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Abstract-Improving feed efficiency in dairy production is an 
important endeavor, as it can reduce feed costs and negative 
impacts of production on the environment. Feed efficiency is 
a multivariate phenotype that is characterized by a variety of 
phenotypic variables, such as dry matter intake, body weight 
gain, and milk yield. Currently, there is no consensus method 
for quantifying the feed efficiency of lactating dairy cattle for 
the purpose of breeding selection. Residual feed intake, which is 
the difference between actual feed intake and predicted intake, 
has been one of the commonly used measures for feed efficiency. 
However, such a measure is heterogeneous showing substantial 
variation in the cow population and has relatively low heritability 
(0.01,,-,0.38). Hence, its utility in breeding selection is limited. In 
particular, no prior study has utilized genetic data directly in 
the development of feed efficiency measures. In this paper, we 
aim to identify cattle clusters with homogeneous feed efficiency 
features that are ready to link to genetic variants, and thus can 
have greater utility in breading selection. In order to achieve this 
goal, we explore a new multi-view clustering method that jointly 
analyzes two views of data: phenotypic measures and genotypes, 
and identifies cattle clusters that are characterized by specific 
phenotypic features and also associated with genetic markers. 
Using a set of feed efficiency data collected by USDA, three cattle 
subgroups have been identified by our analysis, and they offer 
instructive insights into future feed efficiency studies. 
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I. INTRODUCTION 

There have been ever rising feed costs and concerns about 
greenhouse gas emissions and nutrient losses to the environ­
ment associated with animal production. Identifying the most 
efficient dairy cattle for milk production is important [1]. 
The ability to select individuals in animal breeding programs 
based on genotypic information circumvents the costly process 
of progeny testing and reduces the generation interval. As 
genetic selection programs advance, complex phenotypes such 
as feed efficiency have become the selection target [1], [2]. 
New challenges thus arise to determine the right phenotypic 
measure to be used in the selection program. Feed efficiency 
of cattle has been measured in different ways, such as by dry 
matter intake (DMI) [3], residual feed intake (RFI) [4], or 
relative growth rate [5]. The current estimates of their genetic 
parameters indicate that these measures should respond to 
selection pressure for improved feed efficiency [4]. However, 
feed efficiency in dairy cattle is a multivariate phenotype 
determined by several component traits including the pro­
duction of milk, milk composition, feed intake, maintenance 
requirements, and change in body energy reserves. Each of the 
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existing measures is defined by a function of the various traits. 
To date, genetic selection strategies for improving a single 
measure such as selection for decreased DMI, or selection 
for animals that consume less feed than expected based on 
their energy requirements (i.e., negative RFI) [6], have had 
difficulties to incorporating the measures into industry-wide 
selection indices [3]. 

Characterization of the genetic architecture of feed effi­
ciency typically uses a combined analysis of multiple measures 
that contribute to the trait. For example, in order to determine 
the genetic effects on RFI, DMI, change in body energy 
reserves, and net energy used for milk production, researchers 
have built Bayesian models for all of the measures. Then, 
genomic regions with greatest effects for each measure were 
investigated to identify regions with pleiotropic effects and 
potential positional candidate genes [3]. However, the existing 
measures are heterogeneous showing substantial variation in 
the cattle population. This phenotypic heterogeneity diminishes 
evidence of genetic association. These measures may also be 
associated with different genetic effects besides the pleiotropic 
effects. Hence, identifying more homogeneous components of 
feed efficiency and examining if genetic variants are associ­
ated with individual components could enhance the genetic 
selection of dairy cattle. In this work, we employ a multi-view 
bicluster analysis that jointly analyzes multiple feed efficiency 
measures and genome-wide genetic markers to identify cattle 
groups that are more homogeneous in feed efficiency features 
and can readily map to genetic markers. 

For a given data matrix, existing biclustering methods seek 
groupings from the rows and columns of the matrix simultane­
ously. However, in our problem, each sample is characterized 
by two data matrices (views) of respective genotypes and 
phenotypic measures. To identify more homogeneous feed effi­
ciency measures, and to make the measures useful for genetic 
analysis, we need to integrate all commonly used measures 
with the genotypic data. Our recently-proposed multi-view 
biclustering (MVBC) approach [7] is revised and applied in 
a genome-wide association study (GWAS) to improve feed 
efficiency quantification. If rows of a data matrix represent 
cows and columns represent features (measures/markers), our 
problem can be viewed as performing bi-clustering in each of 
the phenotypic and genotypic views to identify both row (cow) 
clusters and column clusters simultaneously, but we require the 
row clusters from the two views to be the same. The MVBC 
method allows to select initial features that are hypothesized 
to influence a cluster according to prior knowledge, which we 
use to guide the cluster analysis for meaningful interpretation. 



II. MATERIALS 

The datasets used in the present study were collected by 
the US Department of Agriculture (USDA) from 391 cows 
in 635 lactations (317 first-lactation heifers and 318 second 
or greater lactations). For each cow, longitudinal observations 
of multiple daily traits over lactation periods for multiple 
years from September 2007 to June 2013 were collected, and 
genotypes were obtained from IIIumina ships (San Diego, CA). 
To avoid spurious results due to age and correlations (multiple 
lactations for one cow), only the earliest lactation of each cow 
was used in our analysis. 

Multiple traits and features of each cow were recorded on 
a daily basis, including daily milk yield (DM) (kg), dry matter 
intake (DMI) (kg), milk fat (kg), protein (kg), lactose percent­
age, body weight (BW) (kg), and daily body-weight gain (DG) 
[3]. Then, nine measures were calculated for each cow from 
its daily records for each lactation period. These measures 
included average energy intake (EI), average DMI, average 
energy-corrected milk yield (ECM), average daily body-weight 
gain (ADG), average metabolic body weight (MEW), predicted 
energy intake (predEl), predicted DMI (predDM l), residual 
feed intake (RFI), and RFI from DMI (RFIDMI) [1]. The 
parity was used to correct the computation for some of the 
nine measures, such as predEl. The parity was also used in 
the proposed GWAS analyses as a covariate. 

Genotypes from the IIIumina BovineHD BEAD chip and 
the new GeneSeek 140K chip were obtained from USDA's 
Animal Genomics and Improvement Laboratory where they 
were evaluated for quality and pedigree conflicts as previously 
described in [8], [9]. There were in total 777,962 genotypic 
markers recorded in the data. Among the 391 cows, 58 had 
a significant amount of missing markers, and hence were 
excluded from the proposed analyses. This set of single 
nucleotide polymorphisms (SNPs) was from the high-density 
chips, and included all SNPs traditionally used in U.S. genomic 
evaluations, plus other markers in a whole-genome sample. 

III. METHOD 

We first made an effort to minimize the confounding effect 
of parity on the cluster analysis. (In other words, cows were 
grouped together due to the different numbers of lactation (par­
ity) rather than due to the different feed efficiency measures or 
genetic variants.) Hence, only 333 genotyped cows with their 
earliest lactation records were used in our analyses. Compared 
to the number of genetic variants (777,962) in the data, we 
have a relatively small sample size. Model overfitting is a well 
known problem associated with an analysis on a sample of 
small sample size but large amount of variables, and causes 
spurious clusters even in an unsupervised cluster analysis. 

To overcome this problem, we first use a filtering process, 
i.e., a GWAS, to pre-select candidate markers for use in the 
subsequent multi-view bicluster analysis. Then, our MVBC 
method [7] was applied jointly to the nine phenotypic measures 
and the selected candidate SNPs. Because our method not only 
finds row clusters (cow clusters) but also column clusters in 
each view, it selects the phenotypic measures and candidate 
genetic markers that are used to arrive at the grouping of the 
cows. The selected phenotypic measures characterize the cor­
responding cluster of cows, and the selected genetic markers 
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show the potential associations with the cluster. In the last step, 
we perform another GWAS to test all genetic markers in terms 
of separating cows in a cluster from those not in it, which we 
call a case-control study where cases are the cows in the cluster 
and controls are those not in the cluster. This step is used 
to further identify genome-wide significant markers associated 
with the individual clusters by the standards of statistical tests. 

A. Filtering genetic variants 

For each of the nine phenotypic measures, we performed 
a GWAS for main effect tests. We tested the effect of each 
marker to the variance of a phenotypic measure by regressing 
the measure on the genetic variant together with an offset 
parameter. This test was carried out using the main effect test 
function of PLINK [10] with parity as a covariate. 

For each phenotypic measure, we chose the 1,000 most 
significantly associated markers, and took a union of all 
these markers. There were markers simultaneously asso­
ciated with multiple measures. For example, variants at 
SNP positions BovineHD2800005250, BovineHD1800019353, 
BovineHD1000009886, BovineHD 1 000009874, BovineHD-
0800031648, and BovineHD0800030128 were each associated 
with four different phenotypic measures. Variants at SNP 
positions BovineHD 1000009873 and BovineHD0800031657 
were each associated with three different measures. Among 
the combined markers, 7,490 were unique. We further excluded 
markers with missing values because in our early simulation 
studies of the MVBC method, we observed that using imputed 
values for a large number of markers would mislead the cluster 
analysis [7]. Eventually, 1,059 markers remained and were 
used in the subsequent multi-view bicluster analysis. 

B. Identifying homogeneous cow clusters 

The MVBC method decomposes each data matrix into a 
pair of left and right vectors that are both sparse. Let u and v 
be the left and right vectors resulting from the decomposition. 
Rows in the data matrix corresponding to non-zero components 
in u form a row cluster and columns corresponding to non-zero 
components in v form a column cluster. To obtain consistent 
row clusters from the two views, the MVBC method requires 
the two left vectors u to have non-zero values at the same 
positions. By repeating this decomposition on updated data 
matrices where, specifically in our study, cows already in a 
row cluster are excluded, the desired number of cow (row) 
clusters can be obtained. 

There are three hyper-parameters in our proposed MVBC 
method that need to be pre-specified before running the cluster 
analysis to obtain cow, measure and genotype clusters. We 
refer to these three hyper-parameters as (1) Sw controls the 
size of cow clusters whereas (2) Sv1 and (3) Sv2 control the 
numbers of measures and genetic markers that will be used 
to examine cow similarities. Our early study [7] has shown 
that this method is more sensitive to the choices of Sv' and 
Sv2 than that of Sw because naturally, we need to recover the 
true subspaces (relevant features in each view) before the cows 
that exhibit similarities in those subspaces can be identified. 
The early study further suggests to use principal component 
analysis to help determine appropriate values of Sv' and Sv2. 
We performed a principal component analysis separately to 



the two views of data. We chose the number of principal 
components that were needed to explain over 90% of the total 
data variance in each of the views to be the parameter value. 

To choose an appropriate value for sw, we pre-selected a 
range of values. For each tested Sw value, we employed our 
MVBC method to obtain a cluster solution. We then assessed 
the validity of the clusters by examining their genetic separa­
bility. In other words, we built a logistic regression classifier 
as a function of the genetic markers to separate cows in the 
cluster from those not in the cluster. A ten-fold cross validation 
process was used to evaluate the classification performance 
and the area under the receiver operating characteristic (ROC) 
curve (AVC) was used to measure the separability (i.e., classifi­
cation performance). The average AVC values of all classifiers 
obtained for each Sw choice were compared in order to choose 
a proper value of Sw that gave the best separability. 

C. Case-control GWAS 

Each cluster resulting from our analysis corresponded to 
a binary trait for a cow (either in the cluster (cases labeled 
by 1) or not in the cluster (controls labeled by 0»). We hence 
performed another GWAS to test main effects for these binary 
traits. We tested each genetic marker in our dataset for its 
effect on differentiating the cases and controls by fitting a 
logistic regression model based on the genetic marker together 
with an offset parameter. This step was also carried out by 
PLINK, which computed p-values for the test of each genetic 
marker with each binary trait to measure the significance of 
the association. We then reported the three most significant 
markers for each cluster. 

IV. RESULTS AND DISCUSSION 

Based on an early investigation of the VSDA feed effi­
ciency data [11], we anticipated that 3 to 5 clusters would be 
appropriate. We repeatedly deployed the MVBC method twice, 
which produced two clusters and the remaining cows formed 
the third cluster. In the cluster analysis, the parameters Sv' 
and Sv2 were chosen to be 5 and 125 according to a principal 
component analysis when obtaining Cluster 1, and to be 4 and 
110 when obtaining Cluster 2. The parameter Sw was chosen to 
be 180 for Cluster 1 and 60 for Cluster 2 according to the cross 
validation process. Optionally, our method allows to set the 
initial choices of vI and v2 (initial phenotypic measures and 
genetic markers). According to the prior knowledge, RFI and 
ECM were the most important and widely used feed efficiency 
metrics. We thus initialized the first cluster with the phenotypic 
measure RFI, which means to set the initial VI to have 1 at 
the entry corresponding to RFI and 0 at all other eight entries. 
We initialized the second cluster with the phenotypic measure 
ECM. We left v2 uninitialized due to the absence of prior 
knowledge. 

A. Identified clusters 

The three clusters resulting from our analysis are summa­
rized as follows. Cluster 1 with the initialization of RFI as feed 
efficiency metric consisted of 180 cow samples; Cluster 2 with 
the initialization of ECM consisted of 60 cow samples; and the 
last cluster contained the remaining 83 samples. Our algorithm 
automatically selected features from each of the views at the 
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end based on which the samples were grouped into Clusters 
1 and 2. It selected phenotypic measures: EI, DMI, MBW, 
RFI, and RFIDMI for Cluster 1; and ECM, MBW, RFI, and 
RFIDMI for Cluster 2. 

To further characterize the clusters of cows, we drew a 
bar plot of the relative mean values of the nine phenotypic 
measures for each of the three clusters. For each measure, 
we used the following equation to compute the relative mean 
values and plotted these values in Fig. 1, 

Mean(Sample_in_Cluster) - Mean(Entire_sample) 

STD( Entire_sample) 

where STD refers to the standard deviation of a measure over 
the entire sample. 

-1 L-____ -L ____________ � ____________ � ____ � 
Inefficient feed Efficient in milking Efficient in BW gain 

Fig. 1. The characteristics of the three clusters viewed in phenotypic view. 
The relative mean values of each measure were computed for each cluster. 

We observed interesting and instructive patterns in these 
clusters. The very distinguishable characteristics we observed 
was that samples in Cluster 1 differed substantially from other 
clusters on values of RFI and RFIDM I with mean values of 
2.27, and 0.77, respectively. The cows in this cluster consumed 
high energy (mean EI = 56.11), and the energy intake was 
higher than predicted intake (resulting in positive values of 
RFI). The RFI was larger than that of other cows, resulting in 
a positive bar of RFI in Fig. 1. Hence, we name this cluster 
"Inefficient feed" cluster. In contrast, cows in Cluster 2 (which 
was the cluster we obtained by initializing with the ECM 
measure) had a high desirable efficiency in feeding where 
the RFI (mean = -4.17) and RFIDMI (mean = -IAl) both 
were negative, meaning that the cows in this cluster consumed 
less energy than predicted intake, and the negative residual 
was in a greater magnitude than other cows (showing negative 
bars in Fig. 1). Their average energy intake (including DMI) 
was relatively high (mean EI = 63.62) but it did not result 
in high body weight gain (with a negative bar of ADG). 
Rather, as RFI was computed based on milk production, cows 
here had high efficiency transforming consumed energy into 
dairy production. We name this cluster "Efficient in milk 
production". As shown in Fig. 1, the last cluster contained the 
cows that consumed less energy (mean EI = 54.54) than the 
overall sample and also than the predicted intake (mean RFI 
= -3.10, RFIDM I = -1.07), but were efficient in transforming 
the consumed energy into body weight gain (with a positive 



bar of ADG but negative bars of RFI and RFIDM I)' We hence 
name the last subgroup "Efficient in BW gain". 

We also observed that 125 SNPs and llO SNPs were 
respectively selected for the "Inefficient feed" cluster and 
"Efficient in milk production" cluster. When we used the 
selected markers to build classifiers to separate the different 
clusters, the lO most important SNPs in the classifier for 
Cluster 1 received weights in the range of [0.0616,0.0622]. 
The lO most important SNPs for Cluster 2 received weight 
in the range of [0.0667,0.0703], including a SNP marker 
BovineHD2000003678 that was identified to be genome-wide 
significantly associated with this cluster (of "Efficient in milk 
production") as shown in the subsequent GWAS. 

B. Genome-wide significant associations 

The results from the case-control GWAS with the feed 
efficiency clusters shows that three SNPs were significantly 
associated with the identified clusters, and especially the 
marker BovineHD2000003678 at a p-value of 9.172e-14 and 
BovineHD3000005312 at a p-value of 1.846e-09 associated 
with the "Efficient in milk production" cluster. There was also 
a marker BovineHD1500020572 nominally associated with the 
identified "Inefficient feed" cluster at a p-value of 9.347e-07. 
For the cluster formed by the remaining cows, there was lack 
of significant associations, which was probably partly because 
it was not a cluster identified by our algorithm. 

TABLE I. MOST SIGNIFICANTLY ASSOCIATED MARKERS FOR THE 
"INEFFICIENT FEED", "EFFICIENT IN MILK PRODUCTION", AND 

"EFFICIENT IN WEIGHT GAIN" CLUSTERS 

Inefficient feed 
BovineHD 1500020572 
BovineHD 18000 12497 
BovineHD23000 12041 

Efficient in milk production 
BovineHD2000003678 
BovineHD3000005312 
BovineHD28000077 44 

Efficient in weight gain 
BovineHD26000 1 0769 
BovineHD23000 12041 
BovineHD26000 1 0660 

V. CONCLUSION 

p-value 
9.347e-07 
2.286e-06 
2.483e-06 

p-value 
9.172e-14 
1.846e-09 
1.656e-07 

p-value 
2.381e-06 
3.137e-06 
4.388e-06 

In this paper, we have applied a multi-view sparse cluster­
ing approach to the genotype-phenotype association analysis 
of dairy cattle feed efficiency. We identified markers that might 
otherwise be difficult to detect without elucidating the pheno­
typic groups by the proposed method. The proposed analysis 
contained several steps, the core of which was the applica­
tion of a matrix-decomposition-based multi-view biclustering 
algorithm. This algorithm links the phenotypic and genotypic 
views of the same sample by enforcing the row clusters from 
both views to be consistent. To the best of our knowledge, 
our work is among the first approaches that extend a rigorous 
multi-view analytics to feed efficiency analysis of animals (in 
particular, dairy cattle). This analysis brought clear insights 
about different dairy cattle populations that may be efficient 

134 

in transforming consumed energy into different products (e.g., 
milk production or meat production by increased weight gain). 

There are a few directions for future work. It is possible 
to extend the MVBC method to the case when missing values 
are present in any of the views. A simple idea is to recover the 
missing values in one view based on information from other 
views (not just imputed from their own view). Although our 
algorithm is computationally efficient, empirical evaluations on 
larger feed efficiency datasets might be needed to examine its 
speed and scalability. A larger sample size will be necessary in 
the future to validate the cow clusters and their characteristics 
identified in this study. Additional analysis of identified SNP 
markers associated with each trait is also needed to provide 
insight into potential genes and gene pathways contributing to 
variation among dairy cattle populations. 
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