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Quantitative Structure-Retention Relationship (QSRR) models are developed for the prediction of protein
retention times in anion-exchange chromatography systems. Topological, subdivided surface area, and TAE
(Transferable Atom Equivalent) electron-density-based descriptors are computed directly for a set of proteins
using molecular connectivity patterns and crystal structure geometries. A novel algorithm based on Support
Vector Machine (SVM) regression has been employed to obtain predictive QSRR models using a two-step
computational strategy. In the first step, a sparse linear SVM was utilized as a feature selection procedure
to remove irrelevant or redundant information. Subsequently, the selected features were used to produce an
ensemble of nonlinear SVM regression models that were combined using bootstrap aggregation (bagging)
techniques, where various combinations of training and validation data sets were selected from the pool of
available data. A visualization scheme (star plots) was used to display the relative importance of each selected
descriptor in the final set of “bagged” models. Once these predictive models have been validated, they can
be used as an automated prediction tool for virtual high-throughput screening (VHTS).

I. INTRODUCTION

Ion-ExchangeChromatography (IEC) is a widely accepted
standard bioseparation technique that has been growing in
importance during the past decade in keeping with current
rapid developments in biotechnology. To date, there are two
main kinds of IEC: cation-exchange and anion-exchange
chromatography, determined by whether a negative charge
(cation-exchange) or a positive charge (anion-exchange) is
carried by the functional groups on the surface of the IEC
stationary phase. The ionic biopolymers, such as proteins,
are separated primarily through the electrostatics interactions
between the charged surface of the ion-exchange resin and
the ionic solutes bearing the opposite charge. In the case of
anion-exchange chromatography, negatively charged proteins
bind in a transient fashion to the positively charged stationary
phase sites, as long as the salt concentration is kept low.
Proteins bound with different degrees of interaction can be
separated with the aid of an increasing salt gradient. The
selectivity of this technique can be optimized by varying the
composition of the stationary phase as well as the pH of the
mobile phase. Consequently, one of the major challenges in
ion exchange bioseparation is to select appropriate chro-
matographic materials for a given biological mixture. It has
been suggested that virtual screening of separation materials
in a manner that parallels current QSAR (Quantitative
Structure-Activity Relationship) methods in drug design
would facilitate the selection of proper chromatographic
conditions and speed up development processes.

As a result, there is increasing interest within the chro-
matography community in the development ofQuantitative
Structure-RetentionRelationship (QSRR) models1 based on
linear or nonlinear modeling techniques, includingPrincipal
ComponentRegression (PCR),2 PartialLeastSquares (PLS),3

andArtificial NeuralNetworks (ANN).4,5 The major aims of
these studies are to construct improved QSRR models to
predict the retention behavior of solutes in different stationary
phases or salt conditions as well as to build a valuable
chromatographic interpretation tool for the solute retention
mechanisms. Due to computational bottlenecks in descriptor
generation and machine learning algorithms, most current
approaches are only applicable for small molecules. Recent
research has focused on the adaptation of the TAE (Transfer-
able Atom Equivalent) electron density-derived descriptor
technique to large molecules such as proteins.6 In that study,
partial least-squares models constructed using subsets of TAE
descriptors were found to be capable of predicting protein
retention with good accuracy. In the current study, we present
a novel modeling approach based onSupportVectorMachine
(SVM) Regression7 to predict the retention time of proteins
in anion exchange systems. A visualization tool, the star plot,
is employed to aid in model interpretation. The predictive
power of the resulting models is demonstrated by testing
them on unseen data that were not used during either
descriptor selection or model generation.

II. DATA SET AND DESCRIPTOR GENERATION

Protein Retention Data Set.The crystal structures of 24
structurally diverse proteins with similar isoelectric points
(PI) were downloaded from the RSCB Protein Data Bank8

for analysis. The retention times for these proteins were
obtained by carrying out linear gradient chromatography
using the anion exchange stationary phase Source 15Q. The
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names and the experimental retention times of the 24 proteins
are provided in Figure 1. Three proteins were randomly
selected as external test cases from this original list.

SYBYL v6.5 software9 was used to preprocess the raw
macromolecular structures by eliminating the waters of
crystallization and adding hydrogen atoms to satisfy neutral
valences on all atoms. A total of 243 descriptors was then
computed for these proteins using both RECON10 and MOE
(Chemical Computing Group, Inc.) programs to give a
composite set of traditional and electron density-derived TAE
descriptors.

Quantum Theory of Atoms in Molecules (QT-AIM) and
TAE/RECON Descriptors. Quantum chemical descriptors
offer an attractive alternative to traditional QSAR/QSPR
molecular descriptors by expressing a more accurate and
detailed description of the electronic and geometric molecular
properties and the interaction between them.11 However, even
with the rapid advances in computer architecture and the
anticipated continued growth in computational power, a direct
calculation of the properties of large molecules at a high
level of theory is prohibitive. Bader’s quantum theory of
Atoms in Molecules (AIM)12,13 provides the framework for
reconstructing large complicated molecules from a number
of small electron density fragments while still achieving an
good approximation to the properties of the intact molecules.
In AIM theory, the electron density of a molecule can be
partitioned into distinct electron density basins (the regions
of space occupied by the corresponding atoms), each
containing an atomic nucleus. These electron density frag-
ments are essentially bounded by surfaces of zero net flux
in the electron density, which correspond to the steepest
descent pathways from each bond critical point. An atomic
property (A) can then be expressed as the integral of a
corresponding property densityFA(r) over an atomic basin:

These atomic properties possess a high degree of transfer-
ability from the electronic environment in one molecule to
another molecule with a similar environment. Consequently,
the properties of a functional group or whole molecule can
be obtained by adding these atomic properties together:

Based on AIM theory, Breneman introduced the concept
of “Transferable Atom Equivalents” (TAEs),10,14 which are
composed of atomic electron density fragments bounded by
interatomic zero-flux surfaces (∇F(r) ‚n(r) ) 0, for all points
on the surface) and an extendedF ) 0.002electron/au3

isodensity surface that approximates the condensed-phase van
der Waals surface. TAE fragments carry 10 atomic charge
density-derived properties (listed in Table 1) that were pre-
computed from small molecules using ab initio wave
functions at the 6-31+G* level of theory. As evident from
the table, TAE electron density reconstructions provide not
only molecular electron densities but also electronic kinetic
energy densities and local average ionization potentials as
well as other first- and second-derivative properties of

Figure 1. Proteins and their experimental retention times. Entries marked by * were used as the test set.

A(Ω) ) ∫ΩdτFA(r) whereFA(r) )

(N/2)∫dτ′{ψ* Âψ + (Âψ)*ψ} (1)

Table 1. TAE Atomic Electronic Surface Properties

EP electrostatic potential
Del(Rho)‚N electron density gradient normal to 0.002 e/au3

electron density isosurface
G electronic kinetic energy density G)

(-(p/4m) ∫{∇ψ* ‚∇ψ} dτ)
K electronic kinetic energy densityK )

-(p/4m) ∫{ψ*∇2ψ + ψ∇2ψ*} dτ)
Del(K)‚N gradient of K electronic kinetic energy density

normal to surface
Del(G)‚N gradient of B electronic kinetic energy density

normal to surface
Fuk Fukui F+ function scalar value
Lapl Laplacian of the electron density∇2F
BNP bare nuclear potentialBNP(j) ) Σi)1

n qi/rij

PIP local average ionization potential
PIP(r) ) ∑iFi(r)|εi|/F(r)

Amolecule) ∑
Ω

A(Ω) (2)
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thedensity. The distributions of these electronic properties
computed on 0.002-e/au3 electronic density isosurfaces may
be characterized as molecular property descriptors in several
ways. TAE histogram descriptors can be produced by
recording the distribution of the properties as surface
histograms that quantified the molecular surface areas with
specific ranges of each property value. In addition to these
histogram descriptors, property extrema, average values and
standard deviations of the property distributions (in some
cases with separateσ values for positive and negative
portions of the range) were also included in the TAE
descriptor set.

The TAE library consists of a set of precalculated atomic
fragments structured in a form that allows the atomic
fragments involved in the new molecule to be rapidly
retrieved. The RECON (RECONstruction) program reads the
atomic connectivity information of the protein and assigns
the closest fragment match from the TAE library to each
atom based on atom type, hybridization and structural
environment. By summing up the corresponding atomic

properties of the constituent fragments, we can obtain a large
set of electron density-based TAE descriptors for macro-
molecules. These descriptors provide information about
basicity, hydrophobicity, hydrogen-bonding capacity and
polarity as well as molecular polarizability. For example,
surface property histograms such as the electrostatic potential
distribution of alanine histogram shown in Figure 2 may be
computed using TAE/RECON program. As shown in the
figure, the TAE electrostatic potential distribution represents
the analytical ab initio result quite effectively.

The TAE/RECON approach has been shown to be effec-
tive in QSPR studies.15 It is a resource-efficient alternative
to HF/SCF or DFT ab initio calculations, which can be
prohibitive even for molecules of modest size. The CPU and
disk resources required for TAE reconstruction are compa-
rable to those utilized by molecular mechanics energy
computations. The TAE QSPR descriptors for individual
proteins or large databases can be computed within seconds
on modest workstations.

Figure 2. Electrostatic potential surface distributions and histograms generated for alanine using both TAE and analytical ab initio methods.
The color scheme in parts a and c corresponds to different values of EP on the molecular surface. The distributions of the surface electrostatic
potentials are characterized as histogram descriptors using binning techniques as illustrated in parts b and d. Descriptors for larger molecules
or proteins can be computed following a similar scheme. TAE reconstruction of the proteins used in this study required approximately 60
s on a single 1.7 GHz processor Linux PC.
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MOE Descriptors. The MOE program provides a widely
applicable set of classical molecular descriptors, including
traditional physicochemical properties, connectivity-based
topological 2D and shape-dependent 3D molecular features.
These descriptors have been applied to the construction of
QSAR/QSPR models for boiling point, vapor pressure, and
the free energy of solvation in water as well as water
solubility and blood-brain barrier penetration.16

III. MODELING METHODOLOGY

Support Vector Regression (SVR) Overview.In recent
years, there has been a lot of interest in studying support
vector machines (SVMs) in the field of machine learning.
SVMs are a class of supervised learning algorithms initially
proposed by Vapnik.17,18 To date, SVMs have been applied
successfully to a wide range of pattern recognition problems,
such as image recognition,19 microarray gene expression
classification,20 protein folding recognition,21 protein struc-
tural class prediction,22 identification of protein cleavage
sites,23 QSAR and other pharmaceutical data analysis.20,24

Although SVMs were originally developed for classifi-
cation, Vapnik enabled them to solve regression problems
by choosing a suitable cost function (ε-insensitive loss
function) that enables a sparse set of support vectors to be
obtained.17

Normal regression procedures are often stated as the
processes deriving a function f(x) that has the least deviation
between predicted and experimentally observed responses
for all training examples. One of the main characteristics of
SVR is that instead of minimizing the observed training error,
SVR attempts to minimize the generalization error bound
so as to achieve higher generalization performance. This
generalization error bound is the combination of the training
error and a regularization term that controls the complexity
of hypothesis space. The first term is calculated by the
ε-insensitive losses17

in which ε is the tolerance to error and we only consider
those deviations larger thanε as errors. Thel2-norm 1/2||ω||2
of normal vector is typically adopted as a regularization factor
andω is the weight vector to be determined in the function
f. This algorithm, calledε-SVR, seeks to find a functionf*
∈ F ) {f:RNfR} based on a training set of M examples

(xi,yi) with xi ∈ RN by minimizing the overall regularized
risk functional25

whereC is a fixed regularization constant determining the
tradeoff between training error (empirical loss) and model
complexity. Figure 3 illustrates what theε-insensitive loss
function looks like.

If the hypothesis space F consists of a linear function in
the form〈w ‚x〉 + b, then the SVR problem can be posed as
a convex optimization problem as follows:

A favorable property of the above formulation is that its
solution is robust with respect to small changes in the training
set.

Another major characteristic of Support Vector methods
is that it implicitly maps the original input space to a high
dimensional feature spacex |f Φ(x) by means of so-called
kernel functions based on Mercer’s theorem, whereupon a
linear regression functionf(x) ) 〈w ‚Φ(x)〉 + b is constructed
upon the feature space to achieve a nonlinear model in the
original input space. Thus Support Vector generalization
error, unlike those of other machine learning methods, is not
directly related to the original input dimensionality of the
problem. By the optimality conditions of the quadratic
programming formulation of SVMs, the normal vectorw can
be expressed asw ) ∑i)1

M RiΦ(xi) and the functionf can be
written in the form of a kernel expansion as

In classical support vector regression, the proper value for
the parameterε is difficult to determine beforehand. Fortu-
nately, this problem is partially resolved in a new algorithm,
ν support vector regression (ν-SVR),26,27 in which ε itself is
a variable in the optimization process and is controlled by
another new parameterν ∈ (0,1]. ν is the upper bound on
the fraction of error points or the lower bound on the fraction
of points inside theε-insensitive tube. Thus a goodε can be
automatically found by choosingν, which adjusts the
accuracy level to the data at hand. This makesν a more
convenient parameter than the one used inε-SVR.

Since solving quadratic programming problems is usually
more computationally expensive than solving linear pro-
gramming problems, efforts have been made to derive a
linear programming formulation for SVR. Instead of using
the Euclidean norm i.e.,l2-norm regularization ofw, the
sparseν-SVR always regularizes through applyingl1-norm,
a sparse favoring norm, directly to coefficientsRj,j ) 1, ‚‚‚M
in the kernel expansion off. The l1-norm of the vectorR is
∑j)1

M |Rj|, which can be rewritten as∑j)1
M (Rj + Rj

/) if we
defineRj ) Rj - Rj

/, whereRj g0 andRj
/ g0.

Figure 3. Graphical depiction of anε-insensitive loss function and
an ε-tube. Only the deviations of data points outside theε-tube,
such asê and ê* , will be considered as the errors and thus be
penalizedsin this case two points are used as examples.

Lε(y - f(x)): ) |y - f(x)|ε ) min (0,|y - f(x)| - ε) (3)

1

2
||ω||2 + C∑

i)1

M

|yi - f(xi)|ε (4)

[minimize
1

2
||w||2 + C∑

i)1

M

(êi + êi*)

subject to yi - 〈w‚xi〉 - b e ε + êi, êi g 0,
〈w‚xi〉 + b - yi e ε + êi*, êi* g 0,
i ) 1,2,...,M

] (5)

f(x) ) ∑
i)1

M

Rik(xi,x) + b wherek(xi,x) ) 〈Φ(xi)‚Φ(x)〉 (6)

1350 J. Chem. Inf. Comput. Sci., Vol. 42, No. 6, 2002 SONG ET AL.



Due to these features of linearν support vector regression,
we adopted it for our numerical experiments on the QSRR
problem. A two-step computational strategy was adopted:
First, a sparse linear SVM was utilized as a variable selection
method to identify relevant molecular descriptors; and then
in the next step, a set of nonlinear SVM models derived by
kernel mapping were constructed using the selected features.
In addition, a statistical technique called “bagging” (Bootstrap
Aggregation) was employed to improve model generalization
performance.

l1-Norm SVR Linear Feature Selection.In ion-exchange
chromatography systems, the solutes interact with the
stationary phase in the column through a combination of
intermolecular interactions as the mobile phase flows down
through the column. Since it is not possible to know a priori
which molecular descriptors are most relevant for describing
these interactions, a comprehensive set of descriptors is
employed in the initial steps of QSRR model generation.
This results in a situation where there are far fewer
observations than the number of molecular descriptors. As
is well-known in both the chemical and statistical communi-
ties, the accuracy of prediction is not monotonic with respect
to the number of features employed in the model, because
some descriptors may be found to be unnecessary or
irrelevant, while inclusion of too many descriptors may
produce fortuitous correlations and over-trained models.
Therefore, in this extreme of very few observations with very
many descriptors, it is essential to utilize efficient feature
selection and regularization methods. Even though SVMs
are claimed to be insensitive to the problem of dimensionality
with kernels implemented as discussed above, reduction of
the input space can still help to speed up the learning process
by removing irrelevant features and emphasizing only a few
relevant features to make the interpretation more convenient.
That is why feature selection methods have received much
attention recently in QSAR or QSPR studies. Several
algorithms, such as forward selection,28 simulated anneal-
ing,29 genetic algorithms,30,31K-nearest neighbor,32 evolution-
ary programming,33,34 artificial ants35,36 and binary particle
swarms,37 have been implemented for feature selection in
the scientific literature.

The feature selection method used in this work exploits
the fact that sparse SVM modeling using a linear hypotheses
with l1-norm regularization inherently performs feature
selection as a side effect of minimizing function capacity
during the modeling process.38 In a linear regression model
of the formy ) 〈a‚x〉 + b, each component ofR provides a
weight for the corresponding feature, thus providing a
measure of its significance in the model. Moreover, the sign
of each componentRi indicates the effect of thei th feature
on the hypothesis. IfRi > 0, the feature contributes positively
to the observed responsey, and when negative it diminishes
y. In linear Support Vector regression, the pertinent process
involves maximization of the “margin”, a term that is
inversely proportional to the norm of the weights||w||. The
margin is defined as the geometric size of theε-tube. In the
case of linear SVMs, this size of the margin provides a
measure of model complexity. An effect of maximizing the
margin (or minimizing the norm of the weights) is to make
the optimal weight vector more sparse. Sparsity is defined
here as the average number of nonzero components (descrip-
tor weights) in the optimal weight vector. This method of

feature selection is formulated as a sparseν-SVR without
kernel mapping, which can be stated in the following manner:

One-norm sparse SVR optimization can enhance the
sparsity of thel1-norm of R as shown in Figure 4, because
it is easier to drive the weights of irrelevant descriptors to
zero. Those descriptors with nonzero weights then become
potentially relevant features to be selected and used to build
a subsequent nonlinear model.

Since QSRR data are sometimes comprised of relatively
few examples represented by many correlated descriptors,
even small perturbations of the training set may lead to large
variations in the learning process. This eventuality results
in the generation of different linear models and different sets
of nonzero-weighted descriptors for related training sets.
Recent research reported in the literature has shown that if
used with care, ensemble modeling can improve the gener-
alization performance particularly for unstable nonlinear
models, such as those involving neural networks.39 Thus to
stabilize the learning process and ensure that a robust set of
features are selected in the present work, the technique of
bootstrap aggregation (or “bagging”) was used in the form
originally proposed by Breiman.40,41The idea is to construct
a series of individual sparse SVR predictors (models) using
a bootstrap resampling technique,42 record the selected
descriptors for each individual bootstrap and then take a
union of all descriptors into a single final feature set.

The overall feature selection scheme is illustrated in Figure
5. The following process was carried out in this work:

• Multiple training and validation sets were developed from
a master training data set using a bootstrapping protocol;

• A series of sparse linear SVMs was created that exhibit
good generalization following the common accession using
n-fold cross-validation and quantified by cross-validated
correlation coefficients;

• Subsets of features having nonzero weights in the linear
models were selected;

• Finally, all features obtained in the last step were
aggregated to produce the final candidate set of descriptors.

Nonlinear Regression Bagging Models.Once a set of
features is selected, a nonlinearν-SVR with a kernel

Figure 4. The weights of irrelevant descriptors will converge
to zero much faster when using thel1-norm compared to thel2-
norm.

[minimize
1

2
∑
j)1

N

(Rj + Rj
/) + C

1

M
∑
i)1

M

(êi + êi
/) + Cνε

subject to yi - ∑
j)1

N

(Rj - Rj
/)xij - b e ε + êi, i ) 1,2,...,M

∑
j)1

N

(Rj - Rj
/)xij + b - yi e ε + êi, i ) 1,2,...,M

Rj, Rj
/, êi, êi, ε g 0, j ) 1,2,...,N, i ) 1,2,...,M

]
(7)
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formulation such as shown in eq 9 is used to construct the
QSRR models. The Radial Basis Function (RBF)

was chosen as the kernel in our computational studies.
This allows us to obtain the regression functionf as a linear

combination of only a few kernel functions. The sparse
ν-SVR is formulated as follows:

A simple grid search43 was employed to choose appropriate
values for the kernel parameterσ as well as the capacity
factor C and the parameterν. More details of how the
parametersC,ν are selected using a pattern search technique
can be found in Bennett’s recent publication.38 To again
reduce the variance of the predicted values, the same
“bagging” technique was utilized in training the final
regression model over the selected features based on the
nonlinear SVR predictorsφn(x).

The same cross-validation procedure as described earlier
was used to quantify the predictive capabilities of individual
predictors and that of the whole predictor ensemble.

Implementation. The SVR feature selection and modeling
program was implemented using the CPLEX optimization
toolbox44 and the C programming language as available in
the Department of Mathematics at RPI and installed on an
IBM-AIX Unix platform. Star plot visualization graphics
were generated using the S-PLUS 2000 software package.45

IV. RESULTS AND DISCUSSION

SVR Feature Selection and Bagging Prediction Results.
The aim of this work was to generate predictive models for
protein ion-exchange chromatographic retention times with
high accuracy as well as to characterize the main interaction
mechanisms that account for the retention behavior in anion
exchange systems.

Figure 6 shows retention time modeling results obtained
before any feature selection using all topological and
quantum mechanical descriptors mentioned in Section II. In
this figure, the observed retention times (horizontal axis) are

Figure 5. General framework of feature selection scheme.

k(x,x′) ) exp(-||x - x′||2/2σ2) (8)

[minimize
1

2
∑
j)1

M

(Rj + Rj
/) + C

1

M
∑
i)1

M

(êi + êi
/) + Cνε

subject to yi - ∑
j)1

M

(Rj - Rj
/)k(xi,xj) - b e ε + êi, i ) 1,2,...,M

∑
j)1

M

(Rj - Rj
/)k(xi,xj) + b - yi e ε + êi, i ) 1,2,...,M

Rj, Rj
/, êi, êi, ε g 0, i,j ) 1,2,...,M

]
(9)

φbag(x) )
1

N
∑
n)1

N

φn(x),

whereN is the cardinality of the ensemble (10)

Figure 6. The prediction scatter plot using all descriptors before
feature selection.
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plotted against the corresponding predicted values for each
protein obtained using nonlinear SVR models. The blind test
data, as indicated in red, were held out and were not involved
in model generation or validation. The asterisk on each
vertical bar shows the bagged result of 12 bootstraps for each
protein, and the length of the bar represents the full prediction
range of retention time for each protein generated by the 12
bagged models. The cross-validation step produced anRCV

2

) 0.851 and the blind test set anRbag
2 ) 0.926.

As discussed above, sparseν-SVR approaches were
adapted to select only those features relevant to anion-
exchange protein retention under the experimental conditions
used to develop the data set. In this feature selection
procedure, 20 sparse linear SVM models were constructed
based on 20 different random partitions of the training data.
In the final aggregate SVR model, there were only seven
descriptors remaining with nonzero weights. These seven
descriptors and their primary definitions are shown in Table
2. Although some of the descriptors are not directly associ-
ated with specific physicochemical effects, they have been
found to contain chemical information relevant to the
interaction mechanisms involved in the anion exchange
system. As explained below, this can facilitate the under-
standing of QSRR modeling for protein retention.

During the model construction, one of main tasks is to
determine the significance of the selected QSRR descriptors
for later model interpretation. In earlier work, traditional
QSRR equations made up of linear combinations of physi-
cally interpretable structural descriptors were employed to
elucidate the relative importance of several molecular mech-
anisms involved in chromatographic processes.47

In contrast to earlier techniques that often used descriptor
weights within single models for chemical interpretation, a
graphic visualization tool known as “star plots”48 was used
in the current work to characterize the relative importance
of the seven selected descriptors across the multiple models
present in the bootstrap aggregate. In most multivariate
visualization applications, star plots are generated in a multi-
plot format where each plot represents one case, and each
radial line represents the magnitude of a particular variable
(or column) in the data matrix. When the endpoints of the
rays are connected together with a line, the resulting figure
resembles a “star”. In the current work, each star corresponds
to a single selected relevant descriptor, where the radius of
each spoke is the weight of that descriptor in one of the
sparse SVR models used in the bootstrap (normalized by
the maximum magnitude of the weights of all descriptors in

the same bootstrap). This technique visually represents the
relative importance of each descriptor in each of the predictor
models used in the bootstrap aggregate and provides a
measure of the consistent importance of the descriptor over
all of the bootstrap models. For each descriptor, the sum or
average of all 20 radii (or the surface area of the star) can
be used to represent the overall relative importance of the
descriptor over all 20 bootstraps. The descriptor weights from
all 20 of the linear SVR models used in the bootstrap
aggregation procedure are mapped onto the star plots in the
manner shown in Figure 7. In the example shown in that
figure, descriptor 1 is consistently important to all models,
while descriptor 2 has less uniform significance.

Since descriptor contributions may be either positive or
negative, background color is used indicate the consistent
sign of the weight across all bootstraps. Finally, the descrip-
tors may be ranked over all 20 bootstrap iterations, such that
the most significant negatively weighted descriptor appears
in the upper left of the graphic, while the most positively
weighed descriptor appears in the lower right-hand side of
the figure. The ordering is performed in a column-wise
fashion. For instance, in Figure 8, the star plot graph shows
seven stars representing the weights of the seven selected
descriptors over 20 bootstraps. As shown in the figure,
PEOE.VSA.FPPOS has the largest negative effect on reten-
tion time and PIP2 has the largest positive effect on retention
time. This kind of graphical approach offers a direct way to

Table 2. Definition of the Relevant Descriptors Obtained from Sparse SVR Feature Selection

descriptor name chemical information encoded in these descriptors

PEOE.VSA.FPPOS (MOE) Fraction of positive polar van der Waals surface area. The Partial
Equalization of Orbital Electronegativities (PEOE) method of
calculating the atomic charges was developed by Gasteiger46

FCHARGE (MOE) Total charge of molecule (sum of formal charges)
PIP2 (TAE) The second histogram bin of PIP property. Local average

ionization potential in the low range
PIP20 (TAE) The last histogram bin of PIP property. Local average ionization

potential in the high range
SIKIA(TAE) K electronic kinetic energy density, which correlates with the

presence and strength of Bronsted basic sites. (integral average)
SIGIA (TAE) Derived from the G electronic kinetic energy density on the molecular surface.

Similar in interpretation to SIKIA, but provide supplemental information.
VSA.POL Sum of van der Waals surface of “polar” atoms

Figure 7. Star plot generation process.
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examine the relative significance of molecular property
descriptors in a semiquantitative manner.

The scatter plot for nonlinear SVR prediction based on
these seven descriptors with 12 bootstraps is shown in Figure
9. In this case, the cross-validatedRCV

2 ) 0.882 and the test
setRbag

2 ) 0.988. It may be observed that the final nonlinear
model performs better with only seven features than with
the original 243 descriptors. The reduction in features also
simplifies the model and allows for better interpretation.
While the predictive accuracy of the model is subject to
improvement, the technique is clearly capable of providing
useful estimates of retention time that should prove useful
in chromatography planning.

Model Interpretation. Besides the development of direct
prediction models, one of main challenges in QSRR lies in
extracting chemical meaning from the descriptor patterns
found in the models. It is hypothesized that the application
of a fundamental physicochemical modeling approach such
as that used in this investigation will aid in the understanding
of the interaction mechanisms of ion-exchange systems. The
development of predictive models and a greater level of
understanding of the underlying processes of protein chro-
matography will be valuable for future experimental design.

Despite its widespread application, the exact mechanism
of protein retention in ion-exchange chromatography is still
controversial. Protein retention on an anion-exchange resin
is controlled by the balance of interactions between the
protein and a set of charged functional groups as well as by
the characteristics of the surrounding medium and the
stationary phase solid matrix. It is known that this kind of
mixed-mode separation mechanism within ion-exchange
columns can offer unique selectivity for the separation of
proteins. One such scenario is depicted in Figure 10.

Due to the nature of the ion-exchange processes, it is
expected that electrostatic effects will play a dominant role
in protein retention. This dominant electrostatic effect arises
because the acidic amino acid side chains, i.e., aspartate and
glutamate, are partially deprotonated under the experimental
conditions in which the mobile phase is buffered at pH)
7.4 and produce negative charges on the periphery of the
protein. Since anion exchange sites (quaternary ammonium
functional groups N(CH3)3

+) on the resin surface are
completely ionized under these conditions, proteins with high
negative charge densities on their surfaces will show greater
affinity for these sites and will elute later. Proteins with low
negative charge densities will interact more weakly with the
resin and will elute first. As described later, additional effects
are also present that can influence elution selectivity,
including overall charge asymmetry and other factors.

According to the SVM modeling results from this work,
a dominant set of electrostatic interactions may be proposed
to explain the protein retention behavior using three main
factors: net charge, polarity/polarizability (charge asym-
metry) and a desolvation penalty.

The first of the three electrostatic factors is represented
by a fractional surface area descriptor and atomic formal
charges. The MOE descriptor PEOE.VSA.FPPOS represents
the fraction of the molecular surface area bearing a positive
partial charge, as calculated by the PEOE (Partial Equaliza-
tion of Orbital Electronegativities) approach. As shown in
Figure 8, this descriptor bears a negative weight, meaning
that greater fractional positive surface area decreases the
protein retention time. This result is consistent with the net
charge hypothesis, which suggests that fixed positively
charged sites in the resin will exhibit a favorable affinity
for negatively charged amino acids and repel positively
charged regions of the protein surface. The descriptor
FCHARGE represents the total formal charge of the protein,
which is negative in cases where the solution pH is higher
than their isoelectric point (PI). The small negative value of
its weight in the sparse SVR models is consistent with the
explanation that proteins with more negative charge have a
tendency to interact more strongly with the positively charged
function groups present on the surface of the resin. The
apparent insignificance of this seemingly important descriptor
is due to the fact that the electrostatic effect is better
represented more by other selected electrostatic-related
descriptors. The importance of this descriptor may prove to
be more significant in data sets involving proteins with
diverse PI.

Although the above net charge model has been frequently
used to explain the phenomenon, retention mapping studies
on the strong ion-exchange columns showed it to be
inadequate. The influence of intramolecular charge asym-
metry in the proteins has been successfully employed as an

Figure 8. Star plots for the seven descriptors selected by the feature
selection algorithm. Descriptor starplots with a cyan background
have negative contributions to the retention time, while those with
a red dot background have a positive effect on retention.

Figure 9. The prediction scatter plot using the nonlinear SVR
model with seven selected descriptors.
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alternative explanation for deviations from the net charge
model together with the fact that protein tertiary structure is
know to affect retention.49 Recent studies suggested that
protein local dipolarity should also be taken into consider-
ation, since it appears that only a fraction of locally charged
protein surfaces interact with the stationary phase.50 These
regions of localized charge are postulated to orient the protein
with respect to the oppositely charged ion-exchange support.
It is clear that in large, complex macromolecules, the
distribution of charged groups may not be uniform through-
out the structure. As a result of this inhomogeneity, even
proteins with zero net charge may exhibit significant
electrostatic fields. Consequently, the retention behavior will
depend not only on the net charge itself but also on the spatial
distribution of charge throughout the protein structure. Other
effects include the potential for reorganizing these dipoles
(and higher multipoles) in response to an applied electronic
field originating from the neighboring medium. Descriptors
associated with dipolarity and polarizability effects are
expected to account for differences among the solutes as to
their propensity to participate in dipole-dipole, dipole-
induced dipole and charge-transfer interactions.

Several TAE electron density-based descriptors listed in
Table 2 were found to be significant to retention, e.g. SIKIA,
SIGIA and PIP. These descriptors have also been found to
correlate with molecular properties such as acid/base strength
and polarity as well as polarizability.10 The PIP descriptor
family can be associated with regions of donor and acceptor
capabilities that relate to the tendency of analytes to take
part in charge-transfer interactions. Prior to feature selection,
there were twenty PIP descriptors present in the descriptor
set, where PIP1 and PIP2 represent regions of the molecular
surface where electron density is easily ionizable, while
PIP20 is associated with regions of tightly held electron
density, such as on exchangeable protons. SIGIA and SIKIA
describe the integrals of G and K electronic kinetic energy
densities found on the molecular van der Waals surface.
These descriptors are related to the Laplacian of the density
and are associated with the presence and the strength of
Lewis basic sites. It has been shown in this work that these
dipolarity/polarizability-related descriptors (PIP2, SIKIA and

SIGIA) correlate with increased retention time. This may
be due to their representation of increased dipole/induced-
dipole or charge/induced-dipole forces between the protein
and the strong ion-exchanger groups as well as induced-
dipole/induced-dipole interactions between the polarizable
aromatic groups of the stationary phase and polarizable
regions of the protein. The PIP20 descriptor was found to
be anticorrelated with retention time, indicating that the
presence of nonacidic hydrogen bond donors (serine, etc.)
increases solute/mobile-phase interactions at the expense of
solute/stationary phase interactions.

In addition to the charge characteristics of the protein and
resin surface as well as the underlying matrix, the nature of
the solvent, e.g. polarity, is also known to be an important
contributor to protein retention. In the current model, this
effect is described by the MOE descriptor VSA.POL, which
approximates the VDW surface area of polar atoms (both
hydrogen bond donors and acceptors). The importance of
this descriptor implies that the hydrogen bonding capacity
of proteins may also be involved in the intermolecular
interactions responsible for column retention behavior. To a
first approximation, most charged and polar groups on the
solvated protein can interact favorably with the surrounding
water before attaching to the support surface. Thus, even a
protein with a moderate polarity has to pay an energetic
penalty which increases in proportion to the overall polar
surface of the protein. In this way a protein with more polar
atoms on the exposed van der Waals surface will have a
stronger hydrogen-bonding capacity with the mobile phase
and will elute out of the column first, accounting for the
negative effect of VSA.POL for retention shown in the star
plot. Fortunately, this kind of desolvation penalty can be
offset, although never completely overcome, by more favor-
able electrostatic interactions between the resin and the
protein that lead to increased protein retention.

V. CONCLUSIONS

In this study, Support Vector Machine (SVM) regression
was introduced as a method for generating predictive QSRR
models of protein retention times in anion exchange chro-

Figure 10. A simple cartoon illustration of multi-mode interaction involved in protein retention. The symbols PA and PB represent two
proteins with different binding affinities to the stationary phase.
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matographic systems. It was demonstrated that models
developed using this technique encompass a wide range of
proteins including a variety of sizes, shapes, functionalities
and selectivity for these resins. In the future, this method
should prove useful for performing comparative QSRR
studies under different chromatographic conditions and be
important for determining appropriate protein purification
conditions.

In summary, the behavior of protein solutes in anion-
exchange chromatography conditions may be quantified
through the use of traditional and electron density-based
molecular property descriptors. Models may be constructed
using SVR methods for both feature selection and property
prediction. Extensive cross-validation of the modeling results
was accomplished using multiple sets of training and
validation cases in a bootstrap scheme, the results of which
are visualized and interpreted using star plots.
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