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Abstract—Recent studies have demonstrated that geographic
location features collected using smartphones can be a powerful
predictor for depression. While location information can be
conveniently gathered by GPS, typical datasets suffer from
significant periods of missing data due to various factors (e.g.,
phone power dynamics, limitations of GPS). A common approach
is to remove the time periods with significant missing data
before data analysis. In this paper, we develop an approach that
fuses location data collected from two sources: GPS and WiFi
association records. Our evaluation demonstrates that our data
fusion approach leads to significantly more complete data, which
improves feature extraction and depression screening.

I. INTRODUCTION

Depression is one of the most widespread mental health

problems. People with depression suffer from higher medical

costs, exacerbated medical conditions, increased mortality, and

decreased productivity [31], [16], [8]. Diagnosis of depression

typically requires the persistent and direct attention of a skilled

clinician. However, most countries suffer from a marked lack

of trained mental health professionals [1].

The ubiquitous adoption of smartphones creates new oppor-

tunities for depression screening. Several recent studies have

explored the possibility of depression screening via sensor

data collected from smartphones (e.g., [13], [27], [5], [29]).

These studies have found that location data can yield important

features for machine learning models for depression prediction.

Location data can be directly collected using GPS, a sensor built

into most commercial smartphones. The energy consumption

of GPS is, however, high. As a result, it is only used to gather

location information at coarse time granularity (a few or tens

of minutes). Furthermore, the energy management system on

a phone often turns off GPS when the battery level is low. In

addition, it is well known that GPS does not perform well in

certain common environments (e.g., indoors), where it either

fails to collect data or collects data with large errors. As a result,

these studies must contend with significant time periods with

missing or noisy data [29], [27]. The data collected from our

recent study [13] confirms this observation (see Section III).

One approach to manage such missing data is to simply

remove the time periods with poor quality, as in our previous
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study [13]. In this paper, we explore another source of

location data—WiFi association records—which indicate when

a smartphone is associated with a wireless access point (AP).

It can serve as an alternate source of location information since

a phone must be close to an AP for association, and hence the

location of the AP can be used to approximate the location

of the phone. These two sources of location information, GPS

locations and WiFi association records, are complementary to

each other. Specifically, GPS does not work well in indoor

environments, while WiFi coverage is better inside buildings;

and collecting WiFi association records is much less energy

consuming than using GPS. We explore fusing location data

from these two sources to obtain more complete location

information, and investigate its impact on depression screening.

Our study makes the following contributions:

• We develop an approach for fusing the location data

from GPS and WiFi association records. This approach

provides more complete location data, and leverages the

complementary strengths of these two data sources.

• We investigate the impact of the more complete data

on depression prediction. Our results indicate that, after

the data fusion, the location features present stronger

correlations with PHQ-9 scores [18] (a quantitative tool

for aiding depression screening and diagnosis). In addition,

the prediction performance is improved, indicating the

benefits of the data fusion for depression prediction.

The rest of the paper is organized as follows. Section II

briefly reviews related work. Section III describes the data

set and the motivation for this study. Section IV presents the

data fusion approach. Sections V and VI present the impact

of data fusion on feature extraction and depression screening,

respectively. Last, Section VII concludes the paper and presents

future work.

II. RELATED WORK

Several recent studies use smartphone sensing data to predict

depressive mood or depression [35], [14], [5], [29], [2], [24],

[36], [34], [27], [12], [13]. Saeb et al. [29] extracted features

from phone usage and mobility patterns and found a significant

correlation with self-reported PHQ-9 scores. Canzian and

Musolesi [5] trained both general and personalized SVM

models using mobility features, and found personalized models

lead to better performance. Wang et al. [35] reported a

significant correlation between depressive mood and social
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interaction (specifically, conversation duration and number of

co-locations). Mehrotra et al. [24] demonstrated the association

of depressive states with the smartphone interaction features

(including phone usage patterns and overall application usage

logs). Farhan et al. [13] showed behavioral data from smart-

phones can predict clinical depression with good accuracy,

and combining behavioral data and PHQ-9 scores can provide

prediction accuracy exceeding each in isolation. Suhara et

al. [32] developed a deep learning based approach that forecasts

(instead of detects or predicts) severely depressive mood based

on self-reported histories. Our study differs from all the above

studies in that we develop an approach for fusing location data

from GPS and WiFi association records, and investigate the

impact of more complete data on depression screening.

More broadly, there is rich literature on analyzing sensing

data collected from smartphones for smart health applica-

tions [23], [19], [4], [25], [26], [7], [17], [15]. For instance,

BeWell [19] is a personal health monitoring app that analyzes

physical activity, sleep and social interaction in order to

provide feedback on user lifestyle. The study [4] automatically

recognizes stress from smartphone’s social interaction data,

weather data and self-reported personality information. The

study [22] examined the effect of illness and stress on behavior.

The study in [7] demonstrated the feasibility and utility of

modeling the relationship between affect and homestay using

fine-grained GPS data.

Data fusion has been researched for different purposes, e.g.,

for activity recognition [28], evaluating sensor accuracy [21],

[9], decentralized sensing [9], car navigation [33], and aug-

mented reality [3]. To the best of our knowledge, our study is

the first that fuses location data by combining GPS data and

WiFi association records collected on smartphones.

III. DATA SET AND MOTIVATION

Our previous study [13] investigated the feasibility of using

smartphone sensing data (specifically, location and activity data)

for depression screening. In [13], we removed time periods

with insufficient location data. In this paper, we explore how

to augment location data using WiFi association records that

were simultaneously collected by the phones. In the following,

we first describe the data set, and then quantify the amount of

missing location data to motivate this study.

A. Data Set

The data was collected from October 2015 to May 2016

from 25 Android users (aged 18-25, 13 females, and 12 males),

all students at the University of Connecticut (UConn).1 The

phones are from a variety of manufacturers, including Samsung,

Nexus, HTC, Xiaomi, Motorola and Huawei. Among the 25

users, 6 were classified as depressed and 19 were classified

as non-depressed. All participants used their own smartphones

except for two participants (who did not have smartphones and

borrowed Android phones from us).

1We recruited both Android and iPhone users in [13]. In this study, we do
not consider iPhone users because location data is collected using an event
based mechanism on iPhones, and hence it is difficult to identify missing data.

Three types of data were collected: smartphone sensing

data, PHQ-9 questionnaire responses, and clinician assessment.

To preserve privacy of the participants, we anonymized the

participants by assigning each of them a random user ID. The

data are annotated with the random IDs.

Smartphone sensing data. We developed an app, called

LifeRhythm, that runs in the background on a participant’s

phone to collect a variety of sensing data. Three types of

sensing data—location, WiFi association records, and activity

data—are used in this paper.

• GPS location: For each participant, GPS location is

collected periodically every 10 minutes. This is achieved

by registering the sensing service to the alarm service, one

of the system services on Android, which wakes up the

sensing service every 10 minutes. Our app uses an existing

publicly available library (Emotion Sense library [20]),

which can sense geographic location through both GPS

and network information. Each location sample contains

the following information: longitude, latitude, user ID, and

error (in meters). We filter out all the samples that have

errors larger than 165 meters to retain most of the samples

while eliminating the samples with large errors [13].

• Activity: Activity is sensed periodically every 10 minutes

using the Google’s Activity Recognition API. The sensed

activity at a particular point of time can be stationary, walk-

ing, running, cycling, in-vehicle, or unknown, associated

with a confidence value. We removed all rows where the

activity is sensed with low confidence (i.e., the confidence

is below 50%). We classify the activity into four types:

fast-moving (include running, cycling, in-vehicle), walking,

stationary and unknown. In Section IV, we use fast-moving

activities to identify significant location changes.

• WiFi: The WiFi association data logs the MAC address

of an AP when a phone connects to the AP for Internet

access. The information is directly collected using Android

APIs.

PHQ-9 scores. PHQ-9 is a nine-item questionnaire that can

be used for self-reports or by clinicians for diagnosing and

monitoring depression. Each of the nine questions evaluates

behavior or mental state with established relevance to major

depressive disorders. Participants in our study first responded

to PHQ-9 questionnaire during the initial assessment, and then

continued to respond on their phones every 14 days through

another smartphone app that we developed.

Clinical assessment. Every participant was assessed by a

clinician at the beginning of the study. Specifically, using

an interview that was designed based on the Diagnostic and

Statistical Manual of Mental Health (DSM-5) and PHQ-9 eval-

uation, the clinician classified individuals as either depressed

or non-depressed during the initial screening. A participant

with a diagnosis of depression must participate treatment to

remain in the study. In addition, depressed participants had

follow-up meetings with the clinician periodically (once or

twice a month determined by the clinician) to confirm their

self-reported PHQ-9 scores with their verbal report during the
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Fig. 1: (a) Time coverage of the GPS location data. (b) Location

samples for one PHQ-9 interval.

meetings. A participant that was determined as non-depressed

during the initial screening may report a high PHQ-9 score

(above 10) or suicidal intent later on. In that case, the clinician

re-assessed the participant, and suggested him/her to participate

in treatment if needed.

B. Extent of Missing Data

When analyzing the data, we define PHQ-9 interval, which is

a 15-day time period, including the day when a participant fills

in a PHQ-9 questionnaire and the previous 14 days [13]. We

use this notion since the PHQ-9 questionnaire asks participants

to reflect their behavior in the past 14 days, and we are

interested in understanding whether the behavior data from the

smartphones can be used to predict the PHQ-9 scores.

The data we collected (see Section III-A) contains 229 PHQ-

9 intervals. Each PHQ-9 interval contains 15×24×6 = 2160

location samples assuming no missing data (since GPS location

is collected periodically every 10 minutes). We define time
coverage to be the fraction of the samples that is actually

collected during a PHQ-9 interval. Fig. 1(a) plots the cumulative

distribution function (CDF) of the time coverage for all 229

PHQ-9 intervals. We observe that for 50% of PHQ-9 intervals,

the time coverage is less than 69%, and only 30% of the time

coverage is more than 80%, indicating a significant amount of

missing data. The missing data can happen during day or night,

which can be due to scheduling of the operating system, failure

of data capture by GPS, or mis-configuration by a participant.

Fig. 1(b) plots the location samples for one participant during

a PHQ-9 interval, where a vertical bar represents the time

when a sample is captured. We also observe that, while the

GPS is scheduled to wake up every 10 minutes, the interval

between two consecutive GPS samples varies between 5 to

15 minutes, with the actual wake-up time determined by the

operating system.

The significant amount of missing GPS location samples

motivated us to combine GPS locations and WiFi association

records to obtain more complete location information. In the

rest of the paper, we present a data fusion method, and evaluate

its impact on depression screening.

IV. FUSING LOCATION DATA

In this section, we describe our approach for fusing location

data from two sources, GPS and WiFi association logs. A

WiFi association event contains the time of the association and

the ID (specifically, the MAC address) of the AP. We use the

location of the AP to approximate the location of the user. In

the following, we first describe an approach to automatically

determine the geographic location (the longitude and latitude)

of the APs. We then describe how we fuse the location data

from the GPS and WiFi association logs. Finally, we discuss

the quality of the resulting fused location data.

A. Determining the Locations of the APs

Our data set contains 5309 unique APs. Some of the APs

are on UConn campus, while many are off campus. While the

locations of the APs can be obtained manually (e.g., through

war-driving), the scale and the locality diversity of our dataset

make this infeasible. On the other hand, since our data is

collected over a long period of time and for tens of participants,

it is likely that a GPS location is recorded while a participant is

associated with an AP. In this case, we can obtain an estimate

of the AP location automatically using the GPS location. To

accommodate the errors in GPS, we collect a set of such

estimates for each AP, and then use the median of these

estimates as the location of the AP. We next describe the

approach in more detail.

For an AP, we estimate its longitude and latitude as follows.

Suppose that a user associates with the AP at time t. We then

consider time interval [t−δ , t +δ ], where δ is a small threshold

value (we discuss how to select δ later). If we can find a GPS

location sample, �, for the user during the time interval, we

assume that the AP is close to �, and add � as a possible

location value for the AP. Let L = {�i} = {(longi, lati)} be the

set that contains all the possible location values for the AP

when considering all the data that we have collected, where

longi and lati denote respectively the longitude and latitude of

the ith possible location value for the AP. We then determine

the longitude of the AP as the median of all the longitude values

in L, and determine the latitude of the AP as the median of all

the latitude values in L. The reason for using median instead

of mean is because it is less sensitive to outliers. Furthermore,

to avoid the bias caused by a small number of samples, we

only obtain an estimate for the AP if L contains at least K
values (we choose K = 3 for the rest of the paper).

We next describe how we choose δ . There is a clear tradeoff:

using a larger δ makes it more likely to find a GPS location

sample within the time interval [t−δ , t +δ ]; on the other hand,

it may include GPS locations that are far away from the location

of an AP. We set δ to 1, 2, 5, or 10 minute. Correspondingly,

we obtain the geographic locations of 1515, 2296, 3195, and

3882 APs, respectively. As expected, we obtain the locations of

more APs when using a larger δ . In addition, for an AP, when

using a larger δ , we obtain more location estimates for the AP,

with a larger variation among the estimates. Specifically, for

L = {(longi, lati)}, i.e., the set of the location estimate for an AP,

we calculate the standard deviation of all the longitude values
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Fig. 2: Distribution of the standard deviation of the longitude

(a) and latitude (b) of the location estimates for one AP.
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Fig. 3: (a) Distribution of pairwise distances of the APs in one

building (considering 248 buildings on campus). (b) Illustration

of estimated AP locations for one building.

in L. Fig. 2(a) plots the CDF of the standard deviation of the

longitude values for each AP that we have location estimates,

where δ = 1, 2, 5, or 10 minutes. Similarly, we obtain the

standard deviation of the latitude values (see Fig. 2(b)). We

observe a small gap among the distributions when δ = 1, 2,

or 5 minutes; the distribution when δ = 10 minutes differs

significantly from the other distributions. We use δ = 5 minutes

in the rest of the paper since it leads to relatively small standard

deviation, while allows a large number of AP locations to be

determined automatically.

To validate the above method for estimating AP locations,

we obtain the information of the APs on campus (i.e., the MAC

addresses of these APs and the buildings in which they are

deployed; the longitude and latitude information for these APs

are not available) from the University Information Technology

Services. In total, we obtain the information of the APs inside

248 buildings on campus. For each building, we obtain the

pairwise distances of all the APs that are known to be in

that building. Since the APs inside the same building are

relatively close to each other, we expect the pairwise distances

to be relatively small. Fig. 3(a) plots the CDF of the pairwise

distances considering all the 248 buildings. We see that over

90% of the distances are less than 200 meters, and 96% of

the distances are less than 400 meters, indicating reasonable

proximity among the APs inside one building. To further

validate the results, we visualize the locations of the APs

on the map for each of the 8 most commonly visited buildings

on campus. Fig. 3(b) plots the estimated locations of the APs

in one building. We see that these locations are indeed within

the boundary of the building or close to the building. Similar

results hold for the other buildings.

B. Fusing GPS and WiFi Location Data

We consider two types of events from GPS and WiFi

association logs: an event when getting a GPS location sample,

and an event when a phone associates with an AP. Each event

is associated with a time, a participant ID, location information

(i.e., longitude and latitude, which are the coordinates obtained

by GPS or the estimated location of the AP). For a participant,

this yields a series of events in time order. The interval between

two adjacent events is a random variable. In addition, each event

happens at a discrete point of time, while we are interested

in knowing the location information in continuous time. We

therefore need to estimate how long a location is valid (i.e., for

how long we can assume the participant is at that location).

We next describe how we fuse the two sources of location

information. Let E denote the sequence of events for a

participant. Consider two consecutive events, ei and ei+1. Let

�i and ti be the location and the time that are associated with ei,

respectively. We estimate how long �i is valid by considering

the following two cases.

• Case 1: ei is an event of getting a GPS sample. In this

case, we assume the location is �i for up to TG minutes

from ti, that is, the location is �i for [ti,min(ti +TG, ti+1)),

where ti+1 is the time associated with event ei+1. Here TG
is a threshold value. Since GPS is sampled at deterministic

intervals (every 10 minutes) and our measurements indi-

cate that the actual interval between two consecutive GPS

samples can be up to 15 minutes (due to the scheduling

of the phone), we assume TG = 15 minutes. That is, a

GPS sample is valid for up to 15 minutes. We further

consider activity information. Specifically, if a fast-moving

activity (i.e., running, cycling or in-vehicle) happens in

[ti,min(ti +TG, ti+1)), we then set the ending time to when

this activity happens, since a fast-moving activity can

change the current location significantly.

• Case 2: ei is an AP association event. In this case, we

assume the location is �i for up to TW minutes from ti.
Here TW is a threshold value. The reason for assuming

a heuristic TW is because WiFi association events are

captured using an event based mechanism (instead of

periodically), and the corresponding disassociation event

can be lost. We set TW to be time dependent: during

6am-10pm, it is 4 hours for weekdays and is relaxed

to 6 hours for weekends; otherwise, it is set to 8 hours.

While the value of TW is large, note that we assume the

location is �i for [ti,min(ti + TW , ti+1)), and hence it ends

when we observe the next GPS sample (which should

appear within 15 minutes if the event is captured) or

the next WiFi association event. In addition, we consider

dissociation events when determining the ending time.

Specifically, if a dissociation event happens at time t ∈



0 10 20 30 40 50 60 70 80 90 100

La
tit

ud
e

41.8052

41.8054

41.8056

0 10 20 30 40 50 60 70 80 90 100

La
tit

ud
e

41.8052

41.8054

41.8056

0 10 20 30 40 50 60 70 80 90 100

La
tit

ud
e

41.8052

41.8054

41.8056

Minutes
0 10 20 30 40 50 60 70 80 90 100

La
tit

ud
e

41.8052

41.8054

41.8056

GPS
WiFi
Upsample
Activity

Fig. 4: Illustration of our approach for fusing location data.

[ti,min(ti + TW , ti+1)), then we set the ending time to t,
i.e., the location is �i for [ti, t). Last, as earlier, we also

incorporate fast-moving activities when determining the

ending time of location �i.

We process all the events in E sequentially following the

above approach. The time intervals for which we do not have

a location estimate are marked as unknown.

In addition to the above approach, we treat midnight

(specifically, the time interval [0,6]am) as a special case since

a participant is likely to be asleep. Specifically, if a time period

in midnight is marked as unknown, we simply set the location

for this time period as the location of the previous sample.

After determining the duration of each event, we discretize

time into 1-minute intervals and record the location for each

1-minute interval (it is marked as unknown if we have no

location information). This discretization supports the location

clustering algorithm that we use, which requires samples of

equal duration (see details in Section V).

Fig. 4 illustrates our approach using an example. It shows

a time period of 100 minutes. For ease of illustration, only

the latitude information is shown. The top two subplots show

the GPS samples (black triangle) and WiFi association events

(red circle), respectively. We observe 6 GPS samples in 100

minutes, and hence 4 samples are missing (i.e., the coverage is

60%). The third subplot shows that the GPS samples together

with the WiFi association events, and the last subplot shows

the final results where we determine the duration of each event

and upsample the location data so that every minute is marked

with a location (a blank space indicates unknown location). In

the last subplot, right after the 70th minute, we see an example

where a fast-moving activity event marks the end of the current

location. After the data fusion, 87% of the time points are

marked with locations, much better than the 60% coverage

before the data fusion.

C. Quality of the Data Fusion

We evaluate the quality of the data fusion according to two

metrics: (1) Are the locations obtained from the two sources

(GPS and WiFi association logs) consistent? (2) Does the

data fusion lead to a larger time coverage? To investigate

the consistency of the data sources, we calculate the distance
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Fig. 5: Time coverage before and after the data fusion.

between two adjacent WiFi and GPS samples (i.e., they are

one minute apart). We observe that 99.3% of the distances

are below 1km, and 97.2% of the distances are below 500

meters, indicating a reasonable consistency. Since the locations

of the APs are obtained from the GPS locations, we give GPS

locations higher priority. Specifically, we consider the WiFi

samples that are more than 500 meters away from the adjacent

GPS samples as noise and remove them from the data set.

Fig. 5 plots the time coverage of the PHQ-9 intervals before

and after data fusion. We show three cases of the time coverage

after data fusion. In the first case, only the location during

midnight (i.e., [0,6]am) is upsampled following the simple

heuristic in Section IV-B. We see that it improves the time

coverage only slightly. The second case (i.e., the curve marked

with “data fusion (w/ activity)”) represents the results of

our approach. It takes activity data (specifically, fast-moving

activities) into account when determining the ending time of

a location. As expected, it leads to a lower time coverage

compared to the third case which does not consider activity

information. On the other hand, the coverage is only slightly

lower. Fig. 5 demonstrates that our location fusion approach

improves the time coverage significantly. After data fusion,

more than 54% of the PHQ-9 intervals have time coverage

above 80%, while the value is only 30% before data fusion.

V. IMPACT ON FEATURES

A set of features is extracted from the location data, which is

used to predict depression (see Section VI). We next describe

the set of features, and then investigate how the feature values

have changed after data fusion.

A. Feature Extraction

As in [13], we use the following 8 features extracted from

location data. The first four features are directly based on

location data, while the last four features are obtained based

on locations clusters. Specifically, we use DBSCAN [10], a

density based clustering algorithm to cluster the stationary

points (i.e., those with moving speed less than 1km/h).

Location variance. This feature [29] measures the variability

in a participant’s location. It is calculated as Locvar =
log(σ2

long
+σ2

lat
), where σ2

long
and σ2

lat
represent respectively
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the variance of the longitude and latitude of the location

coordinates.

Time spent in moving. This feature, denoted as Move,

represents the percentage of time that a participant is moving.

We differentiate moving and stationary samples using the

approach in [29]. Specifically, we estimate the moving speed

at a sensed location. If the speed is larger than 1km/h, then we

classify it as moving; otherwise, we classify it as stationary.

Total distance. Given the longitude and latitude of two con-

secutive location samples for a participant, we use Harversine

formula [30] to calculate the distance traveled in kilometers

between these two samples. The total distance traveled during

a time period, denoted as Distance, is the total distance

normalized by the time period.

Average moving speed. In PHQ-9 questionnaire, one question

evaluates the mental health of a person based on whether she

is moving too slowly or quickly. Inspired by this question, we

define average moving speed, AMS, as another feature.

Number of unique locations. It is the number of unique

clusters from the DBSCAN algorithm, denoted as Nloc.

Entropy. It measures the variability of time that a participant

spends at different locations. Let pi denote the percentage of

time that a participant spends in location cluster i. The entropy

and is calculated as Entropy = −∑(pi log pi).

Normalized entropy. It is EntropyN = Entropy/ logNloc, and

hence is invariant to the number of clusters and depends solely

on the distribution of the visited location clusters [29].

Time spent at home. We use the approach described in [29]

to identify “home” for a participant as the location cluster that

the participant is most frequently found between [0,6]am. After

that, we calculate the percentage of time when a participant is

at home, denoted as Home.

B. Features Before and After Data Fusion

We calculate the features for the PHQ-9 intervals. As

mentioned earlier, we have a total of 229 PHQ-9 intervals

from the entire data set. Before data analysis, we apply the

filtering rule in [13] to remove PHQ-9 intervals that do not have

sufficient location data. Specifically, we remove the PHQ-9

Loc
Var

 (Data fusion)
-10 -5 0

Lo
c V

ar
 (

N
o 

da
ta

 fu
si

on
)

-12

-10

-8

-6

-4

-2

0 PHQ9>=5
PHQ9<5

(a)

Entropy (Data fusion)
0.5 1 1.5 2

E
nt

ro
py

 (
N

o 
da

ta
 fu

si
on

)

0.5

1

1.5

2

PHQ9>=5
PHQ9<5

(b)

N
loc

 (Data fusion)
4 6 8 10 12 14 16

N
lo

c (
N

o 
da

ta
 fu

si
on

)

4

6

8

10

12

14

16

PHQ9>=5
PHQ9<5

(c)

Home (Data fusion)
0.3 0.4 0.5 0.6 0.7 0.8 0.9

H
om

e 
(N

o 
da

ta
 fu

si
on

)

0.3

0.4

0.5

0.6

0.7

0.8

0.9 PHQ9>=5
PHQ9<5

(d)

Fig. 7: Features before and after data fusion: (a) location

variance, (b) entropy, (c) number of location clusters, and (d)

amount of time spent at home.

intervals in which there are less than 13 days of data and there

are less than 50% of data points for the days with data. In

addition, we remove the PHQ-9 intervals with extreme values

(when a participant traveled a extraordinarily long distance,

e.g., from the US to Europe) and the PHQ-9 intervals with a

single location cluster. After data filtering, we have 179 valid

PHQ-9 intervals after data fusion, 21% more than the 148

PHQ-9 intervals before the data fusion. In addition, the time

coverage for the valid PHQ-9 intervals after data fusion is

significantly better than that before data fusion (see Fig. 6).

The location clustering algorithm, DBSCAN, requires two

parameters, epsilon (the distance between points) and the

minimum number of points that can form a cluster (i.e.,

minimum cluster size). For both before and after data fusion,

we set the latter parameter to correspond to around 2.5 hours’

stay (specifically, 16 before data fusion since GPS is sampled

periodically every 10 minutes, and 160 after data fusion since

two adjacent locations are one minute apart). For epsilon, we

set it to 0.0005 (approximately 55 meters) before data fusion.

After data fusion, we use a smaller epsilon since the interval

between two adjacent samples is only one minute. Specifically,

we set it to 0.0002 or 0.0001 (we do not use a smaller value

since 0.0001 corresponds to roughly 10 meters, which is about

the resolution of GPS). In the following, we only present the

results when using epsilon as 0.0002 after data fusion (the

results for using epsilon as 0.0001 are similar).

We next compare the results of five features (location

variance and the four features based on location clustering)

before and after the data fusion; the results for the other three

features do not change much after data fusion. Fig. 7(a) is a

scatter plot that shows the location variance before and after

the data fusion. It differentiates two cases, when PHQ-9 score

is above 5 (considered as mild depression) and when it is below



5. We observe that for both cases the location variance tends

to become smaller after the data fusion. This is perhaps not

surprising since adding more location information leads to a

more complete picture of a person’s movement, reducing the

amount of sudden location changes due to missing data. We

further observe that the change for the case with PHQ-9 score

≥ 5 is more dramatic after the data fusion, compared to the

case with PHQ-9 score < 5. This might be because people with

depression tend to move less, and hence adding more locations

lead to a larger reduction in location variance. Fig. 7(b) shows

the results for entropy; the results for normalized entropy has

similar trend and is omitted. We observe that the entropy after

the data fusion also tends to be smaller than that before data

fusion. This might be because when using a smaller epsilon

after data fusion, the number of distinct locations is reduced

(as shown in Fig. 7(c)). We again see that the reduction for

the case when PHQ-9 score ≥ 5 is more dramatic than that

with PHQ-9 score < 5. Last, Fig. 7(d) plots the amount of

time spent at home before and after data fusion. We observe

more time spent at home after the data fusion; the impact of

data fusion is again more significant for the case when PHQ-9

score ≥ 5.

VI. IMPACT ON DEPRESSION SCREENING

In this section, we investigate whether the more complete

location data after data fusion leads to better depression

screening. We first correlate the features with PHQ-9 scores to

identify what features are most correlated with PHQ-9 scores.

We then use the features to predict PHQ-9 scores and the

depression status. In each case, we compare the results before

and after data fusion to highlight the impact of having more

complete data.

A. Correlation Analysis

Table I presents Pearson’s correlation coefficients between

the features and PHQ-9 scores along with p-values (obtained

using significance level α = 0.05). The results before and after

data fusion are both shown in the table. We see that four

features, location variance, entropy, normalized entropy, and

time spent at home, are correlated with PHQ-9 scores both

before and after data fusion. In addition, for all these four

features, the correlation results are improved after data fusion.

We also observe that, after data fusion, the number of unique

clusters becomes another feature that is correlated with PHQ-9

scores (both the correlation and p-value improve significantly

after the data fusion).

B. Multi-linear Regression Results

We used the features to predict PHQ-9 scores following the

two approaches that have been used in [13], i.e., �2-regularized

ε-SV (support vector) multivariate regression [11] and ra-

dial basis function (RBF) ε-SV multivariate regression [6].

Throughout, we used leave-one-out cross validation to optimize

model parameters. For �2-regularized ε-SV regression, this

entails optimization of the cost parameter C (selected from

2−10, . . . ,210) and the margin ε (selected from [0,1]). For RBF

no data fusion data fusion
Features r-value p-value r-value p-value
LocVar −0.15 0.07 −0.24 0.001

Distance −0.13 0.11 −0.04 0.61

AMS −0.09 0.28 −0.04 0.62

Move 0.06 0.43 −0.11 0.11

Entropy −0.16 0.05 −0.28 10−4

EntropyN −0.21 0.01 −0.26 10−4

Home 0.18 0.03 0.23 0.003

Nloc −0.09 0.28 −0.16 0.03

Multi-feature
model (linear) 0.26 0.001 0.33 10−5

Multi-feature
model (RBF) 0.33 10−5 0.46 10−9

TABLE I: Correlation between features and PHQ-9 scores.

F1 Score Precision Recall Specificity
Features (data fusion) 0.82(0.05) 0.95(0.03) 0.73(0.07) 0.96(0.02)

Features (no data fusion) 0.82(0.05) 0.84(0.04) 0.83(0.08) 0.92(0.02)

PHQ-9 Score &
Features (data fusion) 0.86(0.03) 0.85(0.02) 0.87(0.04) 0.86(0.002)

PHQ-9 Score &
Features (no data fusion) 0.86(0.04) 0.83(0.03) 0.89(0.06) 0.91(0.02)

TABLE II: Classification results (the values in parentheses are

standard deviations).

ε-SV regression, this entails optimization of cost parameter C
(selected from 2−10, . . . ,210), the margin ε (selected from [0,5]),
and the parameter γ of the radial basis functions (selected

from 2−15, . . . ,215). The last two rows of Table I present

the correlation results from these two regression models. We

observe that for both regression models, the correlation after

data fusion is significantly better than that before the data

fusion, indicating that the more complete data after data fusion

leads to better prediction models for PHQ-9 scores.

C. Classification Results

We used the same approach as that in [13] to train SVM

models with an RBF kernel [6] to predict clinical depression

(where the assessment from the study clinician is used as

the ground truth). The SVM model has two hyperparameters,

the cost parameter C and the parameter γ of the radial basis

functions. We used a three-fold cross validation (CV) procedure

to choose the values of C and γ . Specifically, we selected both

C and γ from the following choices 2−15,2−14, . . . ,214,215,

and choose the values that gave the best validation F1 score.

After choosing the best choices of C and γ in the first round of

CV, we repeated the three-fold CV ten times with the chosen

values, and reported the average and standard deviation of the

ten F1 scores.

We repeated the above SVM training procedure in two

settings. In the first setting, we only used sensing features as

predictors whereas in the second setting, we included PHQ-9

scores as an additional predictor. Table II present the results.

For each of these two settings, we observe similar results before

and after data fusion, both are accurate. The standard deviations



are smaller after data fusion compared to those before data

fusion because of more samples.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented an approach that fuses

location data collected from two sources, GPS and WiFi

association records. The resultant data set presents much better

coverage of user locations. Our evaluation demonstrates that

the more complete data leads to features that are more strongly

correlated with PHQ-9 scores, and further leads to better

depression screening. As future work, we will explore data

fusion for the iPhone data set, where GPS data is collected

using an event based mechanism. We will also investigate the

performance of the data fusion algorithm on a larger data set

that is currently being collected.
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