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Depression is a common mood disorder that causes severe medical problems and interferes negatively with daily life.
Identifying human behavior patterns that are predictive or indicative of depressive disorder is important. Clinical diagnosis of
depression relies on costly clinician assessment using survey instruments which may not objectively reflect the fluctuation of
daily behavior. Self-administered surveys, such as the Quick Inventory of Depressive Symptomatology (QIDS) commonly
used to monitor depression, may show disparities from clinical decision. Smartphones provide easy access to many behavioral
parameters, and Fitbit wrist bands are becoming another important tool to assess variables such as heart rates and sleep
efficiency that are complementary to smartphone sensors. However, data used to identify depression indicators have been
limited to a single platform either iPhone, or Android, or Fitbit alone due to the variation in their methods of data collection.
The present work represents a large-scale effort to collect and integrate data from mobile phones, wearable devices, and self
reports in depression analysis by designing a new machine learning approach. This approach constructs sparse mappings
from sensing variables collected by various tools to two separate targets: self-reported QIDS scores and clinical assessment of
depression severity. We propose a so-called heterogeneous multi-task feature learning method that jointly builds inference
models for related tasks but of different types including classification and regression tasks. The proposed method was evaluated
using data collected from 103 college students and could predict the QIDS score with an R2 reaching 0.44 and depression
severity with an F1-score as high as 0.77. By imposing appropriate regularizers, our approach identified strong depression
indicators such as time staying at home and total time asleep.
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1 INTRODUCTION
Depression is estimated to affect 350 million people worldwide; it is ranked 2nd among all the major illnesses
in Years Lived with Disabilities (YLDs) and accounts for 9.6% of all YLDs from all major illnesses [42]. It is also
a significant contributor to death by suicide [42]: in the United States, reports in 2010 show that suicide is the
10th leading cause of death, and 70% of these suicide victims are reported to have a mood disorder such as
depression [1].

Currently, diagnosis of depression is based on physician-administered survey instruments that require signifi-
cant effort and cost, and rely on accurate introspection and reporting. The ubiquitous adoption of smartphones
around the world creates new opportunities for depression screening. Fitbit wrist bands provide another tool for
assessing behavioral patterns. The small physical form of smartphones and wrist-worn devices allow them to
be constantly carried by their owners, making them effective “human sensors” appropriate for cataloging and
analyzing broad spectrum of their users’ behavior.
Several recent studies [6, 13, 14, 17, 18, 38, 44] have explored using smartphone sensing data for depression

screening and have identified several sensor-based features as depression indicators. The present paper represents
our ongoing effort in building an automatic depression diagnosis system. This system collects sensing data from
smartphones and Fitbit wrist bands, extracts features from sensing data, and predicts depression via a machine
learning model of the extracted features. While smartphone data can capture behavioral variables such as location
changes and communication frequencies, the wearable sensors can monitor complementary variables such as
heart rates and sleep quality. The premise of our study lies in the prior evidence showing that sensing variables
play roles in understanding and diagnosing depression.
However, because of the different operating systems and the specific sensors used by the different sensing

devices, the methods that these devices collect data vary substantially. Consequently, the behavioral parameters
derived from the different sources of sensing data exhibit signficant differences. For instance, the variance in
location changes calculated separately from Android and iPhone for the same individual shows clearly distinct
values. There is thus great heterogeneity in the features derived from the two predominant smartphone platforms
– Android and iPhone, which renders that existing sensor-based depression studies to date only utilize a single
platform.

Given that our study collects data from both Android and iPhone users, a separate analysis of the data will lead
to reduced sample size, diminishing power of any analysis. Using multi-task learning methods, we can jointly
model the data collected from the two platforms as separate but related tasks to improve depression prediction
accuracy. It also provides a way to integrate information from the two platforms by knowledge transfer during the
joint model training process. Multi-task learning is a machine learning methodology that captures and exploits
the relationship among multiple related tasks [19, 20, 25, 48–50, 53]. Typical multi-task learning methods assume
a certain relatedness among tasks, but the definition of relatedness varies in different methods. From a Bayesian
viewpoint, multi-task learning essentially seeks to learn a good prior over all tasks to capture task dependencies.
It has been shown, both empirically and theoretically, that multi-task learning is more effective than learning
individual tasks independently.

The proposed multi-task learning (MTL) method assumes task relatedness in feature sharing. Unlike existing
MTL methods that handle homogeneous related inference tasks (e.g., all tasks are classification problems), our
method extends beyond them to model both regression and classification tasks in a joint optimization framework.
Specifically, we consider two distinct prediction problems of: (1) predicting the numeric score computed from the
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Quick Inventory of Depressive Symptomatology (QIDS) [37] survey, that self evaluates a participant’s depression
status, and (2) predicting the depression severity level, a categorical value, assessed by a clinician. We show that
using multi-task learning for the two tasks separately (multiple homogeneous tasks) can already gain prediction
accuracy in comparison with single-task learning (STL). We further explore merging all tasks together in a
heterogeneous MTL framework, including two regression tasks for predicting QIDS scores of respective Android
and iPhone users and two classification tasks for predicting depression severity. This framework also allows us to
combine self-reports and clinical decision on depression assessment. It thus creates an opportunity to compare
and transfer knowledge between clinician’s assessment and patient’s self evaluation, potentially leading to more
accuract prediction models. Our work makes the following two main contributions:
• We design a new MTL method that can not only model jointly the data collected from different smartphone
platforms but also integrate different methods for depression assessment. To the best of our knowledge, this
formulation represents the first effort to integrate different smartphone platforms in depression analysis.
This MTL method allows us to transfer knowledge between clinician’s assessment and individual’s self
recognition. Our empirical evaluation demonstrated the benefits of the proposed method. For predicting
QIDS scores, the MTL approach improved the regression accuracy by 34.3% over single-task learning. When
predicting depression severity for depressed participants, the classification performance was improved by
48.1%. This MTL approach, as validated in the present work, will provide a more powerful alternative to
existing analytics to benefit future analyses of many other human behaviors.
• Equipped with this newly developed MTL method, in this study, we are now able to use much more diverse
data sources than existing works to identify depression indicators. For the first time, Android and iPhone
features are merged in a joint analysis, and complementary Fitbit features are used in conjunction with
smartphone variables. In addition, unlike many other works, including our own prior works [12, 13, 52],
that use the 9-item Patient Health Questionniare (PHQ-9) [23], we use a more comprehensive questionniare,
a 16-item QIDS-SR16 survey. Furthermore, beyond self-reports, we examine the depression prediction using
clinical ground truth. Although our prior works [13, 52] already used clinical diagnosis of whether an
individual is depressed, we now get to use the fine grade of four-level severity assessment.

The rest of the paper is organized as follows. Section 2 briefly reviews related work. Section 3 describes our
procedure of data collection and feature extraction. Section 4 motivates the need for multi-task learning. Section 5
introduces the proposed multi-task learning method. Empirical evaluation results are included in Section 6. We
then discuss the results and future work, and conclude the paper in Section 7.

2 RELATED WORK
The sensing data collected from smartphones can naturally reflect user behavior, which has led to a variety of
innovative applications that detect interesting patterns in sensor data [7–10, 26, 36], and infer human behavioral
characteristics [9, 27, 32, 44]. There is a rich literature on analyzing smartphone sensing data for smart health
applications, focusing on physical, behavioral, or mental health [5, 24, 30–32, 34, 39]. For instance, BeWell [24]
is a personal health monitoring app that analyzes physical activities, sleep, and social interactions in order to
provide feedback on user lifestyle. An approach was developed in [5] to automatically recognize stress from
smartphone’s social interaction data, weather data, and self-reported personality information. The study in [31]
examined the effect of illness and stress on human behavior by analyzing the communication and co-location
data collected from smartphones, and demonstrated the change in behavior with the onset of a disease.

A number of studies that are most relevant to ours are those using smartphone sensor data to predict depressive
mood or disorder [3, 6, 12–14, 17, 18, 33, 35, 38, 41, 43, 44, 52, 54]. Existing research has largely relied on self-
reported surveys (e.g., PHQ-9 responses) in order to train and evaluate predictive models. The study in [44]
reported a significant correlation between depressive mood and social interaction (specifically, the conversation
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duration and the number of co-locations). Another study [38] found that phone usage and mobility patterns
were strongly correlated with self-reported QIDS scores. The study in [6] further explored the relationship
between depression and mobility patterns where the authors trained both general and individual-featured support
vector machine (SVM) models, and found that individual models outperformed general models. The study in [33]
demonstrated the association of depressive states with the smartphone interaction features (including phone
usage patterns and overall application usage logs). A recent study developed a deep learning based approach
that forecasts (instead of detects) severely depressive mood based on self-reported histories [41]. Our prior work
showed that behavioral data collected from smartphones could predict the clinical diagnosis of depression with
good accuracy after separately examining iPhone and Android data [13].

In particular, a recent study used multi-task and multi-kernel learning (MTMKL) to assess individual wellbeing
[22]. Specifically, each of five wellbeing components (happiness, health, alertness, energy, and stress) was used to
form a task in the MTL, and all tasks were homogeneously classification problems. Multiple modalities of data
from a smartphone platform, surveys and a physiology sensor were used in a kernel combination. This MTMKL
method was shown to outperform support vector machines and multi-kernel learning. However, because this
method used all features from a modality to form a kernel, it was not designed to select important features, thus
could not identify sensor-based indicators.
The present study differs from all existing studies in multiple ways as discussed in the Introduction section.

Especially, the multi-task learning approach provides a new alternative for analyzing sensor data when multiple
sensing platforms are employed. The proposedMTLmethod provides a general framework of heterogeneous multi-
task feature learning by extending one of our recent MTL approaches [45, 46]. This recent approach decomposed
each task’s model parameters into a multiplication of two components and applied different regularizers to the
components to select features important for all tasks as well as features for individual tasks. Although multi-task
learning has been used in a wide range of applications (e.g., [4, 47, 51]), our study is the first that develops and
uses an adapted heterogeneous MTL to model the two major smartphone platforms in a joint manner.

3 DATA COLLECTION AND FEATURE EXTRACTION
In this section, we describe the data used in our analysis and how the data were collected and processed.

3.1 Data Collection
Four types of data were collected from February 13, 2017 to May 21, 2017, including smartphone sensing data,
Fitbit data, QIDS questionnaire [37] responses (via a smartphone app), and clinician assessment. To preserve
privacy of the study participants, we anonymized the data by assigning a random user ID to each participant.
The data collected by our apps were encrypted before being stored on the phone, and then sent to a secure
server. To maximize the continuity of the data collection, if no sensing data were received from a participant for
three consecutive days, the system sent an email to the participant to check the status. Similarly, when a QIDS
questionnaire was not received from a participant three days after the due date, we sent an email reminder to the
participant.
Participants. A total of 103 college students were recruited for the study. The participants were aged 18

- 25 and enrolled as full time students at the University of Connecticut (UConn). Of these students, 34 were
Android users (including 12 depressed and 22 non-depressed), and 69 were iPhone users (27 depressed versus
42 non-depressed). Of all the participants, 76.7% were female and 23.3% were male. In terms of ethnicity, 58.3%
were white, 25.2% were Asian, 3.9% were African American, 7.8% had more than one race, and 4.9% were other or
unknown.
Smartphone sensing data were collected through an app called LifeRhythm that we developed recently.

It runs in the background on a participant’s phone, collecting location and physical activity data. Due to the
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differences between the smartphone platforms, we had to develop separate apps for Android phones (including a
variety of manufacturers) and iPhones. In this paper, we only considered location information from the phones.
The activity data from the phones were not used. Instead, we used the activity data collected by Fitbit1, which
has been shown to be highly accurate [2]. Each location sample contained the longitude and latitude coordinates
of a participant at a particular time point. On Androids, this information was collected periodically every 10
minutes. On iPhones, no APIs could be used to schedule periodical data collection. Hence, our app subscribed
to the location services provided by the iOS operating system and used an event trigger mechanism to collect
location data. The collected data were pre-processed to remove samples with large errors as reported by iOS and
handle missing data. Specifically, the sample records with error larger than 165 meters were removed.

Fitbit data.Weused the Fitbit Charge heart rate (HR) for this study. A Fitbit device was given to each participant
during the study period. Three main types of data (related to activity, sleep and heart rate, respectively) were
collected through Fitbit. The Fitbit data from a user were transmitted to and stored at the Fitbit server. We then
collected the data from the Fitbit server. Specifically, we set up a dedicated server that collected notifications
from the Fitbit server using the Fitbit Subscription API. When the data from a user changed, the subscription
server would be notified about the change. All notifications were stored in a database. We then processed the
notifications (once per day, at midnight) to obtain the latest data (corresponding to the notifications) from the
Fitbit server. Through this subscription mechanism, we might receive multiple notifications about a particular
type of data for a user in a day; these notifications were processed in a batch, at the end of a day, to obtain the
daily summary for the user. The subscription service allowed us to obtain a user’s latest data without having to
implement a polling or scheduling system to retrieve the user’s data. It required users’ authentications, which we
obtained at the time of enrollment. The Fitbit data, once retrieved from the Fitbit server, were stored anonymously
on our data collection server (each data record was associated with a random ID assigned by our study instead of
the actual Fitbit ID for a user).

QIDS scores. The QIDS survey can assist clinicians in diagnosing and monitoring depression. Each of the
questions evaluates a person’s mental health from a specific aspect of major depressive disorder. Participants in
our study first responded to the QIDS questionnaire during the initial assessment, and then continued to respond
on her or his phone every 7 days (one week) through a smartphone app that we developed. The QIDS is an
extended version of the PHQ-9 questionnaire, and is widely used in clinical practice. In the QIDS, 16 questions are
asked, concerning the behavior of a subject (including activity levels, sleeping duration or interests in activities),
and the cognitive state (including feelings about self) in the past seven days. Similar to the PHQ-9, the 16-item
QIDS only takes a few minutes to fill in. The QIDS provides more detailed information than the PHQ-9. For
instance, it has four questions regarding sleep instead of only one question in the PHQ-9. It differentiates between
decreased appetite and increased appetite. The more thorough information in the QIDS enables refined labeling
to our sample records.

For each participant, we normalized her/his QIDS scores y to correct for person-level variation. For instance, a
participant who used a baseline score of 7 might give very different scores from an individual who used 0 as
baseline, but they may be actually similar in their daily fluctuation. We computed the average of QIDS scores
collected for each individual over the study period, ŷ =

(∑N
n=1 y

n
)
/N , where N was the total number of intervals.

Then, the QIDS scoreyn at a specific time point was augmented by an average for each individual asyn ← 1
2y

n+ 1
2ŷ,

which revised the baseline for an individual using his/her long-term (stable) status. Mathematically, the revised
QIDS score has the same expectation (E) as the original one as shown in Eq.(1) assuming that each participant’s
QIDS scores are independently and identically distributed (i.i.d.) during the observation; the i.i.d. assumption is
1We expect activity data from Fitbit to be more reliable than that from a phone because Fitbit is a wearable device and tends to be with a user
more consistently than a phone.
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Fig. 1. QIDS histogram and Severity Level histogram

based on the rationale that depression is a recurrent and chronic disorder which can not change significantly
during any treatment.
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The left subfigure of Fig. 1 shows the histogram of the QIDS scores that we collected. The values we observed
ranged from 0 to 21. We could have multiple QIDS scores (ideally once a week) for each user.

Clinical assessment. Every participant was assessed by a clinician at the beginning of the study. Specifically,
using an interview that was designed based on the Diagnostic and Statistical Manual of Mental Health (DSM-5)
and the QIDS survey, the clinician classified individuals as either depressed or non-depressed during the initial
screening. A participant with a diagnosis of depression must participate treatment to remain in the study.
In addition, depressed participants had follow-up meetings with the clinician periodically (once a month or

less frequently, as determined by the clinician). Each meeting took 15-20 minutes and only involved interviews to
assess psychiatric symptoms. The purpose of the interviews was to correlate and confirm their self-reported QIDS
with their verbal report during the clinician interview. The clinician also assessed each depressed individuals
their depression severity using four levels, “Stable(0)”, “Mild(1)”, “Moderate(2)” or “Severe(3)”. Note that severity
levels were assessed by clinicians, whereas the QIDS scores were derived from self-reports. The right subfigure
of Fig. 1 shows the histogram of all the severity levels that we collected.

3.2 Feature Extraction
3.2.1 Smartphone Features. We extracted eight features from the smartphone location data. Four features

were directly from the raw location data and four features were based on a cluster analysis of locations, which
were obtained by applying DBSCAN [11] to the data (we also experimented with the K-means method, and found
that DBSCAN was more suitable for clustering our location data [13]). All the features were used and reported to
correlate with depression previously [6, 13, 38]. Additional location-based features (e.g., circadian movement
and transition time) have been used in the literature [6, 38]. They were not used by our study since most of our
participants lived on campus; the locations of their major activities (dining, sleeping and studying) might be
close and difficult to be differentiated by a GPS. The eight features that we used are described briefly below for
completeness.
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Location variance. The feature (Loc_var) measures the variability in a participant’s location [38]. It is calculated
as

Locvar = log(σ 2
long + σ

2
lat) (2)

where σ 2
long and σ 2

lat represent respectively the variance of the longitude and latitude of the GPS coordinates.

Time spent in transition. The feature, denoted as Move, represents the percentage of time that a participant is
moving. We differentiate moving and stationary samples using the same approach as that in [38]. Specifically, the
moving speed is estimated at a sensed location. If the speed is larger than 1km/h, then we classify it as moving;
otherwise, we classify it as stationary.

Total distance. Given the longitude and latitude of two consecutive samples of location for a participant, we use
Harversine formula [40] to calculate the distance traveled in kilometers between these two samples. The total
distance traveled during a time period, denoted as Distance, is the total distance normalized by the length of the
time period.

Average moving speed. In QIDS questionnaire, one question evaluates the mental health of a person based on
whether (s)he is moving too slowly or too quickly. Inspired by this, we compute average moving speed, AMS, as
another feature.

Number of unique locations. This feature, denoted by Nloc, is the number of unique clusters obtained by the
DBSCAN algorithm when it is applied to an individual’s location data.

Entropy. Entropy measures the variability in the durations that a participant spends at different locations. Let pi
denote the percentage of time that a participant spends in a location cluster i . The entropy is calculated as

Entropy = −
∑
(pi logpi ) (3)

Normalized entropy. Since the number of location clusters varies from person to person and entropy increases
as the number of location clusters increases, we also adopt the normalized entropy [38], which is invariant to the
number of clusters and depends solely on the distribution of the clusters of locations visited. It is calculated as

EntropyN = Entropy/logNloc (4)

where Nloc is the number of unique clusters for an individual.

Time spent at home. We use the approach described in [38] to identify “home” for a participant as the location
that the participant is most frequently found between midnight to 6am. We calculate the percentage of time
when a participant is at this location, denoted as Home.

3.2.2 Fitbit Features. We retrieved daily summaries about a user’s activity, sleep and heart rate from the Fitbit
server. From the summaries, we selected 28 features, including 12 features describing physical activity, 12 features
for sleep, and 4 features for heart rate. Specifically, the following 7 Fitbit features were significantly correlated
with depressive symptoms as shown in our experiments. We describe these features below (the names of the
features are the ones used by Fitbit).

Lightly active minutes. This feature is related to activities. Fitbit classifies the extent of activeness into four
categories, which are, in increasing order of activeness, sedentary, lightly active, fairly active, and very active.
This feature represents the amount of time (in minutes) that a user is in a lightly active state during a day.

Sedentary minutes. This feature is related to activities. Analogous to the above feature, it represents the
amount of time (in minutes) that a user is in a sedentary state during a day.
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Total distance. This feature is also related to activities. It represents the total amount of distance traveled in
miles.
Awake duration. This feature is related to sleep. Fitbit records sleep during a day in sessions. A user may

have multiple sleep sessions during a day. One session is marked as the main session, which typically corresponds
to the session with the longest sleep period. We only consider main sleep sessions in this study. This feature
represent the duration (in minutes) that a user is awake during a sleep session.
Restless count. This is one of the sleep-related features. This feature records the number of times that a user

is restless during a sleep session.
Minutes after wakeup. This feature measures the minutes after wakeup in a sleep session. It can correspond

to the amount of time (in minutes) that it took a user to fall back asleep after waking up during a sleep session.
Minutes of heart rate in fat-burn zone. This feature is related to heart rate (i.e., heart beats per minute).

Fitbit defines four zones/modes based on heart rate. In decreasing order of intensity, these four zones are peak,
cardio, fat-burn, and out-of-range. This feature represents the amount of time (in minutes) that a user’s heart
rate is in fat-burn zone in a day.

4 MOTIVATION FOR MULTI-TASK LEARNING
In this section, we analyze the collected data to motivate the need of multi-task learning. A QIDS response
interval was 7 days in length, including the day when a participant responded to a QIDS questionnaire and
the previous 6 days. We used a sample record that comprised the data collected in each QIDS interval. Each
participant provided multiple QIDS responses during the study period. For data quality control, we applied a
filter to remove the QIDS intervals that did not have sufficient amount of data. Specifically, a QIDS interval (i.e.,
a sample record) is used only when it had at least 3 days of smartphone sensing data, and the total amount of
daily smartphone data covered more than 50% of the 7-day interval. Given the high reliability of Fitbit, Fitbit
data were present in all QIDS intervals. Features were calculated for each QIDS interval. Our analysis used 145
sample records in total from Android users and 298 records from iPhone users. Of them, 29 and 65 records were,
respectively, from clinically depressed participants.

Because we only used data passively collected from location-related smartphone sensors, the extent of usage
on phone apps or calls should not affect our results. Given samples with data less than 50% of the interval were
removed from subsequent analyses, the amount of data captured from different individuals was comparable
within a range. Additionally, because we used the so-called leave-one-interval-out cross validation (described
in a later section), at most one sample from each user could be selected for testing. Hence, the variation in the
number of samples per user minimally affects our result.

4.1 Feature Values
Figure 2 plots the mean and the standard deviation of the various feature values obtained from the Android and
iPhone platforms. Specifically, Figures 2(a), (b) and (c) plot respectively the results when using all the data, the
data from the depressed users, and the data from the non-depressed users for each of these two platforms. In all
three cases, data collected from the two smartphone platforms exhibit remarkably different distributions. The
discrepancy between these two platforms might be partially due to the different data collection mechanisms (see
Section 3). Specifically, location data were collected at a fixed sampling interval of every 10 minutes on Android
phones; while they were collected using an event-triggering mechanism on iPhones (see [13, 52] for a detailed
discussion). The discrepancy showed up also because different sensor types with distinct accuracy levels are
adopted by the two platforms. The heterogeneity of the features across the two platforms was an important
motivation for us to use MTL.
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(a) All participants. (b) Depressed participants. (c) Non-depressed participants.

Fig. 2. Features comparison between the two datasets collected respectively from Android and iPhone.

4.2 Correlation between Features and QIDS Scores
We next present how individual behavioral features are correlated with QIDS scores. Tables 1 and 2 show
Pearson’s correlation coefficients between smartphone sensing features and QIDS scores for Android and iPhone
participants, respectively. Both tables show the correlation results within three subject groups: all participants,
depressed and non-depressed participants; the last column shows the difference of the correlation values between
the second and third groups. One can explicitly observe that for both platforms, if only taking the depressed
participants into account, their feature values were in general more correlated with their QIDS scores than those
when counting in non-depressed participants, or when only considering non-depressed participants. For instance,
for depressed Android users, the three features most correlated with QIDS scores were entropy, time spent at
home, the number of unique locations, with correlation values of −0.65, 0.70, and −0.63 (and the corresponding
small p-values indicated statistical significance) respectively; these same categorical features computed on all
users or non-depressed users were less significantly correlated with QIDS scores.
The observation that the behavioral features played a more lucid role within the group of the depressed

participants motivated us to explore feature selection within only depressed participants and to predict their
clinical severity and QIDS values separately. It was more likely to find the relationship between behavioral
features and depression symptoms when analyzing the depressed users separately from the non-depressed users.
We speculate that QIDS variation among non-depressed participants may be largely due to incidental variations
in lifestyle rather than psychological changes associated with depression. In Section 6, we develop separate
predictive models to predict QIDS scores for the depressed and non-depressed groups. Our results indeed show
that the prediction for the depressed group was more accurate.
Comparing Tables 1 and 2, we also remark that the r-values and p-values for Android users were generally

better than those for iPhone users, which might be due to the different data collection mechanisms for these two
platforms. This data discrepancy also makes it unjustified to simply merge data from the two platforms in a STL
method. It makes more sense to treat them as separate but related learning tasks and jointly model them through
knowledge transfer of MTL, which is one of the major motivations of our work.

4.3 Summary
To summarize, the discrepancy of the two smartphone platforms, in both the feature values themselves and
their correlation with the QIDS scores, motivated us to explore MTL approaches to jointly model the data from
the two platforms. In addition, severity levels assessed by clinicians and QIDS scores as self-reports brought
up another reason of exploiting the MTL framework to transfer information between clinical assessment and
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Table 1. Correlation (r) between QIDS scores and each individual behavioral feature for Andoid users with p-values.

All Depressed Non-depressed Difference
Features r p r p r p ∥rdep ∥ − ∥rnodep ∥
Loc_var −0.24 5 × 10−5 −0.50 1 × 10−4 −0.20 2 × 10−3 0.30
AMS −0.19 9 × 10−4 −0.61 5 × 10−7 −0.09 0.19 0.52
Entropy −0.25 2 × 10−5 −0.65 5 × 10−8 −0.17 0.01 0.48
EntropyN −0.13 0.03 −0.40 3 × 10−3 −0.11 0.09 0.29
Home 0.28 2 × 10−6 0.70 2 × 10−9 0.20 2 × 10−3 0.50
Move −0.23 1 × 10−4 −0.51 5 × 10−5 −0.15 0.02 0.36
Distance −0.20 8 × 10−4 −0.62 4 × 10−7 −0.09 0.17 0.53
Nloc −0.26 7 × 10−6 −0.63 2 × 10−7 −0.15 0.02 0.48

Table 2. Correlation (r) between QIDS scores and each individual behavioral features for iPhone users with p-values.

All Depressed Non-depressed Difference
Features r p r p r p ∥rdep ∥ − ∥rnodep ∥
Loc_var −0.04 0.34 −0.12 0.22 −0.05 0.37 0.07
AMS −0.03 0.46 −0.08 0.44 −0.05 0.29 0.03
Entropy −0.13 3 × 10−3 −0.38 7 × 10−5 0.10 0.04 0.28
EntropyN −0.09 0.03 −0.28 4 × 10−3 −0.12 0.02 0.16
Home 0.12 0.01 0.28 4 × 10−3 0.12 0.02 0.16
Move −0.05 0.22 −0.06 0.54 0.01 0.78 0.05
Distance −0.08 0.09 −0.17 0.07 −0.07 0.18 0.10
Nloc −0.14 2 × 10−3 −0.34 4 × 10−4 −0.07 0.20 0.27

self evaluation. MTL improves the generalization of the estimated models for multiple related learning tasks
by capturing and exploiting the task relationships. It has been theoretically and empirically shown to be more
effective than learning tasks individually. Especially when STL suffers from limited sample size, MTL reinforces a
single learning process with the transferable knowledge learned from the related tasks. MTL has been widely
applied in many scientific fields, such as robotics [47], computer aided diagnosis [4], and computer vision [51].

5 MULTI-TASK LEARNING FOR DEPRESSION ASSESSMENT
Our overall approach of using MTL for depression assessment is illustrated in Fig. 3. As mentioned earlier, four
types of data were collected for training the models: smartphone sensing data, Fitbit data, QIDS self-reports, and
clinician assessment. After feature extraction, the extracted features were used in the MTL modules. One type
of MTL is to predict QIDS scores using smartphone sensing features (with or without Fitbit features), which
contains two regression tasks, separately, for Android and iPhone. Another type of multi-task learning is to
predict clinical severity of depression, which contains two regression or classification tasks (depending on how
we use the severity labels), again one for each smartphone platform. We can further combine these two different
types of learning problems, thus forming a four-task MTL problem.
We first describe a widely-used MTL formulation, which helps depict the reason why our formulation is

necessary. Our formulation belongs to a family of multiplicative MTL methods [45, 46], which decomposes
individual model’s coefficient vector into a multiplication of two vectors where one vector is shared across
multiple of the tasks and the other is specific to a task itself. These methods have shown good performance. Our
formulation extends the formulation in [45, 46] to support both homogeneous and heterogeneous learning tasks,
which are used for various depression assessment in Section 6.
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Fig. 3. An overview of using MTL for depression assessment. For smartphone sensing data, only location information is used
in this paper.

LetT denote the number of learning tasks, andd denote the number of features. For each task t ∈ {1, · · · ,T }, we
have a sample set (Xt ∈ R

ℓt×d , yt ∈ R
ℓt ) that has ℓt examples, where the i-th row corresponds to the i-th example

xti of task t , i ∈ {1, · · · , ℓt }, and each example is represented by a vector of d features. The vector yt contains
yti , the label of the i-th example for task t . We adopt functions of the linear form yti = (x

t
i )α t where α t ∈ R

d ,
which corresponds to computing Xtα t on the training data. We define the parameter matrix or weight matrix
A = [α 1, · · · ,αT ] where each column corresponds to a task. Denote the rows of A by α j where j ∈ {1, · · · ,d}
indexes features. To introduce the proposed multiplicative MTL method, let us start with a widely-used MTL
formulation as follows:

min
α t :t=1, ··· ,T

T∑
t=1

L(α t ,Xt , yt ) + Ω(A) (5)

where L(α t ,Xt , yt ) is a loss function that computes the discrepancy between Xtα t and yt occured on task t ,
and L might be the least square loss for regression problems or the logistic regression loss for classification
problems. We formulate the self-reported QIDS prediction problem as a regression task, and attempt two options
for predicting clinical severity as either a regression or a classification task.
The second term Ω(A) regularizes the model parameters for the T tasks. A common strategy is to impose a

blockwise joint regularization [15, 21, 28] on the matrix A to shrink the effects of an individual feature across the
tasks. Commonly the ℓ1,p matrix norm is employed to encourages sparsity on the rows of the matrix (i.e., zeroing
out an entire row). Hence, the ℓ1,p regularizer is used to rule out irrelevant features for all tasks by shrinking the
corresponding rows in A to zeros.
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= ×

A = [α1,…,αT] diag(c) B = [β1,…,βT]

Fig. 4. Coefficient matrix A derived from the shared vector c and the task-specific vector βt .

5.1 The Proposed Formulation
To simultaneously construct models for heterogeneous tasks (e.g., one type as regression tasks for predicting
QIDS scores and another as a classification task for classifying depression severity), we have to enable MTL
methods to employ different types of loss function for different kinds of tasks. We hence revise the formulation
(5) so that for each task t , we can choose its own specific loss function Lt . In our study,

Lt =

{
∥XT

t α t − yt ∥
2
2 , if task t is regression

log(1 + e−yt (XTt α t )), if task t is classification (6)

The use of Eq.(6) in a MTL setting supports both homogeneous learning tasks (i.e., when all tasks are of the same
type) [45] and heterogeneous learning tasks (when some tasks are regression tasks while others are classification
tasks). The resultant predictive models are of a generalized linear model form. For a test subject with an observed
vector x of sensing features, to predict his/her QIDS score, we compute yt = xTα t which gives a real-valued yt ;
to classify his/her depression severity if the subject is depressed, we compute yt = 1/(1 + exp(−xTα t )) which
gives a probability of being in the severe depression class.

Feature selection in aMTL setting can be very informative and insightful to suppress noise as well as understand
the commonality and distinction between tasks. However, the widely-used MTL method in Eq.(5) has a major
limitation. Because it regularizes models for different tasks in the same way, it either selects a feature as relevant
to all tasks or excludes it from all models, which is very restrictive in practice because the tasks may share some
features but may also have their own specific features that are not relevant to other tasks.
We propose to decompose each model’s parameters α t into a multiplication of two components c and β t

with different regularization conditions imposed on each component. The model parameter vector thus becomes
α t = diag(c)β t , where diag(c) is a diagonal matrix with its diagonal elements composing c. The vector c is used
across all tasks, indicating if a feature is useful for any tasks. The vector β t is only used for task t , containing the
task-specific model parameters. The overall parameter matrix A can be derived as shown in Fig. 4. Let j index the
entries in these vectors. We have α j

t = c jβ
j
t . Typically c comprises binary entries that are equal to 0 (false) or

1 (true) indicating if a feature is useful across tasks, but the integer constraint is often relaxed to require just
non-negativity (i.e., c ≥ 0). The proposed method minimizes a regularized loss function as follows for the best c
and β t .

min
β t ,c≥0

T∑
t=1

Lt (c, β t ,Xt , yt ) + γ1
T∑
t=1
| |β t | |

p
p + γ2 | |c| |

k
k . (7)
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Algorithm 1: The blockwise coordinate descent algorithm for solving problem (7)
Input: Xt , yt , t = {1, · · · ,T }, as well as γ1, γ2, p and k .
Initialize: c j = 1, ∀j = 1, · · · ,d and s = 1
repeat

Conpute Xtdiag(cs−1) → X̂t , ∀t = 1, ...,T ;
for t = 1, ...,T do

Solve minβ t Lt (βt , X̂t , yt ) + γ1 | |βt | |
p
p for βst

end
Compute α s

t = diag(c(s−1))βst , and compute cs according to the formula (8);
Set s = s + 1 Output: α t , c and βt :t=1, · · · ,T

until max(|α (s+1) − α (s) |) < ϵ ;

Different regularizers are imposed on the two decomposed components in Eq.(7), where p and k are positive
integers. The notation | | · | |p denotes the ℓp -vector norm | |x| |p = p

√∑
i (xi )

p , and | |x| |pp corresponds to the ℓp -norm
of x to the power of p. The tuning parameters γ1 and γ2 are used to balance the empirical loss and regularizers.
The learned model also selects features. Specifically, at optimality, if c j = 0, the j-th variable is removed for all
tasks, and the corresponding row vector α j = 0; otherwise the j-th variable is selected for use in at least one of
the α ’s. Then, a specific β t may rule out the j-th variable from a specific task t if β jt = 0.

Now, let us discuss the impact of the different choices of regularizers. Note that appropriate regularizers may
be problem specific. When p = k = 2, which amounts to an early method discussed in [4], Eq.(7) does not impose
strong sparsity on the model parameters, and consequently a majority of features may be selected and may
be shared across tasks. When p = k = 1, similar to that in [29], Eq.(7) is suitable for learning from tasks with
persistently sparse models. In other words, a large portion of features may be disgarded, and even for selected
features, only few of them are shared from task to task. Two new formulations have been proposed in our
recent work [45] that examines theoretical properties of the multiplicative decomposition Eq. (7). The two new
formulations consist of the case of p = 2, but k = 1 and the case of p = 1, but k = 2. The first new formulation
is favorable to learning problems where many features are irrelevant to any of the tasks, however, among the
selected features, a lot of them might be shared by different tasks. In other words, c is sparse, but the features
used by each task are not sparse with respect to the selected features indicated by c. The second formulation may
help those learning tasks when the union of the features that are relevant to any given task includes many or
even all features, but different tasks may share only a limited number of features. In other words, c is not sparse,
but each individual task uses a sparse β t to select from those indicated by c.

5.2 The Optimization Algorithm
We have developed a blockwise coordinate descent algorithm to solve problem (7) in [46]. As described in
Algorithm 1, the algorithm alternates between optimizing two sub-problems until convergence. The first sub-
problem solves only for β ’s with a fixed cwhereas the second sub-problem solves for cwith fixed β ’s. In particular,
we have derived a closed-form solution for the second sub-problem to directly compute c [46]. The trick is that at
iteration s , first compute the iterate α s from the current iterates of βs and cs , and then use the following formula
to compute the next iterate c (readers can consult with [46] for the detailed derivation.)

c j =
p+k

√√√
γ1
γ2

T∑
t=1
(α j

t )
p . (8)
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The loss functions we used in Eq.(7) comprise the least squares loss for regression and the logistic regression loss
for classification. Any other loss function that is convex and differentiable in terms of α will also be appropriate.
The first sub-problem of optimizing β ’s amounts to solving a single task learning problem, and can be solved
separately for individual tasks using efficient single task learning tools already available. The second sub-problem
is analytically solved as discussed above. We choose to monitor the maximum norm of the parameter matrix A in
order to terminate the process, but it can be replaced by any other suitable termination criterion. Initialization
can be important for this algorithm, and we suggest starting with c = 1, which means to consider all features
initially equally in the learning process.

6 MULTI-TASK LEARNING RESULTS
We present the evaluation results, and discuss the comparison between MTL and STL in this section. To validate
the proposed MTL method and the usefulness of Fitbit data, we carried out two sets of experiments by: (1) only
using the 8 smartphone sensing features, and (2) using the 8 smartphone sensing features plus the 28 Fitbit features
in constructing the prediction models. The QIDS scores were modeled for the depressed and non-depressed
groups, separately, which was motivated by our observation that the sensing features showed stronger predictive
power for the depressed users (see Section 4). For depressed participants, a model was also constructed to predict
their level of severity. We first describe the evaluation settings in the following subsection.

6.1 Evaluation Settings
We evaluated four variants of the proposed MTL approach by differing the regularizers used in Eq.(7) as discussed
in Section 5.1, and contrasted them with the STL approaches that were adopted in [38]. Specifically, the various
methods used in our comparison include
• STL L1 (lasso): Learning each task independently with the L1 norm as the regularizer.
• STL L2 (ridge): Learning each task independently with the L2 norm as the regularizer.
• MTL L11: Multiplicative multi-task feature learning using two L1 norms as regularizers: | |β | |1 and | |c| |1.
• MTL L12: Multiplicative multi-task feature learning using the L1 and L2 regularizers: | |β | |1 and | |c| |22
(p = 1,k = 2).
• MTL L21: Multiplicative multi-task feature learning using the L2 and L1 regularizers: | |β | |22 and | |c| |1
(p = 2,k = 1).
• MTL L22: Multiplicative multi-task feature learning using two L2 norms as regularizers: | |β | |22 and | |c| |22 .

Our prediction goal was focused on the longitudinal generalization of the constructed models. In other words,
we tested whether a prediction model constructed using a period of data can predict outcome of another period.
We partitioned the data in the following way in a cross validation (CV) process. Each fold of the CV corresponded
to a specific week, i.e., a QIDS survey interval, because we collected QIDS responses every week, and hence each
training example amounted to a week’s data. We left out that specific week of data from each individual for test
and the remaining data were used in training. We called this process leave-one-week-out or leave-one-interval-
out. The regularization parameters of individual methods were tuned within training using another round of
leave-one-week-out by selecting values from pre-chosen choices of 10−5, · · · , 1, · · · , 105. The same tuning process
was used to tune the hyper-parameters of every method for fair comparison.

We used the coefficient of determination (R2) to measure the regression performance and the F1 score to
measure the classification performance. The R2 value ranges from 0 to 1, measuring how much percentage of
the variance of the dependent variable can be accounted for by the model. A higher R2 value indicates better
regression performance. We reported the R2 values averaged over all regression tasks in each MTL setting. For
classification tasks, we reported the averaged F1 scores over all classification tasks as well. The F1 score also
ranges from 0 to 1 with higher values representing better classification performance.
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Table 3. Performance comparison of different methods using Fitbit+Smartphone data for predicting QIDS scores and clinical
severity respectively.

QIDS Clinical Severity
Depressed Non-depressed Depressed

Method R2 R2 R2

L11 0.44 0.23 0.41
L12 0.41 0.23 0.39
L21 0.33 0.21 0.41
L22 0.30 0.16 0.42
STL + L1 0.34 0.19 0.35
STL + L2 0.30 0.14 0.34

Table 4. Performance comparison of different methods using smartphone data for predicting QIDS scores and clinical severity
respectively.

QIDS Clinical Severity
Depressed Non-depressed Depressed

Method R2 R2 R2

L11 0.28 0.11 0.37
L12 0.23 0.10 0.37
L21 0.25 0.16 0.39
L22 0.24 0.16 0.40
STL + L1 0.21 0.15 0.35
STL + L2 0.19 0.16 0.34

6.2 MTL with Two Tasks
We compare the results when using MTL for two homeogeneous prediction tasks respectively for Android and
iPhone users. We carried out three separate MTL experiments: the first setting aimed to predict QIDS scores
for depressed users only; the second setting aimed to predict QIDS scores for non-depressed users; and the
third setting aimed to predict the four-level severity for depressed users. Note that here we treated the severity
prediction as a regression problem. Hence, all of the three experiments were concerned with regression problems.
In each of the three experiments, we used two input configurations: Android and iPhone smartphone datasets
(8 features as input variables for each task), Android+Fitbit and iPhone+Fitbit datasets (8+28 features as input
variables for each task).

The left half of Tables 3 and 4 provides results of the QIDS prediction. We observed that the R2 values for the
MTL approach, especially the L11 method, were substantially greater than those of STL approaches (for each
approach, the reported R2 was the average of the two tasks). By cross referencing the two tables, we observed
that the inclusion of Fitbit data enhanced the MTL performance by at much as 57% in the QIDS prediction for
depressed users, 44% for non-depressed users. Of the four MTL approaches, the MTL L11 model performed the
best in both data configurations. Precisely, the R2 value of the L11 model was 29.4% greater than that of the best
STL approach in the smartphone+Fitbit case. These results confirmed that the joint modeling was beneficial.

For non-depressed users, the MTL approaches did not improve the performance as significantly as that for the
depressed users. Across all methods, the R2 values for non-depressed users were much lower than those for the
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depressed users, which was consistent with the weaker correlation observed between features and QIDS scores
for non-depressed users in Section 4. Again, including variables derived from Fitbit data, the prediction accuracy
was substantially improved for all comparison methods.

We next illustrate the features that were selected by the best MTL approach. Specifically, we used the MTL L11
model for depressed users, the best prediction model in Table 3, as an example. Fig. 5 shows the weights of each
feature used in this model as bar plots for each of the two tasks, where Task 1 was for iPhone users and Task
2 for Android users. The L11 model selected 12 features, including ‘Location variance’, ‘AMS’, ‘Home’, ‘Move’,
‘Total distance’, ‘Lightly active minutes’, ‘Sedentary minutes’, ‘Minutes after wakeup’, ‘Awake duration’, ‘Restless
count’, ‘Total minutes asleep’ and ‘Minutes of heart rate in fat-burn zone’.
These models bring out several interpretable insights. For example, positive weights of ‘Home’, ‘Sedentary

minutes’, ‘Minutes of heart rate in fat-burn zone’ and ‘Minutes after wakeup’ indicated that longer time spent
at home, longer sitting time, longer duration in fat-burn zone (which is of low heart-rate intensity) and longer
amount of time to fall back sleep corresponded to higher QIDS values; negative weights of ‘Location variance’ and
‘Lightly active minutes’ indicated that higher variability in locations and longer duration in outdoor environments
would lead to lower QIDS scores. The selection of ‘Home’, ‘Location variance’ and ’Total distance’ as important
features was consistent with the observation that they had the strongest correlation with QIDS scores (see
Tables 1 and 2). The ‘Move’ variable was selected although it had low correlation with QIDS scores, but it could
be complementary to ‘Location variance’. In contrast, the STL L1 method selected ‘Home’ only for iPhone users
and ‘Move’ for Android users. We believe that the MTL method captured a certain level of relatedness between
the two tasks (e.g., thus selecting the two features for both tasks).

The right half of Tables 3 and 4 shows the results for predicting clinical severity for depressed users. The MTL
L22 method achieved the best performance. It improved the R2 value of the best STL method by 0.07 in Table 3,
by 0.05 in Table 4, showing improvement of nearly 20%. The MTL L11 and L12 models had similar performance
as that of the STL methods, which could be partially because the ℓ1 norm penalty imposed on β ’s in these two
methods might be too aggressive in inducing sparsity for this task. This observation showed that careful selection
of regularizers in MTL methods could be important and task-specific.

6.3 MTL with Four Tasks
We further carried out four-task MTL experiments on depressed users by merging the QIDS prediction and
severity prediction, respectively for Android and iPhone users, in a joint framework. We compared the cases
with and without Fitbit data as well. We noticed that the severity prediction problem was very challenging
due to medical subtleness between the different severity levels and a significantly reduced sample size. We
hence performed two separate settings where: (1) depression severity was treated as a regression problem with
four levels, leading to a homogeneous four-task MTL problem; (2) depression severity was treated as a binary
classification problem of classifying subjects into the stable and unstable classes, leading to a heterogeneous
MTL problem. The unstable class includes two severe levels (namely “Moderate” and “Severe”). We treated it
as classification because the number of samples in the unstable severity levels was very small. Therefore we
aggregated them together to provide a reasonable sample size.

The left half of Tables 5 and 6 shows the results of the homogeneous setting, where for each approach, the R2

value was averaged over the four regression tasks. Specifically, Table 5 contains results using both smartphone
and Fitbit variables, while Table 6 contains results based only on smartphone variables. The R2 values of the
L11 and L12 models in Table 5, are 34.3% more than that of the best STL model. By cross referencing the tables
with Tables 3 and 4, we see that the various MTL models in the four-task setting achieve better or comparable
performance than that in the two-task setting. This observation might be an evidence that self-reported depression
scores and clinical severity can be related so to improve each other’s prediction performance.
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Fig. 5. Features selected by the MTL L11 model to predict QIDS scores for depressed users (the two tasks are for iPhone
and Android users, respectively). Features are ‘Loc_var’, ‘AMS’, ‘Home’, ‘Move’, ‘Total distance’, ‘Lightly active minutes’,
‘Sedentary minutes’, ‘Minutes after wakeup’, ‘Awake duration’, ‘Restless count’, ‘Total minutes asleep’, ‘Minutes of heart rate
in fat-burn zone’.

Table 5. Performance comparison of different methods for predicting QIDS scores (two regression tasks) together with
depression severity (two regression or classification tasks) for depressed users using Fitbit+Smartphone data.

QIDS and Depression Severity QIDS and Depression Severity
(Homogeneous) (Heterogeneous)

Method R2 R2 F1 score
L11 0.43 0.35 0.77
L12 0.43 0.36 0.77
L21 0.41 0.35 0.67
L22 0.41 0.40 0.67
STL + L1 0.32 0.34 0.52
STL + L2 0.29 0.30 0.52

The results from the heterogeneous setting are given in the right half of Tables 5 and 6. For the QIDS regression
problems, we observed that the R2 values of the MTL models were remarkably better than those of the STL
models: the R2 values of the best MTL model were 17.6% and 19.0%, respectively, better than that of the best
STL model in the smartphone+Fitbit and smartphone cases. The best R2 value was worse than those in the
homogeneous four-task setting, implying that using the four-level severity labels (in the homogeneous setting)
helped more with the knowledge transfer to improve the QIDS prediction than the two-way severity labels (in
the heterogeneous setting). For the classification task, the best MTL model was clearly better (by 48.1%) than the
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Table 6. Performance comparison of different methods for predicting QIDS scores (two regression tasks) together with
depression severity (two regression or classification tasks) for depressed users using Smartphone data.

QIDS and Depression Severity QIDS and Depression Severity
(Homogeneous) (Heterogeneous)

Method R2 R2 F1 score
L11 0.35 0.21 0.67
L12 0.34 0.25 0.67
L21 0.33 0.20 0.57
L22 0.33 0.23 0.55
STL + L1 0.30 0.21 0.50
STL + L2 0.30 0.19 0.50

Fig. 6. Feature selected by the MTL L22 model in the heterogeneous setting with four tasks. Selected features are ‘Loc_var’,
‘EntropyN ’, ‘Home’, ‘Total distance’, ‘Minutes after wakeup’, ‘Restless count’, ’Total minutes asleep’, ’Minutes of heart rate in
fat-burn zone’.

best STL model in terms of the F1 score when using Fitbit and smartphone data altogether. It may be valid that
the difficult severity prediction tasks can benefit from the general QIDS prediction, but not vice versa, because
we observed that the R2 values in this heterogeneous four-task setting for QIDS prediction were lower than those
in Tables 3 and 4.

When both smartphone and Fitbit data were used, the best QIDS prediction model in the heterogeneous setting
(considering both predicting QIDS score and classifying severity) was the MTL L22 models. The weights in this
model are plotted in Fig. 6. Eight important features were selected, including ‘Location variance’, ‘EntropyN ’,
‘Home’, ‘Total distance’, ‘Minutes after wakeup’, ‘Restless count’,‘Total minutes asleep’, and ‘Minutes of heart rate
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in fat-burn zone’. Besides the similar features that were also selected in Section 6.2., ‘EntropyN ’ was selected,
which was consistent with the correlation analysis in Tables 1 and 2 that ‘EntropyN ’ was highly correlated with
the QIDS scores. The correlation between the other two selected features (‘Restless count’ and ‘Total minutes
asleep’) and the QIDS scores was not very strong as individual features. The result shows that the MTL methods
learn the interplay of the individual features for use in the prediction models.

7 DISCUSSIONS AND CONCLUSIONS
In this paper, we have formulated a problem that uses MTL to model the data collected from two smartphone
platforms together with Fitbit data. The statistical analysis justified the correlation between the extracted features
(both from smartphone and Fitbit sensing data) and the QIDS scores. We further proposed a novel heterogeneous
multi-task learning method with feature selection to predict QIDS scores and depression severity levels.
When predicting QIDS scores (two regression tasks, one for each smartphone platform), the MTL approach

outperforms the STL approach by 29.4%; when predicting clinical severity (treated as two regression tasks, one
for each smartphone platform), the performance improvement reaches 20.0%. The improvement becomes even
clearer when combining the four regression tasks of predicting QIDS scores and clinical severity into a single
framework. In this case, the MTL with four homogeneous tasks improves the overall regression performance by
34.3% over STL. In addition, we have validated that the proposed heterogeneous multi-task method improves the
classification accuracy (for classifying depression severity) by 48.1% and improves the regression accuracy (for
predicting QIDS scores) by 17.6%, compared to the classical STL methods. In summary, our results demonstrate
that MTL is a promising technique for jointly modeling the data collected from different platforms as well as the
data collected for different tasks.

Our evaluation shows that Fitbit data can improve the prediction accuracy of all models. As shown in Figures 5
and 6, heart rate and sleep related features from Fitbit were selected and weighted heavily in the prediction models.
Our results are consistent with the findings in [16], which shows that heart rate and activity are biologically
correlated with depression. Therefore, further exploration of using sensing data from wearable devices for
depression screening might be an interesting direction.
Our results are consistent with earlier studies (e.g., [6, 12, 13, 38]) that location based features, such as time

spent at home, entropy and number of locations, are correlated with self-reported (QIDS/PHQ-9) depression
scores. The proposed heterogeneous MTL method is compatible with the heterogeneous data from multiple
platforms and heterogeneous tasks (including both classification and regression tasks).
Because depression symptoms can last for a long period of time and can be recurring, automatic prediction

of QIDS scores can help monitor the depression status over time, which will be a valuable tool in practice.
Similarly, for non-depressed users, automatic prediction of QIDS scores can keep a tap on one’s mental health,
and potentially be used to automatically detect the onset of depression. Our results provide further evidence that
sensing data from smartphones and wearable devices can be used for automatic depression screening.
There are two directions of future work. First, we are in the process of collecting a larger dataset to enhance

the statistical power of our analysis. Secondly, since we would keep observing participants in a long term, we
will explore using both baseline and longitudinal features to improve the performance of the multi-task learning
methods.
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