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Abstract

Automatic image categorization using low-level features

is a challenging research topic in computer vision. In this

paper, we formulate the image categorization problem as

a multiple-instance learning (MIL) problem by viewing an

image as a bag of instances, each corresponding to a re-

gion obtained from image segmentation. We propose a new

solution to the resulting MIL problem. Unlike many exist-

ing MIL approaches that rely on the diverse density frame-

work, our approach performs an effective feature mapping

through a chosen metric distance function. Thus the MIL

problem becomes solvable by a regular classification algo-

rithm. Sparse SVM is adopted to dramatically reduce the

regions that are needed to classify images. The selected re-

gions by a sparse SVM approximate to the target concepts

in the traditional diverse density framework. The proposed

approach is a lot more efficient in computation and less sen-

sitive to the class label uncertainty. Experimental results

are included to demonstrate the effectiveness and robust-

ness of the proposed method.

1. Introduction

Designing a computer algorithm to classify images into

predefined categories is an important yet challeging re-

search topic. It finds applications in a variety of fields in-

cluding biomedicine, digital libraries, Web searching, and

surveillance systems. There has been an abundance of prior

work on automated image analysis. The works reviewed

below are most relevant to what we propose in this article,

which by no means represent the complete list.

1.1. Related Work

Loosely speaking, current image classification algo-

rithms can be divided into two groups according to the im-

agery features used in the classification: global approaches

and component-based approaches. The global image classi-

fication approaches use features that characterize the global

information of an image. For example, -nearest neighbor

classifier on color histograms was proposed to discriminate

indoor versus outdoor images [19]. Bayesian classifiers us-

ing edge directions histograms were implemented to orga-

nize city and landscape images [21]. Support Vector Ma-

chines (SVMs) built on color histograms were applied to

classify images containing a generic set of objects [4].

Although the global features can usually be computed

with little cost and are effective for certain classification

tasks, some visual contents of images could only be lo-

cally defined. A number of component-based approaches

have been proposed to exploit local and spatial properties

of an image. In the method introduced by Gorkani and Pi-

card [9], an image is first divided into 16 non-overlapping
equal-sized blocks with dominant orientations computed for

each block. The image is then classified as city or suburb

scenes as determined by the majority orientations of blocks.

In the ALIP system [12], a concept corresponding to a par-

ticular category of images is captured by a statistic model

trained on color and texture features of image blocks. In

this model, spatial relations among blocks and across im-

age resolutions are both taken into consideration.

A rigid partition of an image into fixed-size blocks often

breaks an object into several blocks or puts different objects

into a single block. Thus visual information about objects
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may be destroyed by a rigid partition. Image segmentation

is one way to extract object information [8]. It decomposes

an image into a collection of regions, which corresponds to

objects if decomposition is ideal. Image segmentation has

been successfully applied to image classification. Smith and

Li [17] proposed a method for classifying images by spa-

tial orderings of regions where each region is represented

by a symbol corresponding to an entry in a pattern library.

Barnard et al. [1] proposed a method of relating words to

images based on regions. In their method, an image is mod-

eled as a sequence of regions and a sequence of words gen-

erated by a hierarchical statistic model, which describes the

occurrence and co-occurrence of region features and object

names. Fergus et al. [7] developed a mixture-model-based

method to recognize object classes, such asmotorbikes, air-

planes, faces, cars, and spotted cats. Their model is built

upon scale invariant regions generated by an entropy-based

feature detector. Image segmentation is not involved in the

feature extraction process.

Recently, Chen and Wang proposed a region-based im-

age classification algorithm [5] based on a technique that

extends Multiple-Instance Learning [6]. In their method, a

collection of region prototypes are learned according to a

Diverse Density (DD) function [13]. Each region prototype

represents a class of regions that is more likely to appear in

images with a specific label than with other labels. An im-

age is then summarized by a collection of features each de-

fined by a region prototype. A standard SVM is trained over

the image features. Their method compares favorably with

two other SVM-based algorithms on a set of 2 000 images.
However, as pointed by the authors in [5], the performance

is sensitive to noise in the negative images because the DD

function is a multiplicative model.

1.2. Overview of Our Approach

Following Chen and Wang’s work [5], we formulate the

image classification problem as a multiple-instance learning

(MIL) problem by regarding an image as a bag of regions

(instances). We distinguish images with a specific label (the

positive class) from images in all other categories (the nega-

tive class). Instead of applying a diverse density framework

as in [5] to learn a set of region prototypes, a feature map-

ping based on an appropriate distance metric is adopted to

map each image, a bag of regions, to a feature vector whose

dimension equals to the total number of regions from all

positive bags in the training set. Then the image classifi-

cation problem becomes solvable by a regular classification

algorithm. However, the feature mapping produces a possi-

bly high dimensional space when the number of regions in

positive bags is large. It is hence essential and indispensable

to select a subset of mapped features that is most relevant to

the image classification problem of interest. Support vec-

tor machines (SVM) have been proven to be powerful and

robust tools for tackling classification tasks. We propose to

use the 1-norm SVMwhich produces sparser solutions (less

features will be used) than standard SVMs. Our approach

is shown to be as effective as or comparable to DD-SVM in

[5] but is a lot more efficient in computation and less sensi-

tive to the noise in the class labeling. Note that the proposed

MIL framework is independent of the specific forms of re-

gion features. The proposed framework can be applied to

regions obtained from image segmentation as well as fea-

tures generated by various region detectors such as affine

region detectors described in [11, 14, 15, 16, 20].

The rest of the paper is organized as follows. We first

briefly review the image segmentation approach we use to

obtain image regions to represent an image in Section 2.

Pertinent notations are also introduced. Section 3 describes

the distance feature mapping, which we call region distance

feature mapping, and provides a geometric motivation that

explains why the proposed mapping makes sense. Section

4 is dedicated to the description of the 1-norm SVM and a

concrete sparse SVM formulation is given to construct clas-

sifiers and select features. Experimental design and results

are presented in Section 5 to show the effectiveness and ro-

bustness of our approach. In the last section, we conclude

and discuss possible future work.

2. Image Segmentation

Since we will compare, in Section 5, the proposed

method with the DD-SVM approach given in [5], we adopt

the same image segmentation algorithm as described in [5].

A brief summary is given as follows.

To segment an image, the system first partitions the im-

age into non-overlapping blocks of size 4 × 4 pixels. A
feature vector is then extracted for each block. Each feature

vector consists of 6 features. Three of them are the average
color components in a block. The LUV color space is used,

where L encodes luminance, and U and V encode color in-

formation (chrominance). The other three represent square

root of energy in the high-frequency bands of the wavelet

transforms, i.e., the square root of the second order moment

of wavelet coefficients in high frequency bands. The co-

efficients in different frequency bands show variations in

different directions, hence capture the texture properties.

To calculate these moments, a Daubechies-4 wavelet

transform is applied to the L component of the image. Af-

ter one-level wavelet transform, a 4 × 4 block is decom-
posed into four frequency bands: the LL (low low), LH

(low high), HL, and HH bands, each containing 2 × 2 co-
efficients. If the coefficients in the HL band are given as

where = 1 2, then a feature is defined as =³
1

4

P2

=1

P2

=1
2

´ 1
2

. The other two features are com-
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puted similarly from the LH and HH bands.

A modified -means algorithm is applied to group the

feature vectors into clusters each corresponding to a region

in the segmented image. The algorithm does not require

the number of clusters be specified. Instead, the number

of clusters gradually increases until a stop criterion is met.

The number of regions in an image is not a constant. The

average number of regions per image changes in accordance

with the adjustment of the stop criteria. After segmentation,

three extra features are computed for each region to describe

shape properties. They are normalized inertia of order 1, 2,
and 3. As a result, each region in any image is character-
ized by a 9 dimensional feature vector x = [ 1 9]
where [ 1 6] is the mean of the set of feature vec-

tors (color and texture features) associated with the region,

and [ 7 8 9] contains three shape features.
We denote images in the positive class as x+, and the

region in the image as x+ . The vector x+ is in

the 9-dimensional feature space as introduced in the above

paragraph. We denote this space by X. The image x+ con-

sists of + regions x+ = 1 · · · +. The total number of

regions in all positive images is so =
P +

=1

+ where
+ determines the number of images in the positive class. In

a MIL problem, an image is labeled positive if at least one

of the regions in it is positive while an image is labeled neg-

ative only if all the regions in it are negative. To distinguish

the positive regions from the regions that appear in a posi-

tive image, we call any region shown in a positive image a

p-region or a p-instance. For the sake of convenience, when

we line up all p-regions in positive images together, we re-

index all these regions as x = 1 · · · . Likewise, x

represents an image in the negative class, and x contains

regions x = 1 · · · . Other notations follow as

how we define for positive images.

3. Region Distance Representation of Images

We introduce the region distance feature mapping in this

section. Before talking about the mathematical definition of

the mapping, we first give a brief retrospect of the diverse

density framework that forms the conceptual basis of the

region distance feature mapping. A geometric motivation is

provided to further show meaningfulness of the mapping.

3.1. Retrospect of Diverse Density

The diverse density framework is derived in [13] based

on the assumption that there exists a single target concept

which can be used to label individual instances correctly.

An instance is represented as a point in the X input space.

Suppose that all instances in an image can trace out a con-

tinuous manifold or a path in the X space. A reasonable

guess for the location of the target concept in the X space

is a point where all positive manifolds intersect without in-

tersecting any negative manifolds. Since an entire manifold

cannot be obtained in practice and only some arbitrary sam-

ple is drawn from the manifold, a practical calculation of

the target concept is to find the area in X space that attains

a high density of positive instances (p-instances) and low

density of negative instances (n-instances).

By the maximum likelihood analysis assuming images

are conditionally independent given the target concept, a

probabilistic measure of diverse density is derived. Then

an optimization algorithm, such as the gradient descent ap-

proach as used in [13], or EM-DD as used in [22], is used

to maximize this probabilistic measure for the target con-

cept. The process of maximization is often intensively time-

consuming (requiring hours or even days of running time

on datasets of reasonable size such as Musk data [13]). In

addition, both gradient descent algorithm and EM-DD can-

not guarantee the global optimality and hence they may get

stuck at local solutions. Frequently, multiple runs with dif-

ferent starting search points would be needed.

3.2. Region Distance Mapping

In our approach, rather than searching a vector in the en-

tire X space to achieve the maximal product of high like-

lihood of p-instances and low likelihood of negative in-

stances in the diverse density framework, our idea is to

find a p-instance which is close to instances from positive

bags and far from instances in negative bags. We call such

a p-instance prototype p-instance. An ideal prototype p-

instance is a positive instance which has a small distance

to at least one instance from each of the positive bags and

has large distance to all instances from negative bags. Sim-

ilar to the diverse density framework where it is not neces-

sary that all positive bags intersect at a single target concept,

there can exist multiple prototype p-instances. This frame-

work amounts to a discretized version of the diverse density

function with grid points at the sample p-instances.

To solve the hence-created discretized problem, we first

define the region distance mapping d which maps an im-

age or a bag of regions into a feature space F based on a

metric distance function : X × X R. The space F is

an dimensional space where each region in the positive

image corresponds to a dimension or a feature. Note that

the metric distance can be any suitable metric although

Euclidean distance is commonly employed. The distance

function should be chosen properly by taking into account

prior knowledge or domain insights about the image classi-

fication tasks to be solved. The mapping d is defined as

d(x ) =
£
(x x

1) (x x
2) · · · (x x )

¤
where the function maps a pair of (a bag, an instance) to a
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real number, and (x x ) = min =1 ··· (x x ) =
1 · · · . Notice that x are those re-indexed p-instances

as defined in Section 2, and x here represents a bag (or an

image) from either the positive class or the negative class.

Clearly, the feature in F is determined by the p-

instance and it measures the distance between the p-

instance and the “manifold” corresponding to a given image

x where the distance is defined as the distance from x to

the instance in x that is the closest to x .

For a given training set of + positive images and

negative images, applying the above mapping yields the fol-

lowing matrixD =

d
+

1

.

.

.

d
+
+

d
1

.

.

.

d

=

(x+
1
x1) (x+

1
x2) · · · (x+

1
x )

.

.

.
.
.
.

. . .
.
.
.

(x++ x1) (x++ x2) · · · (x++ x )

(x
1
x1) (x

1
x2) · · · (x

1
x )

.

.

.
.
.
.

. . .
.
.
.

(x x
1) (x x

2) · · · (x x )

3.3. Geometric Motivation

An intuitive geometric interpretation often allows read-

ers to easily grasp the fundamentals of an approach. Hence

we provide a geometric motivation to show that a prototype

p-instance determines a feature in F that has strong capabil-

ity of discriminating between positive images and negative

images and is expected to be selected by a reasonably good

feature selection algorithm.

As discussed in the above section, for a given set of train-

ing examples, the feature in F realizes the distance val-

ues from the positive region x to each of the positive

images and also to each of the negative images. It presents

as the column of the matrixD. If a p-instance is approx-

imate to the target concept in the diverse density framework,

it attains small distance values to positive images and large

distance values to negative images as illustrated in Figure 1.

Then the corresponding column inD has small values in the

top half vector associated with positive images and large

values in the bottom half vector associated with negative

images. Thus this feature has the power to distinguish pos-

itive images from negative images.

4. 1-norm Support Vector Machines

Further investigation of the proposed mapping reveals

that the region distance mapping also has possibility to pro-

duce irrelevant features or redundant features. For example,

in Figure 1, the point x1 does not represent an intersection

of any positive images (paths), it can barely be a prototype

p-instance. Thus it is likely that the feature induced by x1

is irrelevant to the search of a target concept or a prototype

p-instance. Moreover, there may exist multiple p-instances

d

positive bag 1

positive bag 2

positive bag 3

negative bag 1

negative bag 2

xt

x1

d

d

2

4
5d

3

Figure 1. The dotted lines represent manifolds corresponding to 3

positive and 2 negative bags. Various points are samples from the

manifolds. The feature induced by x realizes the column

( 1 2 3 4 5) in D where 1 = 0 since x is an instance

in Positive bag 1, and 2 to 5 are illustrated in the figure. This

feature shows the difference between positive and negative images

since 1, 2, 3 are much smaller than 4 and 5.

close to an individual target concept or an intersection of

several positive bags. Some of the features induced by these

p-instances may turn out to be redundant because they can

be highly correlated. Furthermore, when the total number

of p-instances is large, the dimension of F can be greater

than the amount of available training images, which conse-

quently causes the problem of the curse of dimensionality.

To alleviate all these problems, one of the most extensively

used methods is feature selection.

Existing feature selection approaches generally fall in

two categories: filter andwrapper. Some filter methods such

as ranking through correlation coefficients or through Fisher

scores tend to select inter-correlated features and does not

guarantee an acquisition of a good classifier. On the con-

trary, wrappers include the desired classifier as a part of

their performance evaluation, and they tend to produce bet-

ter generalization but may require an expensive computa-

tional cost. Our method is basically a wrapper where the

1-norm SVM is used to construct classifiers and select im-

portant features simultaneously. The 1-norm SVM can be

formulated as a linear program (LP) which, in general, can

be solved efficiently from the optimization point of view, so

computational cost will not be an issue.

SVMs construct classifiers based on hyperplanes by min-

imizing a regularized training error, i.e., [·] +
where [·] is a regularization operator, is called the

regularization parameter, and is commonly defined

through a hinge loss function. Another main characteristic

of SVMs is the use of appropriate kernel mappings. No-

tice that features in F have a specific geometric meaning

as discussed in Section 3. We will not map features in F

to any other space through a kernel in the feature selection

process in order to fully explore these region distance fea-

tures. We consider the classification problem of finding a

linear decision boundary w0d+ = 0 in the feature space
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F to classify between positive images and negative images

wherew are model parameters andw0 denotes the trans-

pose of w. When an optimal solution w is obtained, the

magnitude of its component indicates the significance of

the effect of the feature in F on the classifier. Those fea-

tures corresponding to a non-zero are selected and used

in the classifier.

Denote the class label variable by and takes values of

+1 and -1. The hinge loss function = max{1 (w0d+
) 0} is employed by standard SVMs to define a training
error metric. The regularization operator in standard SVMs

is the squared 2-norm ||w|| of the weight vector w, which
formulates SVMs as quadratic programs (QP). Solving QPs

is typically computationally more expensive than solving

linear programs (LPs). SVMs can be transformed into LPs

as in [2, 18, 23]. This is achieved by regularizing with a

sparse-favoring norm, e.g. the 1-norm ||w||1 =
P
| |.

Thus 1-norm SVM is also referred to as sparse SVM and

has been similarly applied to other practical problems such

as drug discovery in [3].

Another issue worthy of mention is that in many MIL

problems, especially in our image categorization problems,

the number of negative examples can be much larger than

the number of positive examples since only images in a

specific category are labeled positive and all images from

other categories are labeled negative. The problem becomes

rather imbalanced. To tackle this imbalanced issue and

make classifiers biased towards the minor class, a simple

strategy we used is to penalize differently on errors pro-

duced respectively by positive examples and by negative ex-

amples. Hence the 1-norm SVM is formulated as follows:

min
X
=1

| |+ 1

1
+

+X
=1

+ 2

1 X
=1

s.t. (w0d+ + ) + 1 = 1 +

(w0d + ) + 1 = 1
0 = 1 + = 1

(1)

Choosing different values for parameters 1 and 2 will

penalize differently on errors in one class versus errors in

the other class. Usually 1 and 2 are chosen so that the

training error is determined by a convex combination of the

training errors occurred on positive examples and on nega-

tive examples. In other words, let 1 = and 2 = 1
where 0 1.

To form a LP for the 1-norm SVM, we rewrite =
where 0. If either or has to equal

to 0, then | | = + . Then the LP is formulated in

Category ID Category Name

0 African people and villages

1 Beach

2 Historical building

3 Buses

4 Dinosaurs

5 Elephants

6 Flowers

7 Horses

8 Mountains and glaciers

9 Food

10 Dogs

11 Lizards

12 Fashion models

13 Sunset scenes

14 Cars

15 Waterfalls

16 Antique furniture

17 Battle ships

18 Skiing

19 Desserts

Table 1. The 20 image categories.

variables u, v, , and as

min
X
=1

( + ) +
+

+X
=1

+
1 X

=1

s.t.
¡
(u v)0d+ +

¢
+ 1 = 1 +¡

(u v)0d +
¢
+ 1 = 1

0 = 1
0 = 1 + = 1

(2)

Solving LP (2) yields solutions equivalent to those obtained

by the 1-norm SVM (1) because any optimal solution to (2)

has at least one of the two variables , equal to 0 for all

= 1 . Otherwise, assume 0 without loss
of generality, and we can find a better solution by setting

= and = 0, which contradicts the optimality
of (u v).

5. Experimental Results

We evaluate the proposed MIL learning framework

based on the same data set as used in [5]. Section 5.1 de-

scribes the experimental setup, including information of the

image data set and the implementation details. Section 5.2

compares our MIL framework to DD-SVM [5] in terms of

categorization accuracies. Section 5.3 analyzes the effects

of training label uncertainty on the algorithm performance.

Computational issues are discussed in Section 5.4.
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Cat. 0 Cat. 1 Cat. 2 Cat. 3 Cat. 4 Cat. 5 Cat. 6 Cat. 7 Cat. 8 Cat. 9

Cat. 0 63 6% 1 2% 10 4% 1 6% 1 2% 11 6% 2 4% 3 6% 0 4% 0 4%
Cat. 1 4 0% 62 8% 6 4% 4 4% 0 8% 4 4% 0 8% 0 0% 14 8% 1 6%
Cat. 2 8 0% 3 6% 67 6% 4 0% 0 8% 7 2% 0 8% 0 0% 0 4% 1 6%
Cat. 3 1 2% 2 8% 2 8% 86 8% 0 0% 0 8% 0 4% 0 4% 0 4% 4 4%
Cat. 4 0 4% 0 4% 0 0% 0 0% 97 6% 0 8% 0 0% 0 0% 0 0% 0 8%
Cat. 5 6 4% 3 6% 6 8% 0 0% 2 4% 69 6% 0 0% 3 2% 7 2% 0 8%
Cat. 6 2 0% 1 2% 0 0% 0 0% 0 0% 0 0% 94 4% 0 0% 0 4% 2 0%
Cat. 7 3 2% 2 0% 2 8% 0 0% 0 0% 1 2% 1 2% 89 6% 0 0% 0 0%
Cat. 8 5 2% 15 2% 7 2% 1 2% 3 2% 7 2% 0 8% 0 0% 58 8% 1 2%
Cat. 9 7 6% 2 4% 0 4% 3 2% 0 4% 2 4% 1 6% 2 4% 0 4% 79 2%

Table 2. The confusion matrix of image categorization experiments (over 5 randomly generated test sets). Each row lists the average
percentage of images (test images) in one category classified to each of the 10 categories. Numbers on the diagonal show the classification
accuracies.

5.1. Experimental Setup

The image data set consists of 2,000 images taken from

20 CD-ROMs published by COREL Corporation. Each

COREL CD-ROM contains 100 images representing a dis-

tinct concept. Therefore, the data set has 20 thematically di-

verse image categories, each containing 100 images. All the

images are in JPEG format of size 384× 256 or 256× 384.
The category names are listed in Table 1 along with the

identifiers (IDs) for the 20 categories. Since the classifica-

tion problem is multi-class, we use the one-against-the-rest

strategy.

In our experiments, images within each category were

randomly partitioned in half to form a training set and a test

set. We repeated each experiment for 5 random splits, and

reported the average of the results obtained over 5 different

test sets. The parameter and in sparse SVM were se-

lected according to a twofold cross-validation on the train-

ing set. We chose from 0 1 to 2 0 with step size 0 1 and
from {0 1 1 10 100}. We found that = 0 5 and
= 1 give the minimum twofold cross-validation error.

Therefore, we fix = 0 5 = 1 in all subsequent ex-
periments. The linear program of 1-norm SVM was solved

using CPLEX version 6.6 [10].

5.2. Categorization Results

We first report the confusion matrix of the proposed

method in Table 2 based on images in Category 0 to Cat-

egory 9, i.e., 1,000 images. Each row lists the average per-

centages of images in a specific category classified to each

of the 10 categories. The numbers on the diagonal show the

classification accuracy for each category and off-diagonal

entries indicate classification errors. A detailed examina-

tion of the confusion matrix shows that two of the largest

errors (the underlined numbers in Table 2) are errors be-

tween Category 1 (Beach) and Category 8 (Mountains and

glaciers): 15 2% of Mountains and glaciers are misclassi-

fied as Beach; 14 8% of Beach images are misclassified as
Mountains and glaciers. This observation is in line with

that presented in [5]. As stated in [5], the high classification

errors are due to the fact that many images from these two

categories have regions that are semantically related and vi-

sually similar, such as regions corresponding to mountains,

river, lake, and ocean.

We compare the overall prediction accuracy of 1-norm

SVM with that of DD-SVM. The average classification ac-

curacies over 5 random test sets and the corresponding 95%
confidence intervals are provided in Table 3. For the 1000-

image data set, the performance of DD-SVM is slightly bet-

ter than 1-norm SVM. As the number of categories in the

data set increases to 20, the 1-norm SVM performs compa-

rably well relative to DD-SVM. Although the average ac-

curacy of DD-SVM is slightly higher than that of 1-norm

SVM, the difference is not statistically significant as indi-

cated by the 95% confidence intervals.

5.3. Sensitivity to Label Uncertainty

We also compared the proposed learning framework with

DD-SVM in terms of the sensitivity to label uncertainty.

In terms of binary classification, we define the label uncer-

tainty as the probability that an image is mislabeled. In this

experiment, training sets with different levels of label uncer-

tainty are generated as follows. We first randomly pick %
of positive images and % of negative images from a train-
ing set. Then, we modify the labels of the selected images

by negating their labels, i.e., positive (negative) images are

labeled as negative (positive) images. Finally, we put these

images with new labels back to the training set. The new

training set has % of images with negated labels.
We compare the accuracies between our framework and

DD-SVM for = 0, 2, 4, 6, 8, and 10 based on 200 im-
ages from Category 2 (Historical buildings) and Category 7

(Horses). The training and test sets have equal size. The av-

erage classification accuracies (over 5 randomly generated
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Average Accuracy : [95% confidence interval]
1000 images (10 categories) 2000 images (20 categories)

1-norm SVM 77 0% : [76 9% 78 1%] 65 7% : [64 7% 66 7%]

DD-SVM 81 5% : [78 5% 84 5%] 67 5% : [66 1% 68 9%]

Table 3. Image categorization performance of 1-norm SVM and DD-SVM. The numbers listed are the average classification accuracies

over 5 random test sets and the corresponding 95% confidence intervals. The 1000-image data set contains images from Category 0 to
Category 9. The 2000-image data set contains images from all 20 categories. Training and test sets are of equal size.

test sets) are presented in Figure 2. From Figure 2, DD-

SVM outperforms 1-norm SVM by 2% in terms of classifi-

cation accuracy on average at the lower level of label uncer-

tainty. As the uncertainty level increases to 10%, the perfor-

mance difference is reversed: the average classification ac-

curacy of 1-norm SVM is 2% higher than that of DD-SVM.

As changes from 0% to 10%, the average classification

accuracy of DD-SVM decreases 8.1%, while the average

classification accuracy of 1-norm SVM only decreases 5%.

When we extend this experiment to the 1000-image data set,

the average classification accuracy of 1-norm SVM for 10

categories over 5 randomly generated test sets is 75 1%with
the 95% confidence interval [73 6% 76 6%], showing the
robustness of the 1-norm SVM. In contrast, the diverse den-

sity function in DD-SVM is very sensitive to instances in

negative bags. The diverse density value at a point is expo-

nentially reduced if there is a single instance from a negative

bag close to the point. Consequently, the region prototypes

in DD-SVM, which are defined as the local maximizers of

the DD function, are sensitive to label uncertainties. We

abandon the process of maximizing the DD function in our

approach, so our approach is not sensitive to label uncer-

tainties due to the appropriate regularization.

5.4. Speed

On average, the learning of each 1-norm SVM classi-

fier using a training set of 500 images (4.31 regions per im-

age) takes less than 5 seconds of CPU time on a Pentium III

700MHz PC running the Linux operating system. The train-

ing for a DD-SVM using the same training set on the same

computer system takes around 40 minutes of CPU time.
The time required in testing depends on the number of

nonzero elements in w (for 1-norm SVM) or the number

of region prototypes (for DD-SVM). In our experiments,

the average number of selected variables in 1-norm SVM is

around 50, which is slightly smaller than the average num-

ber (53 8) of region prototypes in DD-SVM.

6. Conclusions and Future Work

In this paper, we proposed a region-based image cat-

egorization method using a new formulation of Multiple-
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Figure 2. Comparison between DD-SVM and 1-norm SVM as the

labeling uncertainty of training images varies.

Instance Learning. Unlike many existing MIL approaches

that rely on the diverse density framework, our approach

performs an effective feature mapping by the definition of

a distance metric between an instance and a bag. Thus the

MIL problem can be solved by a regular classification algo-

rithm, such as sparse SVM. We adopt a 1-norm SVM for-

mulation to dramatically reduce the regions that are needed

to classify images. The selected regions in our framework

approximate to the target concepts in the traditional diverse

density framework.

We tested the proposed 1-norm SVM approach over a

set of COREL images. The performance of our framework

is comparable with that of a state-of-the-art MIL approach,

DD-SVM. Compared with DD-SVM, our framework is less

sensitive to label uncertainties. In addition, the training time

of our system is less than 0 2% of the training time for DD-
SVM. This makes the proposed framework a strong candi-

date for tasks that have stringent time limit, such as object

recognition tasks that require on the fly training.

Although the experimental results are based on region

features extracted from image segmentation, the proposed

1-norm SVM learning framework can be applied to regions

generated by other region detectors. As continuation of this

work, we intend to test the proposed method over features
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generated by different region detectors, such as those de-

scribed in [11, 14, 15, 16, 20]. We will also explore the

applications of the proposed 1-norm SVM learning frame-

work to object recognition problems.
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