod-
els [12, 27]. Typically, similarity among tasks is rep-
resented by a probabilistic model with unknown para-
meters. The parameters of the probabilistic model are
determined to reflect the relations between tasks and
facilitate the model parameter estimation of each in-
dividual task. Recent work [26] also investigates non-
parametric probabilistic model to learn common prior
on tasks, which gives more flexibility of the model relat-
edness but demands greater computational complexity.

In this paper, we model the across-task relatedness
as sharing a common subset of features. The goal is to
identify all relevant features that are informative to any
of these tasks. From the regularization standpoint, it
can be regarded as controlling the overall model com-
plexity of the multi-task learning formulation by elim-
inating redundant and irrelevant dimensions. Feature
selection has long become an important problem in sta-
tistics [23, 11] and machine learning [10, 13]. Many
machine learning problems can benefit from feature se-
lection in several aspects, such as obtaining better pre-
dictive power, improving computational efficiency, pro-
viding better interpretability and so on. Very little work
has been done on selecting features for multiple related
tasks. Jebara proposed in [14] a framework based on
Maximum Entropy Discrimination for joint feature se-
lection. Obozinski et cl. [20] proposed to couple feature
selection across tasks by applying a joint regularization
of the model parameters. Similar work following the
regularization principle has also appeared in [29].

We consider the joint feature selection problem in
a probabilistic framework based on which a regularized
learning formulation can be derived. By imposing an
automatic relevance determination prior [17] on the hy-
pothesis classes associated with each of the multiple



tasks and regularizing the variance of the model pa-
rameters, similar feature patterns across different tasks
are encouraged and features that are relevant to all (or
most) of the tasks are identified. The proposed ap-
proach of regularizing parameter variance can be seen
as a generalization of the idea used in adaptive ridge
regression (AdR) [6]. Our analysis shows an interesting
connection between our approach and the approach pro-
posed in [20]. More specifically, we show that the model
estimated by our approach can be at least as sparse as
those from [20]. We determine the model parameters by
an alternating optimization algorithm which contains
two steps at each iteration. The first step constructs
models for each task with a fixed common prior parame-
ter, and the second step learns the common prior para-
meter with fixed model parameters for individual tasks.
Efficient algorithms for solving the sub-problems pre-
sented at each step are also discussed. Our experimen-
tal results show that this approach outperforms inde-
pendent [y or ly-based regularized learning models and
also the regularized multi-task learning approach [5] on
several synthetic and real datasets.

2 Feature Selection for Single Task Learning
(STL)

Given a training set D = {(x1,y1),..., (Xi,¥i),-- -,
(Xn,yn)} where x € X% y € {—1,1} for classification
and y € R for regression, we are interested in learning a
prediction function y = f(x) that can be used to predict
on future data. We focus on feature or variable selection
in the original feature space and limit our discussion to
linear prediction functions in the form of f(x) = Tx.
For the ease of discussion, we use the regression
setting to discuss the derivation of single task learning
formulations, but the discussion is generally applicable
to classification tasks as well. We assume that the
targets y in the regression problem are generated by
corrupting f with additive Gaussian noise, i.e.

(2.1) p(ylB,x) = exp(—(y — Tx)*/(207)).

1
V2ro?

In the Bayesian formalism, a prior over the parameters
[ needs to be specified to express our beliefs about
the parameters before training data is given. Usually
a zero mean Gaussian prior with covariance X3 is used
on the weights, 8 o< N'(0,X3). The common choice of a
spherical Gaussian prior with X3 o< I leads to the well
known ridge regression models, where I denotes identity
matrix of proper dimension.

For the purpose of feature selection, unlike the
standard Gaussian prior as used in ridge regression,
the key concept is the use of automatic relevance

determination (ARD) prior of the following form:
p(Blw) = LN, (2p;)7")

(2.2) = Hj% exp(—1;37).

Th;

Given the likelihood (2.1) and prior (2.2), it can be
shown that the maximum-a-posterior (MAP) estimate
of B minimizes the following quadratic form:

(2.3) J(B) = lly = XBI3 + > _ v,
J

where we have used v; = 0%y  for the sake of simplicity.
Different inference strategies exist in the literature
to learn the prior parameters for the given ARD prior:

e In Relevance Vector Machine (RVM) [24, 25], an
analytical expression for the marginal likelihood
p(y|p, o) is obtained by integrating out the expan-
sion coeflicients that correspond to the variable (53)
in our notation. Given the current estimates of
B3, the most probable fi,,, is obtained explicitly by
maximizing p(y|u, o). These values are used in or-
der to get a new estimate for 5. The two steps are
iterated until its convergence. During this iterated
process, it turns out that some parameters p; ap-
proach infinity, meaning that the variance of the
corresponding prior p(8;|u,) becomes zero. Since
expansion coefficients also have zero mean, conse-
quently these coeflicients (;’s shrink to zero and
the corresponding features are then not selected in
the model.

e Notice that RVM is not a pure Bayesian approach.
To achieve sparsity in a true Bayesian setting,
a common choice of the prior for v; is a one-
parameter exponential distribution [9]:

v ¥
p(vsly) = Seep(=5v),

with v > 0. Integrating out v; yields a Laplace
prior distribution:

P(Bs17) = Jexp(—v/AlB;).

Together with the Gaussian likelihood (2.1), this
marginalization leads to the [; regularized func-
tional in log-space:

(24) JEASO(B) = |ly — XB13 + VA8l

which is the functional that the Least Absolute
Shrinkage and Selection Operator (LASSO) min-
imizes [23]. It is well known that for a properly
chosen regularization parameter, LASSO produces
sparse solutions [11].



e Adaptive Ridge (AdR) regression [6] uses a differ-
ent strategy. It directly constrains the variance of
the coefficients § in the prior distribution by opti-
mizing (2.3) with the following constraint:

(2.5)

where 7 is a constant. The constraint (2.5) essen-
tially requires that the expected variance of weight
components 3; is proportional to v, thus eliminat-
ing the possibility that all of them grow too large
simultaneously. By setting v to a relatively small
value, it is expected that some components of 3 be-
come small so the formulation is in favor of sparse
estimates. Furthermore, the AdR formulation has
been proved to be equivalent to LASSO (2.4) as
stated in [6, 7].

for Multi-task

3 Joint Feature Selection

Learning (MTL)

Strategies in Section 2 can be generalized to effectively
select features in the multi-task learning setting. As-
sume we have T datasets, each corresponding to one of
the T tasks. Each dataset contains the feature vectors
x;; € R? and corresponding binary labels y; ; € {—1,1}
for classification problem, or real targets y:; € R for re-
gression problem, for ¢ = 1,...,n; data points in the
t-th task, t = 1,...,T. Our goal is to construct T spe-
cific predictive models in the form of 8 x, t =1,---,T.
We impose the same ARD prior as in (2.2) on the pa-
rameter 3 across different tasks, i.e.,

p(Bilv;) =1HjN(07 (2v5)~ ")
=11, \/F exp(_yjﬁ?j)7

J
t=1,...,T.

(3.6)

where parameters v; are the same for all tasks to rep-
resent the across-task similarity and to be determined.
The joint feature selection can then be achieved by re-
quiring the similar constraint (2.5) to be applied to the
variance of 8. The ending effect of using constraint (2.5)
in the multi-task learning framework is not only impor-
tant features are selected, but also significant features
with respect to multiple tasks will be weighted propor-
tionally according to v.

3.1 Sparse Multi-task Classification In this sec-
tion, we study the joint feature selection for solving
multiple classification problems. We construct separate
logistic regression models for each task while identify-
ing the features that are informative across all tasks.
Logistic regression is a widely used method for binary

classification problem. Its model is given by
1
— (8T —
p(y|B,x) = o(B7x) 1+ exp(—yBTx)’

The posterior distribution for all model parameters
B = [B1,...,0r] with the logistic link on data (X,y)
is

(3.7) p(BIX,y) = H?:1{(H?;1m)p(ﬁt)}~

where (X,y) contains T sets of pairs {z!,y!}, i =
1,--+,ng, t =1,---,T, and p(f;) specifies the prior on
B; as given in (3.6).

For numerical convenience, it is common to employ
the log posterior instead of directly using the posterior
(3.7).

I(B|X,y) =

T ny
= =) D In(l+exp(—B ziy))

t=1 i=1
d
-i-Z(ln ,/V{lw + l/jﬁfj)}.
j=1

The MAP estimate of B is then given by solving

Inp(B|X,y)

argmax l(B|X,y) z = argmin —{(B| X, y) 5.

By imposing the constraint on v as in (2.5), we
formulate the multi-task feature selection approach for
classification as the following constrained optimization
problem:

T ny d
ming,,..or0 D Ay (1 +exp(=B zayi) + Y vibi}
t=1 i=1 j=1

(38) st vi > 0.

To obtain sparse classifiers, it is desired to have
some v; — +00, which, however, brings up numerical
instability. To avoid this kind of the divergent solutions
and achieve numerical stability, we employ the change
of variables as follows:

Oétj:\/l/j’yﬁtj7 t:17"'7T>
¢ =+/(vy)~t j=1,....d.

Correspondingly, 08y = o/ /7;7 and éZj c? =
€ 3 11
dy &~j v;

Now the optimization problem becomes

(3.9)

T ne d
(8.10) min D> AD (1 +exp(—y; Z; €05 Tij))
J:

t=1 i=1



d
+’Yzafj}
j=1

d
2
ch =1, ¢ =0.
j=1

The final model becomes 3/x = 7. ¢joyjxj. To effec-
tively solve (3.10), we devise an alternating optimization
algorithm, which is, in spirit, similar to the Expectation-
Maximization approach. At iteration s, the “E” step es-
timates the optimal Bayes prior parameters c® based on
3°~1 that is obtained at last iteration. Then the “M”
step estimates a new (3° by maximizing the posterior
based on c”.

In the “E” step where c is to be optimized, the
quadratic equality constraint éz j c? = 1 makes the
sub-optimization problem for solving ¢ non-convex. To
form a convex program in the “E” step, we propose
to apply a relaxation scheme ), c? < (X ¢j)?. More
specifically, we replace the 2-norm equality constraint
with the following 1-norm equality constraint.

s.t.

SHE

d
(3.11) > ej=Vd, ¢ >0
J

The relaxation not only makes the problem convex,
but also makes the estimates of ¢ more sparse. Note
that sparse c will indicate sparse fF;,t = 1,...,T.
The alternating algorithm is described in details in
Algorithm 1.

Algorithm 1: Joint Feature Selection for

Classification
e Initialize ¢; =1, =1,...,d.
e Iterate until convergence

— Based on current c, for ¢t =1,...,T, solve the
following problem for optimal «;

ng d d
néin z In(1+exp(— Z €00 TiYs))+y Z oz?j;
fi=1 i=1 i=1
(3.12)

— Fix a, solve the following program for c

ne

T d
(3.13)mcinz Z In(1 4 exp(— Z Ci0;TiYs))
j=1

t=1 i=1

CjZO.

3.2 Sparse Multi-task Ridge Regression The
proposed framework for joint feature selection for multi-
task learning is not restricted to classification applica-
tions. A sparse multi-task regression formulation can
be similarly derived. Specifically, if the likelihood (2.1)
and prior (2.2) as discussed in Section 2 are used, we can
derive a ridge regression-like multi-task learning formu-
lation as follows:

N

T d
ming, ,...,fr.v Z{Z(ﬁfﬂfz - yi)2 + ZyjﬂtQj}
j=1

t=1 i=1

1N 1
5.t EZ:Z-:% v; > 0.
Jj=1

Applying the same “change of variables” (3.9) and
“relaxation” (3.11) yields the following optimization
problem for multi-task regression feature selection.

T ne
Mina, . are » 4D (D Cioni;

t=1 i=1 j
d

s.t. E cj =
Jj=1

The corresponding alternating algorithm is presented in
Algorithm 2.

d
— i)’ + Z ag;}
=1

v,

CjZO.

Algorithm 2: Joint Feature Selection for

Regression
e Initialize ¢; = 1,i =1,...,d.

e [terate until convergence

— Based on current ¢, fort =1,...,T
o d d
(3.15)min D> O cjami —yi)?) +7 ) a;
i=1 j=1 j=1

— Fix current estimate of «

T ng d
(3.16) mcin Z{Z(Z cjouizi; — vi)*)}

t=1 i=1 j=1

d
(317) st > ¢;=Vd, ¢ >0.
j=1

3.3 Efficient Algorithms for Optimizing Sub-
problems Notice that both Algorithms 1 and 2 con-
sist of 2 steps at every iteration. In the first step, the
original optimization problem, when c is fixed, can be



decoupled to optimize individual a;. Note that the ob-
jective function in (3.12) is a negated log-posterior for
a logistic regression model with a Gaussian prior. Con-
sequently, the decoupled individual optimization prob-
lems as stated in (3.12) and (3.15) are nothing but a
regular logistic regression and ridge regression, respec-
tively. Thus, sufficiently efficient algorithms have been
explored [28, 11, 18, 15]. Furthermore, both problems
(3.12) and (3.15) are strongly convex, and hence any lo-
cal minimizer is also a global minimizer. A wide variety
of optimization algorithms are applicable to convex pro-
grams. For classification, many algorithms have been
proposed for maximum a posterior (MAP) logistic re-
gression [28, 11, 18, 15]. In this paper, we choose to base
our implementation of logistic regression on conjugate
gradient (CG) [18, 19]. For ridge regression, an analytic
solution can be easily derived for problem (3.15) as

a; = (diag(c) X Xediag(c) + 1)~ diag(c) X{ ys.

In the second step, an efficient Newton+Armijo al-
gorithm is developed to solve the relaxed optimization
problems in (3.13) and (3.16). We illustrate the algo-
rithmic derivation for problem (3.13) in the classifica-
tion setting. Similar derivation applies to the regression
setting.

First, consider using Iteratively Reweighted Least
Squares (IRLS) to minimize the objective function
(3.13). IRLS is an efficient implementation of Newton’s
method. Define [(c) the objective function in (3.13).
The gradient of this objective is

T ng
9(c) = Vel(e) = =Y > (1= a(yc" @)y,

t=1 i=1

where &; = diag(a)z; and we have omitted subscript ¢
for simplicity. And o(z) = m.
The Hessian of the objective is

Pl L, o
Hie)= = 2i)(1 — 2 )z
(©) dedcT ;;U(C 2)(1 —o(c :))ziz;

T

= D XeAXT,

t=1

where 2’s are columns of X and a; = o(cld;)(1 —
a(c'#;)).

Then a Newton’s step is to compute cpe as the
minimizer of the following equality constrained convex
optimization problem:

() (e =¥

—l—%(c — ck)TH(ck)(c — ck)

arg min
c

(3.18)

d
s.t. Zci = \/&, c; >0,

where cF is the optimal ¢ after k*" iteration of the

Newton+Armijo algorithm.

After finding ¢,e, We perform a backtracking line
search (with Armijo’s rule) over the step size parameter
¢ € [0, 1] to find the next iterate c**1 = (1—&)c* +Eepew-
The algorithm is summarized below.

Algorithm: Newton+Armijo for ¢
1. initialize c°.
2. for k = 0 to maxnumofiterations
3. compute g(c*) and H(c¥).

4. solve the optimization problem in (3.18) for ¢, eq.

5. set cFtl = (1 — &)c* + €cpew where step size € is
searched using Armijo’s rule.

6. break if stopping criterion is satisfied

7. end

Convergence analysis [3] shows that the practical
performance of Newton+Armijo method with equality
constrained convex optimization problems is exactly like
the performance of Newton’s method for unconstrained
problems. Once c” is near ¢*, the optimum, convergence
rate becomes quadratic and very few iterations are
needed to reach the global optimum with a very high
accuracy.

4 Relationship to Joint Regularized Multi-task
Feature Selection [20]

Feature selection for multi-task learning using a joint
regularization has been recently proposed by Obozinski
et al. in [20] where the parameters §; corresponding
to different tasks are lined up to form a matrix with
the t-th row representing the model parameter 3; for
the t-th task. Then each column 3; = [$1; ... Brj]"
corresponds to a specific feature spanning all tasks.
The basic idea is to penalize the sum of ls norms of
respective columns of parameters associated with each
feature spanning different tasks. This is considered as
a 1/l norm, in other words, a combination of LASSO
on the feature level and the ls regularization on the
task level. Sparsity at the parameter column level is
encouraged due to the [y regularization.
Mathematically, for any convex and continuously
differentiable loss function I(8, X,y), joint regulariza-



tion MTL [20] solves the following optimization prob-
lem:

(419) Zthl l(ﬁﬁxtayt)

d T
s.t. Zj:l pr BtQJ <K

We examine the relationship between our proposed
algorithm and the joint regularized approach (4.19).
The proposed approach as in the mathematical pro-
gram (3.8) is closely related to the joint regularization
approach. Notice that the joint regularized approach
(4.19) is a convex program. Hence its KKT conditions
are necessary and sufficient optimality conditions. Cor-
respondingly, the KKT conditions for our program are
necessary conditions and may not be sufficient. The pro-
posed approach produces solutions that are as sparse as
those obtained by the joint regularized approach. The
following theorem characterizes our results.

min
B

THEOREM 4.1. Consider the following two programs:
Program 1:

T

Z{ (Be: X, ye) + Z vifi;}

t=1 j=1

DR

beta

T‘r—

s.t. v, v; >0.

& \

Program 2:

Z:‘,Tzl l(ﬁtaXtvyt)
Z;’l:l Zthl ﬂ?g <K

For any convex and continuously differentiable loss
function (8, X,y), the KKT conditions of Program 1
are identical to the KKT conditions of Program 2.

min
B8

s.t.

Proof. The strict equality constraint in Problem 1 is not
easy to deal with. Instead, we consider Problem 1 in the
following equivalent form:

T 483
m[}n Z{l(ﬂtaXtayt) + Z Tj}
t=1 =1

d
§ vi =17,
=1

The corresponding Lagrangian is: L(8,v) =
d By d
Et ! (ﬁt’Xt’yt)_FZt 125 17j+a(lzz WVi—)—

b- U, where a is a scalar and b is a vector with nonneg-
ative components.

s.t. v; > 0.

Ul

Then the KKT necessary conditions are as follows:

>4

~ty g—b»:

81/] po 32 d J
L B, X B, ;
6 (t7 tayt)+2@20
aﬁt] aﬁt] vy
1 d
EZ]‘:’Y

i=1
b>0
v>0
bivj =0,j=1,...,d

After some algebra, we obtain the optimality con-
dition

Vit=1,....,T,5=1,...,d),
Al (B, X +¢,yt)
0Bz, 2+
T z2\_17%

2 <Z] WL ) (S0 5 4y =0

or 3., =0,
where §.; = 0 denotes that for a specific number j,
ﬂsj = O,VS = (17 7T)

It has been proved that Program 2 is equivalent to
the following optimization problem when an appropriate
A is chosen to correspond to the choice of k.

T d T
. 1
(4.20) min E 1B, X, yr) + v Z Zﬁgj
=1 j=1 t=1

Due to the convexity of this problem, its KKT condi-
tions are necessary and sufficient and can be shown to
be

Vit=1,...,T,j=1,...,

l(Be,Xt,yt)
96 T

2 (S VSR (S5 4y =0
or B] = Oa and B] =0¢€ af(ﬂ])a

d),

where we use f(f3.;) to denote the objective function in
(4.20) as a function of 5.;, and 9f to denote the subgra-
dient of function f. The use of subgradient is necessary
since the objective f becomes nondifferentiable as its
argument goes to zero.

Comparing the two KKT conditions, we can see
immediately that Program 1 can get solutions at least
as sparse as those from Program 2.



5 Experimental Results

We validate the proposed approach and the related
algorithms by comparing them to standard approaches
where individual tasks are solved independently using
logistic regression for classification or ridge regression
for regression as well as comparing to the pooling
method where a single model is constructed using the
available data from all tasks. These methods represent
two extreme cases: the former one treats multiple tasks
completely independently assuming no relatedness; the
latter one treats all tasks identically. Our results clearly
show that the multi-task learning approach as proposed
is superior to these extreme cases.

Although we theoretically examined the relation-
ship between our approach and the regularized multi-
task feature selection approach [20] in Section 4, and
hence it is expected to see similar numerical results
generated by the two approaches, it is still desirable
to perform some numerical experiments for comparison.
However, the data used in [20] is not publicly available.
It requires intensive research to develop efficient algo-
rithms for solving the optimization problem in [20] and
the gradient-descent implementation discussed in [20] is
currently not an open source. We hence implemented
another multi-task learning approach [5] that is different
from [20] but also derived based on the regularization
principle and we compared it to the proposed approach
in terms of performance.

5.1 Synthetic Data We generated some synthetic
data to verify the behavior of the proposed algorithms
regarding the selected features and the performance.
The synthetic data was generated as shown in the
following figure.

Synthetic Data Generation

1. Set number of features d = 20, and number of tasks
T =3.

2. Generate X € R?° with each component z; ~
Uniform[-1,1],i =1,...,20.

3. The coefficient vectors of three tasks are specified
as:

fr=1[1,11111,1,111,0,0,0,0,0,0,0,0,0,0]
p2=1[1,1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0,0]
6s=11,1,1,1,1,1,1,0,1,0,0,0,0,0,1,0,0,0,0,0]

4. For each task and each data vector, y =
Sign(8T X).

.
[task 1 | |
[ Jtask 2
I task 3 |

5 10 15 20

Figure 1: ¢ and coefficient vectors for three tasks.

For each task, we generate 50 data for training and 2000
data for testing, and repeat the process 20 times. In
figure 1, we show a bar plot of the averaged estimated
coefficient vectors. In the figure, X axis is the variable
indices ranging from 1 to 20. The Y axis denotes the
coefficient values. For each variable group, from left to
right are the values of ¢ and coefficient values form task
1 to 3. Note that from our algorithm descriptions, if
¢; = 0, then feature ¢ will not be used by all tasks. Even
if ¢; # 0, for a particular ¢-th task, feature i could still
be neglected if the coefficient in 3; is zero. Comparing to
the ground truth, we see that the proposed joint feature
selection algorithm worked well in terms of picking up
relevant features, even with a very small sample size of
50 for each task. Note that for such a sparse setting,
it is usually very hard to do feature selection under a
single task learning setting.

To test the predictive performance of our proposed
approach, we vary the smaple size from 50 to 120 with
step size 10 and compare with single task learning
based LASSO approach. Figure 2 shows the results.
For lucid presentation, we have averaged the prediction
errors from three tasks over 20 runs and drawn them
in figure 2. It can be seen from the figure that our
approach clearly outperform the STL based approach
and as expected, the difference of these two approaches
become smaller as the sample size of each task becomes
larger.

5.2 CAD Data: Lung Cancer Prognosis Over
the last decade, Computer-Aided Diagnosis (CAD) sys-
tems have moved from the sole realm of academic publi-
cations, to robust commercial systems that are used by
physicians in their clinical practice. Our work presented
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Figure 2: Plot of the prediction errors versus sample
size.

in this paper was mainly motivated by the problems
arisen in CAD systems. When building such a system,
researchers often face a learning problem where multi-
ple detection tasks are involved and are physically and
clinically related.

5.2.1 Domain specification In many CAD appli-
cations, the goal is to detect potentially malignant tu-
mors and lesions in medical images (computed tomogra-
phy (CT) scans, X-ray, MRI etc). It is well recognized
that the use of CAD not only offers the potential to
decrease detection and recognition errors as a second
reader, but also to reduce mistakes related to misinter-
pretation [2, 16]. The standard paradigm for computer
aided diagnosis of medical images follows a sequence of
three stages: identification of potentially unhealthy can-
didate regions of interest (ROI) from the image volume,
computation of descriptive features for each candidate,
and classification of each candidate (eg normal or dis-
eased) based on its features.

In particular, we discuss an automatic lung cancer
prognosis system in this paper. Lung cancer is the lead-
ing cause of cancer-related death in western countries
with a mean 5 year survival rate for all stages of only
14%. The prognosis of stage I cancer is more optimistic
with a mean 5 year survival rate of about 49%. Al-
though multi-slice CT scanner allows acquisition of the
entire chest with sub-millimeter slice thickness within a
breath hold, only 15% of lung cancers are diagnosed at
this early stage. Radiologic classification of small adeno-
carcinoma of lung by means of thoracic thin-section CT
discriminates between the ground-glass opacities and
solid nodules. The solid nodule is defined as an area
of increased opacification more than 5mm in diameter,
which completely obscures underlying vascular mark-

ings. Ground-glass opacity (GGO) is defined as an area
of a slight, homogeneous increase in density, which does
not obscure underlying vascular markings [22]. Figure
3 shows examples of a solid nodule and a GGO.

5.2.2 Data generation A prototype version of
Siemens CAD system (not commercially available) was
applied on a proprietary de-identified patient data set.
The nodule dataset consisted of 176 high-resolution CT
images (collected from multiple sites) that were ran-
domly partitioned into two groups : a training set of 90
volumes and a test set of 86 volumes. The GGO dataset
consisted of 60 CT images. Since there were only a lim-
ited number of GGO cases, they were not partitioned
beforehand to have a test set. The original goal was to
use the additional GGO cases to improve the nodule de-
tection performance. In total, 129 nodules and 53 GGOs
were identified and labeled by radiologists. Among the
marked nodules, 81 appeared in the training set and 48
in the test set. The training set was then used to op-
timize the classification parameters, and construct the
final classifier which was then tested on the independent
test set of 86 volumes.

The candidate generation algorithm was indepen-
dently applied to the training, test nodule sets and the
GGO set, achieving 98.8% detection rate on the train-
ing set at 121 FPs per volume, 93.6% detection rate on
the test set at 161 FPs per volume and 90.6% detection
rate on the GGO set at 169 FPs per valume, resulting in
totally 11056, 13985 and 10265 candidates in the respec-
tive nodule training, nodule test and GGO sets. There
can exist multiple candidates pointing to one nodule or
one GGO, so 131, 81 and 87 candidates were labeled as
positive in the training set, test set and GGO set, re-
spectively. A total of 86 numerical image features were
designed to depict both nodules and GGOs. The fea-
ture set contained some low-level image features, such as
size, shape, intensity, template matching features which
required on average 15.6 millisec. cpu time per feature
per candidate. Some sophisticated features were also
designed and included in the feature set. For exam-
ple, the multi-scale statistical features depicting higher-
order intensity properties of nodules and GGOs. These
features each on average need 2010 millisec. cpu time
for a candidate with the current implementation. The
specifications of all the related data sets are summarized
in Table 5.2.2 for clarity.

5.2.3 Experimental setting and performance
The first set of experiments were conducted as follows.
We randomly sampled 25% (23 volumes) of the nodule
patient data from the training set, 25% (15 volumes) of
the GGO patient data. These samples were used in the



Figure 3: Examples of the slices in lung CT images: left — solid nodule; right — GGO.

Nodule train | Nodule test | GGO
# patients 90 86 60
# cand. 11056 13985 10265
# cancer 81 48 53
# positives 131 81 87
# FP/vol 121 161 169
# feature 86 86 86
Table 1: Specifications of CAD datasets, ‘# cand’.

means the number of candidates, ’# cancer’ means
the number of cancerous tissues marked by radiologists,
'# positives’ means the number of candidates that are
overlayed with cancerous tissues, and # FP /vol’ means
the number of candidates that are not associated with
any cancerous tissues, averaged over volumes.

training phase. Notice that the random sampling can
only take place at the patient level rather than the can-
didate level since otherwise information from a single
patient will appear in both training and test sets, mak-
ing the testing not independent. The nodule classifiers
obtained by our approach and three other approaches
were tested on the unseen test set of 86 patient cases.
Since the GGO data was not partitioned, the result-
ing GGO classifiers were tested on the remaining set of
cases after 15 volumes were sampled out from the set.
We performed totally 15 trials by randomly re-sampling
15 times.

We compared our approach (3.10) with the imple-
mentation of Algorithm 1 to the single task learning
with logistic regression, the pooling method where the
two tasks are treated as identical task (which is called
“pooling with all data” on the figures) and the regular-
ized multi-task learning [5].

In the first trial, we tuned the model parameters
such as v in Algorithm 1 and the regularized parameters
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Figure 4: ROC plot of sensitivity versus false positive
rate per volume using 25% of nodule and GGO training
patient cases.

in [5] according to a 2-fold cross validation performance,
and v = 100 was the best choice for single task learning.
Then we fixed v = 100 for other trials. We use the same
~v = 100 in the proposed multi-task learning formulation
(3.10) for a fair comparison since the STL and MTL had
the same parameter settings in this case. Note that
the proposed MTL Algorithm 1 may produce better
performance if we tune 7 according to its own cross
validation performance.

Figure 4 shows ROC curves averaged over the 15
trials together with test error variance (bars) drawn
according to the standard deviation of detection rates
of the 15 trials. Clearly, the plot shows that the pro-
posed multi-task learning (3.10) generates a curve that
dominates the ROC curves corresponding to other ap-
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Figure 5: ROC plot of detection rate versus false
positive per volume using 50% of nodule and GGO
training patient volumes.

proaches. It also had a relatively small model variance
by referencing the error bars that are similar to those of
STL with logistic regression and the pooling logistic re-
gression where data from the two tasks were combined.
The regularized MTL [5] did not always outperform the
standard and pooling STL methods. Meanwhile, the
classifier test error variance of the regularized MTL var-
ied significantly with variations of samples as shown by
the relatively large error bars in Figure 4. The same
observation was also confirmed by performing the same
experiments on an augmented sample (50%) of nodule
training data and GGO data. Results obtained by sam-
pling 50% of the nodule training and GGO data are
shown in Figure 5. As expected, when more training
data is presented, the detection rate (sensitivity) be-
comes higher and variance bars become smaller. We
observed empirically that our Algorithm 1 often termi-
nated within 15 alternating iterations. The common
prior parameter ¢ was stable to the variations of train-
ing data.

We also report the performance comparisons with
area-under-the-ROC-curve (AUC) measure. AUC is a
useful metric for classifier performance as it is indepen-
dent of the decision criterion selected and prior probabil-
ities [21]. We randomly sampled p% of training nodule
set and the GGO set where p = 10, 25, 50, 75, 100.
Obviously, when more and more data for a specific task
is available, the resulting model achieves better perfor-
mance, and accurate models can be learned with less
help from other related tasks. We calculate the AUC
for each ROC curve and the AUC numbers were aver-
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Figure 6: The AUC plot versus sample size.

aged over 15 trials for each sample size choice p. Figure
6 illustrates the averaged AUC values and associated er-
ror bars whose length is proportional to standard devi-
ation. We can see that the difference between the MTL
and STL settings becomes less significant when more
data is given for the nodule detection task. Again, our
method presents relatively small model variance in com-
parison with the regularized MTL as shown in the error
bars.

6 Conclusions

The joint feature selection problem was discussed in the
multi-task learning setting. We proposed a probabilis-
tic framework by imposing an automatic relevance de-
termination prior on the hypothesis classes associated
with each of the tasks. By regularizing the variance
of the hypothesis parameters, similar feature patterns
across different tasks are encouraged and features that
are relevant to all (or most) of the tasks are identified.
The proposed approach can be seen as a generalization
of previous result from adaptive ridge regression to the
multi-task learning setting. We prove that it is closely
related to the joint feature selection approach in [20],
and can produce solutions as sparse as the solutions
obtained in [20]. Efficient algorithms are investigated
to solve our formulation (Program 1) as described in
Algorithm 1 and Algorithm 2. Our experimental re-
sults show that this approach outperforms the regular-
ized multi-task learning approach [5] and the traditional
single-task-learning methods. We also noticed in our ex-
periments that not only the features that were shared by
all tasks were selected, features that were particularly
important to one specific task could also be selected in



the common prior ¢ and then adjusted by a4 for each in-
dividual task. The exploration of the trade-off between
the features commonly important to all tasks and fea-
tures discriminative only for one or two tasks remains
open for further research.
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