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Abstract—Complex disorders exhibit great heterogeneity in
both clinical manifestation and genetic etiology. This hetero-
geneity substantially limits the identification of geneotype-
phenotype associations. Differentiating homogeneous subtypes
of a complex phenotype will enable the detection of genetic
variants contributing to the effect of subtypes that cannot
be detected by the non-differentiated phenotype. However,
the most sophisticated subtyping methods available so far
perform unsupervised cluster analysis or latent class analy-
sis on only phenotypic features. Without guidance from the
genetic dimension, the resultant subtypes can be suboptimal
and genetic associations may fail. We propose a multi-view
biclustering approach that integrates phenotypic features and
genetic markers to detect confirming evidence in the two views
for a disease subtype. This approach groups subjects in clusters
that are consistent between the phenotypic and genetic views,
and simultaneously identifies the phenotypic features that are
used to define a subtype and the genotypes that are associated
with the subtype. Our simulation study validates this approach,
and our extensive comparison with several biclustering and
multi-view data analytics on real-life disease data demonstrates
the superior performance of the proposed approach.

Keywords-multi-view data analysis; biclustering; subtyping;
genotype-phenotype association; substance dependence

I. INTRODUCTION

Identifying genetic variations that underlie complex phe-

notypes is important in genetics and systems biology. For

complex phenotypes, such as substance dependence (SD), a

variety of traits that collectively indicate or characterize the

phenotype are often associated with substantial phenotypic

variation [1]. Genotype-phenotype association analysis of

such a complex phenotype is impeded by this phenotypic

heterogeneity [2]. Case-control studies based on a binary

trait, such as the diagnosis of a disease, that partitions the

population into cases (subjects with the disease) and controls

(subjects without the disease), does not differentiate the

heterogeneous manifestation of the disease. On the other

hand, many candidate genes or genomic regions have been

identified to be associated with complex diseases [3]. It has

remained unclear about the characteristics or subtypes of

the disease for which the association exists. For instance,

130 genes involved in several biological systems have been

shown related to addictions, but it remains to be elucidated

which addiction behavior is associated with a specific ge-

netic variant [4].

Differentiating homogeneous subtypes of a disease pheno-

type has shown promising results to identify genetic variants

contributing to the effect of subtypes [5]. However, these

studies perform unsupervised cluster analysis or latent class

analysis [6] on phenotypic features only. Genotype data has

only been used after-the-fact to evaluate subtypes, such as in

subsequent association tests with the derived subtypes, rather

than to guide the creation of subtypes. Consequently, the

resultant subtypes can be of little utility in genetic analysis,

and genetic association analysis may fail. Integration of data

from the clinical and genomic dimensions offers benefits

such as new opportunities to find confirming evidence of a

subtype from its genetic basis and clinical manifestations.

Clinical subtyping methods have not jointly used clinical

and genomic data to define subtypes.

There has been little research on this topic in the statistic

literature. The most related area involves multi-view data

analysis [7], [8], where samples are characterized or viewed

in multiple ways, thus creating multiple sets of input vari-

ables. Multi-view clustering [7] seeks groupings that are

consistent across different views, but they use all phenotypic

features and genetic markers to define clusters/subtypes and

cannot be used to identify subtype-specific variants. Our

subtyping problem, although similar to multi-view cluster-

ing, seeks classification of subjects that is consistent in

the clinical and genetic views, but modeling in both views

requires subspace search so that the resulting subtypes rely

on only subsets of variables, thus leading to genetically

and clinically homogeneous subtypes. For a single view,

biclustering methods classify samples and simultaneously

identify features determining the sample classification [9],

[10], and subspace clustering methods search subspace and

group samples differently in each subspace [11]. However,

there has been no such an algorithm to date that finds

consensus sample grouping across multiple views based on

subsets of variables from each view.

In this paper, we propose a multi-view biclustering

 
2013 IEEE International Conference on Bioinformatics and Biomedicine

978-1-4799-1310-7/13/$31.00 ©2013 IEEE



approach based on sparse singular value decomposition

(SSVD) technique [10]. The objective of this problem is to

identify subject clusters that are consistent in both the clin-

ical and genetic views, and simultaneously identify features

and markers that determine the clusters. Employing sparse
SVD in our approach is critical to its success, especially

to successfully detect associative variants given the number

of true associative variants are much fewer than the single

nucleotide polymorphisms (SNPs) in the whole genome. The

proposed approach has been validated on both synthetic

datasets that are simulated so that few genetic markers

are associations with specific subtypes and a real world

clinical dataset that is aggregated from multiple genetic

studies of cocaine dependence. We compared our approach

to the biclustering approach in [10] and multiple existing

multi-view data analytics methods. The results clearly show

the superior performance of our approach over all other

compared methods. This paper is organized as follows. We

introduce the proposed multi-view biclustering method in

Section II, followed by the computational results in Section

III. We conclude in Section IV.

II. METHOD

We start with a presentation of the notations that are used

throughout the paper. A vector is denoted by a bold lower

case letter as in v and ‖v‖p represents its �p-norm that

is defined by ‖v‖p = (|v(1)|p + · · · + |v(d)|p)1/p, where

v(i) is a component of v and d is the length of v, i.e., the

total number of components in v. We use ‖v‖0 to represent

the so-called 0-norm of v that equals the number of non-

zero components in v. Denote u � v as a vector whose

components are the multiplications of respective components

in u and v. The set Bd contains all binary vectors of length

d. A binary vector means a vector with components equal

either 0 or 1. A matrix is denoted by a bold upper case letter,

e.g., Mn×d is a n-by-d matrix, and ‖M‖F is its Frobenius

norm defined by (tr(MTM))1/2 where tr(·) is the trace of

a matrix. Rows and columns in M are noted by M(i,·) and

M(·,i) respectively.

Given a matrix M, a subgroup of its rows and a subgroup

of its columns can be simultaneously achieved by sparse

singular decomposing M [10], that is approximating M with

a sparse rank one matrix M̃ . The resulted row and column

subgroups help to define each other. Let u and v be the

two vectors resulted from the SSVD , i.e., M̃ = uvT ,

rows in M corresponding to non-zero components in u
form the row subgroup and columns in M corresponding

to non-zero components in v form the column subgroup.

For two data matrices M1 of size n-by-d1 and M2 of size

n-by-d2 that characterize the same set of subjects from two

different views, we can obtain u1, v1 for M1, and u2, v2

for M2 by sparse singular value decomposition of M1 and

M2 separately. However, it will not guarantee the two row

clusters specified, respectively, by u1 and u2 be consistent.

To make them consistent, it requires u1 and u2 to have non-

zero components at the same positions. Notice that u1 and

u2 are not necessarily the same given they may be derived

from very different features from two views, such as real-

valued features in the clinical view and SNP genotypes in the

genetic view. We propose to use a binary vector z that serves

as a common factor to link the two views and represent each

u by z � u in the objective function. When z(i) = 0, the

i-th components of both u1 and u2 are 0, and consequently,

the i-th subject will be excluded from the subgroup in both

views. We hence require the sparsity of z instead of u1 and

u2 in the optimization problem as follows.

min
z,σi,ui,vi,i=1,2

2∑
i=1

‖Mi − σi(z� ui)v
T
i ‖2F

+ λz‖z‖0 + λv1
‖v1‖0 + λv2

‖v2‖0
subject to ‖ui‖2 = 1, ‖vi‖2 = 1, i = 1, 2

z ∈ Bn

(1)

where λz , λv1
and λv2

are hyper-parameters to balance the

errors and sparsity penalty.
As an alternative, a restricted version of Eq(1) is to require

u1 = u2 = u and solve the following optimization problem:

min
u,σi,vi,i=1,2

‖M1 − σ1uv
T
1 ‖2F + ‖M2 − σ2uv

T
2 ‖2F

+ λu‖σ1u‖0 + λv1‖σ1v1‖0 + λv2‖σ2v2‖0
subject to ‖u‖2 = 1, ‖v1‖2 = 1, ‖v2‖2 = 1.

This problem is easier to solve without integer variables

as in z. It can be similarly solved using the approach

proposed in [10]. However, it is an unnecessary constraint

to require u1 = u2, which rules out a number of potential

solutions that may include the optimal row clusters. Another

alternative is to minimize the difference between u1 and u2,

which suffers from the same problem as the exact values of

the difference are not concerned. Our problem concerns with

the indicator of whether a component is zero.
We hence focus on developing effective alternating opti-

mization algorithms to solve Problem (1).

(1) Find optimal u1, v1, u2, v2 with fixed z
When z is fixed, optimal u1, v1 and optimal u2, v2 that

minimize (1) can be computed separately and in the same

fashion. Thus, we only discuss how to compute u1 and v1

for a given z. This sub-problem can be written as follows:

min
σ1,u1,v1

‖M1 − σ1(z� u1)v
T
1 ‖2F + λv1

‖σ1v1‖0
subject to ‖u1‖2 = 1, ‖v1‖2 = 1

(2)

which can be solved by alternating in solving the following

two sub-problems.

(a) Solve for v1 when u1 is fixed
We solve the following equivalent problem for the optimal

ṽ1 and then set σ1 = ‖ṽ1‖2 and v1 = ṽ1/σ1.

min
ṽ1

‖M1 − (z� u1)ṽ
T
1 ‖2F + λv1

‖ṽ1‖0.



Unfortunately, it has shown that this problem is NP-Hard

[12]. There are several approximation methods [13]. We use

a simple approximation, i.e., ‖ · ‖1 that is also in favor of

sparsity [14]. With this approximation, we can obtain ṽ1

by minimizing ‖M1 − (z � u1)ṽ
T
1 ‖2F + λv1

‖ṽ1‖1. Each

component ṽ1,(i) in ṽ1 can be analytically computed by

soft-thresholding as shown in Eq.(3) [10] where α = (z �
u1)

TM1,(·,i) and β = λv1/2.

ˆ̃v(i) =

⎧⎪⎨
⎪⎩
α− β, α > β

0, |α| ≤ β

α+ β, α < −β
. (3)

(b) Solve for u1 when v1 is fixed
We now optimize (2) with respect to σ1 and u1. By

setting σ1 = ‖ũ1‖2 and u1 = ũ1/σ1, solving Problem (2)

is equivalent to computing ũ1 by

min
ũ1

‖M1 − (z� ũ1)v
T
1 ‖2F , (4)

Each component u1,(i) in u1 can be independently and

analytically computed as follows:

ũ1,(i) =

⎧⎨
⎩

M1,(i,·)v1

z(i)
, if z(i) �= 0

0, if z(i) = 0.

.

(2) Find optimal z with fixed u1, v1, u2, v2

When we solve Problem (1) with respect to z only, it is

equivalent to solving the following problem

min
z̃

‖M1 − (z̃� u1)v
T
1 ‖2F+

‖M2 − (σ̂2/σ̂1)(z̃� u2)v
T
2 ‖2F + λz‖z̃‖0

(5)

where σ̂i is the value of σi from previous iteration. After

obtaining z̃, z can be calculated as:

z(i) =

{
1, if z̃i �= 0

0, if z̃i = 0.
.

In order to keep the objective unchanged, we update u1

and u2 accordingly as follows:

uj,(i) =

{
uj,(i)/z̃i, if z̃i �= 0

0, if z̃i = 0
j = 1, 2,

and σ1, σ2 are recalculated as: σ1 = ‖u1‖2, σ2 =
(σ̂2/σ̂1)‖u2‖2, then we normalize u1 and u2 as in u1 =
u1/‖u1‖2, u2 = u2/‖u2‖2. Again, here we use �1-norm of

z̃ to approximate its 0-norm and we obtain z̃ by solving the

following problem.

min
z̃

‖M1 − (z̃� u1)v
T
1 ‖2F

+ ‖M2 − (σ̂1/σ̂2)(z̃� u2)v
T
2 ‖2F + λz‖z̃‖1

Overall, we alternate between solving above sub-problems

until a local minimizer is reached. The overall objective is

monotonically non-increasing when minimizing each sub-

problem, the convergence of this iterative process is guar-

anteed. In our experiment both on synthetic and real world

data, this process reached a convergent point in about 10

iterations. Algorithm 1 summarizes all related steps. To de-

rive another row subgroup, we repeat algorithm 1 using new

matrices M1 and M2 that exclude the rows corresponding

to the subjects in the identified subgroup. By repeating this

procedure, the desired number of population subgroups can

be achieved.

Algorithm 1 Joint Multi-view Biclustering

Input: M1, M2, λz , λv1
, λv2

Output: z, σ1, σ2, u1, v1, u2, v2

1. Initialize z with all ones.

2. Compute σ1, u1 and v1 by solving (2).

3. Set 0 to components of z at the positions where

corresponding components in u1 are 0.

4. Compute σ2, u2 and v2 in the same way as how σ1,

u1 and v1 are calculated in (2).

5. Compute z by solving (5) and update σi, ui, i = 1, 2
accordingly.

Repeat 2, 4, 5 until u1 reaches a fixed point.

III. COMPUTATIONAL RESULTS

We first validated the proposed method using synthetic

data that was simulated with known association structures.

Then we evaluated our approach on a real world disease

dataset aggregated from multiple genetic studies of cocaine

dependence (CD) disorder. Normalized mutual information

(NMI) was used to measure the consistency between two

cluster solutions. Since the true clusters are known in syn-

thetic data, we computed NMI to measure the consistency

between the true clusters and the clusters resulted from

clustering methods. A higher NMI value indicates better

performance. In addition to NMI, classifiers were built based

on genetic markers to separate subjects in different clusters.

We used the Area Under the receiver operating characteristic

Curve (AUC) in a 10-fold cross validation setting to measure

the genetic separability or homogeneity of the resultant

clusters. We used a regularized logistic regression as the

classification model throughout these experiments.

Extensive comparison of the proposed approach against

biclustering and multi-view analytics was conducted. We

calculated NMI for different methods on synthetic data and

AUC on both synthetic and real world data. The existing

methods that were used in our comparison study are given

in the following list.

• Biclustering via SSVD: Clusters were included in the

comparison by running the method of SSVD-based

biclustering in the clinical view as the biclustering

method does not handle multiple views. Applying this



method to genetic data created completely different

clusters from those obtained in the clinical view.

• Co-regularized spectral: This method was proposed

in [7] for finding consistent row clusters among multi-

ple views by applying spectral clustering alternatively

on each view together with a co-regularization factor

applied to the cluster indicator vector.

• Kernel addition: RBF kernels were calculated for each

view and combined by adding them up together. Then

spectral clustering was applied to the combined kernel

to obtain row clusters.

• Kernel product: This is the same procedure in the ker-

nel addition described above except that kernel matrices

were combined by multiplying their components in the

same position.

• Feature concatenation: Data from the two views were

simply put together by feature concatenation and a

kernel matrix was computed based on the combined

dataset with spectral clustering to obtain row clusters.

A. Synthetic data

Two disease subtypes, i.e., subtype 1 and subtype 2
were simulated and they had different sets of associative

genetic factors that corresponded to different sets of pheno-

typic/clinical features. We started from simulating genotypic

subtypes (population subgroups based on genetic mark-

ers), which were subsequently used to generate phenotypic

subtypes along with random noise introduced to reflect

environmental effects.

Genetic data was obtained from 1000 Genome Project

[15], and 1092 subjects were genotyped with several millions

of genetic markers in this project. We randomly selected

1000 markers from chromosome 5 that had minor allele

frequency (MAF) at least 5% as genetic inputs in the

experiment. For each subtype, 10 markers were randomly

chosen to be associated with each subtype. In order to assign

subjects to subtypes, we assumed that the minor allele on

each loci was the risk variant. We assigned subjects to a

subtype if they had over 8 risk variants of the particular

subtype. Subjects who did not belong to any of the subtypes

were treated as controls. We removed those subjects who

belonged to both of the two subtypes in order to create lucid

comparison results. In total, 1013 subjects were retained for

subsequent analysis. Of them, 247 and 167 subjects were

assigned to subtype 1 and subtype 2 respectively; and 599

were controls. We named the above population partition the

genotypic subgroups.

For the creation of population subgroups in the phenotypic

view, we introduced random noise to reflect the environmen-

tal effects on phenotypic features. We used a parameter e to

indicate the relative effect that genetic variation contributed

to the effect of the phenotype. Denote rji the number of risk

variants of subtype j that subject i had, so 0 ≤ rji ≤ 10.

If rji ∗ e + N(0, 1) > 7.5 ∗ e, we assigned subject i to

Table I
NMI COMPARISONS BETWEEN DIFFERENT APPROACHES WITH

DIFFERENT EFFECTS e

e = 1.0 e = 0.8 e = 0.6 e = 0.4

Biclustering via SSVD 0.0821 0.1798 0.2432 0.2286
Co-regularized Spectral 0.2306 0.2477 0.2338 0.2549
Kernel addition 0.2587 0.2295 0.2350 0.2566
Kernel product 0.1917 0.2432 0.2302 0.2310
Feature concatenation 0.1569 0.1576 0.1532 0.1211
Proposed method 0.7949 0.7693 0.6815 0.6329

subtype j. In contrast to genotypic subgroups, we named this

population partition the phenotypic subgroups. Similarly, we

removed subjects that overlapped in the two phenotypic

subgroups. Less than 15 subjects were excluded in any

simulated dataset in the experiment. In addition to the two

phenotypic subgroups that had their counterparts in the

genotypic view, two additional phenotypic subgroups were

created to make the simulated data a mimic of real situations.

The size of the two additional subtypes were both 200 and

subjects were randomly selected and assigned to them.

After phenotypic subgroups were created, we simulated

10 binary phenotypic features. A subject was assigned a

value of 0 or 1 for any of the features according to a

probability. Subtype 1 and subtype 2 each was associated

with three features, respectively. Subjects in each simulated

phenotypic subgroup obtained the value of 1 with proba-

bilities of 0.6, 0.5, 0.4 respectively on the three designated

features. For the two additional phenotypic subgroups, each

was associated with two features, and subjects in each of

the two subtypes obtained the value of 1 on the respective

two features with probabilities of 0.6 and 0.5 respectively.

A subject obtained the value of 1 with a probability of 0.1

on any other features.

In order to evaluate how the proposed method performs

when the genetic effect on phenotypic variation varies, four

phenotypic datasets were generated with e = 1, 0.8, 0.6, 0.4
respectively and analysed. Note that the genetic effect on

phenotypic variation decreases with decreasing e. Decreased

effects lead to higher level of disagreement between geno-

typic and phenotypic subgroups.

All the compared methods were used to obtain three

population subgroups. Table I provides the NMI calculated

by comparing population subgroups obtained from each

compared approach to true phenotypic subgroups on each

dataset. The proposed method has the greatest NMI on all of

the four datasets. Along with the decreasing e, NMI obtained

by the proposed method decreases gradually as expected, but

the population subgroups consistent between the two views

can still be uncovered.

For each cluster solution, two classification models were

built for separating subjects, respectively, in each of the

two subgroups from controls. The population subgroup from



Figure 1. The box plot of AUC values obtained by the proposed method
and other comparison approaches. A1 - proposed method, A2 - biclustering
via SSVD, A3 - co-regularized spectral, A4 - kernel addition, A5 - kernel
product, A6 - feature concatenation

each method containing the largest number of controls was

recognized as the control group. The average AUC values

and their interquantiles obtained from all the compared

approaches on each dataset are plotted in the box plot

Figure 1. The proposed method achieved the second best

performance on this measurement whereas the feature con-

catenation method performed the best. Our further experi-

mental examinations showed that the genetic view had much

more features/markers than the phenotypic view, and when

concatenating the data of two views to perform cluster anal-

ysis, the genotypic view outweighed the phenotypic view.

Thus the resulted clusters were genetically separable but

not phenotypically separable. However, our approach created

subtypes (population subgroups) that were both genetically

and phenotypically separable (or homogeneous) as shown in

NMI comparisons in Table I.

A significant advantage of the proposed method is that

features that specify the population subgroups can be si-

multaneously identified during population partition. We cal-

culated the number of features that were correctly and

incorrectly identified by the proposed method to measure

its performance in this aspect. The results are summarized

in Table II, from which we can see that our approach could

correctly identify all true associated features in both views

with a very low false discovery rate when taking into account

the total number of features used in the analysis.

B. Cocaine use and related behaviors

A total number of 1474 subjects were both phentyped

and genotyped for genetic studies of CD. Subjects were

recruited from multiple sites, including Yale University

School of Medicine, University of Connecticut Health Cen-

ter, University of Pennsylvania School of Medicine, McLean

Hospital and Medical University of South Carolina. All

subjects gave written, informed consent to participate, using

procedures approved by the institutional review board at

each participating site. Subjects were phenotyped using a

survey dedicated to the diagnosis CD in a computer-assisted

Table II
THE NUMBER OF FEATURES IDENTIFIED BY THE PROPOSED METHOD TO

LINK TO THE TWO POPULATION SUBGROUPS

Phenotypic view Genotypic view

TF TPF FPF TF TPF FPF

subtype 1

e = 1

3

3 1

10

10 4
e = 0.8 3 1 10 5
e = 0.6 3 2 10 15
e = 0.4 3 0 10 10

subtype 2

e = 1

3

3 0

10

10 4
e = 0.8 3 0 10 4
e = 0.6 3 0 10 2
e = 0.4 3 0 10 5

TF is the number of True Features that specify a population subgroup.
TPF (True Positive Features) and FPF (False Positive Features) are the
numbers of features that correctly and incorrectly identified, respectively.

Figure 2. The box plot of AUC values obtained from all comparison
methods on the dataset of cocaine use and related behaviors.

interview process, called the Semi-Structured Assessment

for Drug Dependence and Alcoholism (SSADDA) [16].

Sixty-four yes-or-no variables were generated by this survey,

which were also used in previous studies [1], [17]. These

variables were used as the phenotypic features. Of the 1474

subjects, 1287 were diagnosed with CD. Subjects were

genotyped with 1350 SNPs from 130 candidate genes [4].

Of them, 1248 SNPs with minor allele frequency (MAF) no

less than 1% were used as genetic markers.

The feature concatenation method overlooked the in-

formation in the phenotypic view because the number of

features in the genetic view dominated, so clusters were

created mainly based on genetic information. We hence

excluded it from the further comparison. Three population

subgroups were obtained from each of the other comparison

methods. Classification models were built and tested in the

similar way as in the synthetic data. Figure 2 shows the box

plot of the AUC values. Our approach outperformed all other

methods.

IV. CONCLUSION

It is a challenging problem to uncover the genetic causes

of complex disorders, such as substance dependence (SD)



disorders, due to the heterogeneity in their clinical mani-

festation, genetic causes, and environmental - genetic inter-

actions. Phenotype refinement that leads to homogeneous

subtypes has been shown as a promising approach for

solving this problem [5], [1], [18], [19], [17]. However,

most of the phenotype refinement approaches only take into

consideration the phenotypic information even though geno-

typic information is usually available in genetic studies of a

complex disorder. Thus, their success of finding a phenotypic

subtype that is also genetically homogeneous is limited.

In this paper, we have proposed a multi-view biclustering

approach to perform phenotype refinement by jointly taking

into account the genetic and phenotypic information. The

proposed method is distinct from existing multi-view ap-

proaches in that the relevant features can be identified in the

determination of a subtype, which is critical to its success.

The proposed method is distinct from existing biclustering

methods in that it harmonizes the subject groupings in two

or more views. The results from extensive experimental

comparisons on both synthetic data and real world datasets

justify the effectiveness and superior performance of the

proposed approach.
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