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a b s t r a c t

Tympanostomy tube placement has been commonly used nowadays as a surgical treatment for otitis
media. Following the placement, regular scheduled follow-ups for checking the status of the tympa-
nostomy tubes are important during the treatment. The complexity of performing the follow up care
mainly lies on identifying the presence and patency of the tympanostomy tube. An automated tube
detection program will largely reduce the care costs and enhance the clinical efficiency of the ear nose
and throat specialists and general practitioners. In this paper, we develop a computer vision system that
is able to automatically detect a tympanostomy tube in an otoscopic image of the ear drum. The system
comprises an offline classifier training process followed by a real-time refinement stage performed at the
point of care. The offline training process constructs a three-layer cascaded classifier with each layer
reflecting specific characteristics of the tube. The real-time refinement process enables the end users to
interact and adjust the system over time based on their otoscopic images and patient care. The support
vector machine (SVM) algorithm has been applied to train all of the classifiers. Empirical evaluation of
the proposed system on both high quality hospital images and low quality internet images demonstrates
the effectiveness of the system. The offline classifier trained using 215 images could achieve a 90%
accuracy in terms of classifying otoscopic images with and without a tympanostomy tube, and then the
real-time refinement process could improve the classification accuracy by 3–5% based on additional 20
images.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Tympanostomy tube placement is the most common outpatient
surgical procedure in the United States. Each year more than 650,000
children younger than 15 years of age receive tympanostomy tubes [1].
Tympanostomy tubes are commonly inserted because of persistent
middle ear fluid affecting hearing, frequent ear infections or ear
infections that persist after antibiotic therapy [2]. All of these condi-
tions are composed of the term otitis media, which is second in
frequency only to upper respiratory infection as the most common
illness diagnosed in children by pediatric health providers. Most
children will experience at least one episode of acute otitis media by
the age of 3 years and by the age of 6 years, nearly 40% have
experienced three or more infections [3]. Otitis media with effusion
(OME) can resolve spontaneously, however for patients inwhich, there
is persistent middle ear fluid for at least 3 months with the decrease in
hearing, further treatment in the form of tympanostomy tubes

insertion may be recommended [2]. Fig. 1 illustrates the placement
of the tympanostomy tube on the ear drum.1

Since first described in 1954 by Armstrong, tympanostomy tube
placement has become the surgical treatment of choice for otitis
media [4]. Placement of tympanostomy tubes improves hearing
significantly in the presence of otitis media with effusion, reduces
the incidence of recurrent acute otitis media (AOM), and provides a
mechanism for drainage and administration of topical antibiotic
therapy for acute otitis media. The latter has gained significant impo-
rtance since it allows localized treatment for ear infections rather
than systemic antibiotics use. The insertion of tympanostomy tubes
involves aspiration of the middle ear fluid leading to instant improve-
ment of hearing thresholds. The tympanostomy tubes are designed to
extrude naturally from the tympanic membrane normally within
6 months to 1 year following the procedure.

Following tympanostomy tube placement, regular scheduled
follow-ups are recommended by the American Academy of Otolar-
yngology every 6 months to check the status of the ear tubes [5].
This follow up care is currently performed by an ear, nose and throat
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specialist resulting in increased cost compared to the cost of a visit
to a general practitioner [6]. The overall complexity of the procedure
is low because it mostly identifies the presence and patency of the
tympanostomy tube. If this procedure can be performed by an
automated computer program, it can significantly reduce cost as
well as enhance the clinical efficiency of both ear nose and throat
specialists and general practitioners.

Computer vision techniques have been widely used to auto-
matically detect an object in natural images such as human faces
[7–10], cars [11–13] and pedestrians [14–16]. The related techni-
ques are also used to analyze medical images which have largely
shown to facilitate the diagnosis and treatment decisions [17–23].
In this study we have developed a computer vision system to
predict on an image if a tympanostomy tube is in place and collect
feedback to adaptively improve the system classification perfor-
mance. In this system, we extract a set of image features including
RGB intensity features, edge-map based features and other
advanced features such as Scale-invariant Feature Transform (SIFT)
[24], and Histograms of Oriented Gradients (HOG) features [25].
We use them to learn a discriminative model to determine if an
otoscopic image presents a tympanostomy tube. A cascaded
classifier is constructed by the support vector machine (SVM)
[26] algorithm from labeled image patches. The prediction of this
classifier, when applied to a test image, is visualized. A refinement
process is designed to refine this trained classifier at the point of
patient care according to user feedbacks. Extensive experimental
results demonstrate the effectiveness and efficiency of the pro-
posed approach.

2. Related works

Most object detection techniques are composed of two major
aspects, feature extraction and model learning, for each of which
various methods have been proposed. Readers can consult with
[27,28] for an overview and challenges of the field. In the
subsequent paragraphs, we briefly review several of the most
relevant methods.

Region based and edge-map based features are the two types of
widely used features for object detection. For the first type, the
features are generated from colors [29–32], or the varying dis-
tribution of intensities [33,34,24,25]. Among these features, the
SIFT [24] and HOG [25] features are the most widely used nowa-
days. Other algorithms have considered texture information, such
as gray level co-occurrence matrix (GLCM) [35], local binary
patterns (LBP) [36] and wavelet texture [37,12]. We explored these
features in our system. The edge-map based features are used to

capture contour shapes by computing the most representative
edge fragments [38–41]. These features are robust to occlusion but
are not invariant to illumination conditions. Geometrical shapes
and the structure of lines and arcs in an edge map were also
studied in [42–44], which facilitated to obtain more reliable
features. It has been shown that combining the region based
features and edge-map features may lead to robust detection
[45,46]. We hence implemented feature extraction methods in
both of the categories.

Various machine learning algorithms have been applied to
build probabilistic models for prediction of object classes. Typical
methods include Bayesian classifiers [47], expectation maximiza-
tion [48], k-Nearest Neighbor [49], logistic regression [50] and
support vector machines (SVM) [26,51]. These methods perform
comparably although some may serve certain specific purposes,
such as selecting features for use in the model. In this work, an
SVM algorithm with linear classifiers was used and served as a
good learning model for detecting the tubes. The SVM algorithm
solves a quadratic programming optimization problem for a
predictive classifier that has an optimal margin to separate
different classes of examples.

Besides the two major components discussed above, online
learning methods that sequentially take user feedback in building
a classifier have been used to detect and track moving objects
[52–55]. Our system also consists of a real-time refinement
process. Although similar to an online learning method, our
refinement targeted at the unseen examples that the offline
models fail to predict. After the system highlights the predictions
on an image, the users can correct the prediction results on the
image. Our system is capable of recording this feedback and
retraining the related classifiers.

3. Material and methods

In this section, we describe our approach to automatically
predicting if an otoscopic image of ear drum has a tympanostomy
tube mounted. Fig. 2 provides an overview of our detection
system. In this system, an image is first converted into a feature
vector in the feature extraction process. Then a classifier that has
been pre-trained and stored in a database (which we call knowl-
edge database) is applied to the image features to predict the
presence and location of a tube. The results are then visualized and
highlighted in the image. Users can give feedback by correcting the
predictions if they are inaccurate. This feedback message is then
recorded and used in an automatic process to refine the classifiers
stored in the knowledge database. This system is constructed

Fig. 1. Illustration of a tympanostomy tube in place and patency in the anterior inferior quadrant of the tympanic membrane: (left) a graph of ear structure and tube and
(right) an otoscopic image.
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based on two processes: an offline learning process to construct
the classifiers in the knowledge database; and an online refine-
ment process that takes in user correction information to refine
the classifiers.

The construction of a knowledge database aims to incorporate
domain knowledge and data-driven classifiers derived from
labeled images. During the offline classifier training, we collected
otoscopic images of patients from Connecticut Children's Medical
Center (CCMC). These images are labeled manually with respect to
whether or not it shows a tympanostomy tube. We build classi-
fiers, as functions of image features, to distinguish images with a
tube from images without. The usefulness of the various features
extracted from the images is examined by building classifiers with
different combinations of features. We propose a new cascaded
classifier which is composed of three layers. These layers are
designed according to the domain knowledge. For instance, we
have observed that many tympanostomy tubes are in green color.
It is hence important to design an efficient classifier to detect
green tubes which might also be easier given the target is more
characterized and focused on the green channel of the image. Each
layer aims to detect tympanostomy tubes of a different character-
istic. For each layer of the cascaded classifier, the sample of labeled
images was split to have training and test sets.

During the real-time system refinement, a new image is given
to the system, which first converts it to a feature vector. The
classifiers in the database can make a prediction based on the
feature vector. Then the system yields a marked image that
highlights the results. If the classifier fails to point out the
presence of a tube (false negative) or predicts as it contains a
tube but gives a wrong location, a user may mark the correct
location of the tube. If the classifier claims a tube in the image but
there is actually not (false positive), a user can remove the
incorrectly located markers. Then this image (actually its feature
representation) will be added to the training set stored in the
knowledge database and all the three layers of the cascaded
classifier will be retrained.

3.1. Feature extraction

We describe the three sets of features that are extracted from
the otoscopic images: color-based features, edge-map based fea-
tures and a set of advanced features.

3.1.1. RGB intensity features
Tympanostomy tubes are built with conspicuous colors that are

different from the tissues normally seen in the ear. For example,
green, purple, blue or white are often used for the tympanostomy
tubes. For an image of true color, each pixel is typically represented

by the component intensities of red, green and blue. We compute
the intensity of the three channels in the image and then measure
the “directional” difference of the intensities between any two
channels. For instance, the difference from the red channel to the
green channel is calculated by subtracting the intensity of the red
channel from that of the green channel. If the difference along a
direction is a negative value, we re-set it to 0. We exclude the pixels
in the completely dark regions in the redundant margin of the
image. We hence obtain 6 quantitative values of the difference at
each pixel. The mean, maximum and standard deviation of each of
the 6 differences are computed over all valid pixels in an image,
which gives us 3�6¼18 features for each image. These features are
used to predict tympanostomy tubes on the basis that the images
containing a tympanostomy tube have different RGB intensity
distributions than the normal ear images.

The RGB intensity features may be most useful for distinguish-
ing a specific kind of tubes. For instance, we notice that most of
our clinical images show tympanostomy tubes of green color.
Hence, we could consider detecting the green tubes in the first
layer of the cascaded classifier. Fig. 3 illustrates the RGB features
by an example of the original image and two images of the
difference computed using the intensities of the green channel
minus those of the red and blue channels, respectively.

3.1.2. Edge-map features
An obvious characteristic of the tympanostomy tube is its

circular shape if it is viewed from the side, which is also the view
of the tube in the ear images. We hence design features to capture
circular structures presented in an image. For each pixel, we
calculate the entropy value based on its 9�9 neighborhood, which
measures the “business” of that region. The pixels along an edge
are expected to have higher entropy values than those far from an
edge. All entropy values are normalized to the range of ½0;1�. Since
we care about the pixels that have high entropy values, we set a
threshold of 0.8. More precisely, if a pixel has an entropy of lower
than 0.8, the pixel's entropy will be set to 0; or otherwise set to 1.
This step converts an ear image into a binary image showing the
edges, which is called an edge map. We then compute the Hough-
transformation [56] of the edge map and apply the Phase-Coding
algorithm [57] to detect circles.

For detecting the center of a circle, we restrict the search to
pixels at the center area of the image that is within 70% of its
length and width. We search for circles of varying radius. Let the
length of the short side of the image be L. The maximal limit of the
radius is set to L� ½2�1;2�2;2�3;2�4� and the corresponding
minimal length is one-third of the maximal limit. Empirical
experiments show that the circles with radius in the range of
½L=10; L=3� can match the size of tympanostomy tubes in most of

Fig. 2. The system overview.
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the images. By setting up these limits, we can screen out most of
the unwanted circles. Fig. 4 shows an exemplar image (Fig. 4(a))
that is transformed to a edge map (Fig. 4(c)) via entropy computa-
tion (Fig. 4(b)) and a circle shows the detected location of a
tympanostomy tube.

To further prune circles that do not correspond to a tympa-
nostomy tube, we crop image patches within each detected circle,
and extract the complete set of RGB intensity features from each
patch. Let Ti denote the number of detected circles in the i-th
image, and αj

i contains the RGB features for the j-th patch in the
i-th image. Let βj

i denote the RGB features of the rest area in the
image. We quantify a numerical feature for each image i based on
the circle detection as max Euclideanðαj

i;β
j
iÞ; j¼ 1;…; Ti

n o
, which is

to compute the Euclidean distance between the RGB feature
vectors of each cropped patch and the complement of the patch,
and then take the maximum distance across all detected circles.
This feature reflects that the RGB intensity of the tube area should

differ the most from its ambient surrounding. For the circle that
attains this maximum distance, its center location and radius are
also used as numerical features for the image. If no circles are
detected, the distance feature is set to 0, the center coordinates are
set to ð�1; �1Þ, and the radius is set to 0.

3.1.3. Other features
Besides the features computed from RGB intensities and edge-

maps to capture the color and shape of a tube, HOG [25] and SIFT
[24] features are used by adopting the Bag of Visual Words method
[58]. For HOG features, we extract 31 default HOG features from
each cell of 8�8 pixels. Then, a cluster analysis via k-means
partitions the cells of all images into 20 clusters. The centroids of
the clusters form the words in a vocabulary. By counting the
number of cells in each of the 20 clusters, each image is converted
to 20 features. For SIFT features, we first compute 128 SIFT features

Fig. 3. Features computed from the RGB intensities.

Fig. 4. A demonstration of the process of transforming the original image into the edge map from (a) to (c), and the application of Hough transformation to detect circles.
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from patches of 20�20 pixels using the default setting of SIFT.
Then the same cluster analysis procedure is used to compute 20
SIFT-based features.

We extract texture-based features using the gray level co-
occurrence matrix (GLCM). Four features are computed to char-
acterize the GLCM including “Contrast”, “Correlation”, “Energy”
and “Homogeneity” [35]. Local Binary Patterns (LBP) [36] and
wavelet texture might also be useful for the detection of tubes.
Fifty eight LBP features are extracted. For wavelet features, at first
we perform a single-level two-dimensional wavelet decomposi-
tion of an image, which yields an approximation coefficient
matrix, as well as horizontal, vertical, and diagonal coefficient
matrices. We extract 8 wavelet features by computing the average
values and standard deviations of the four matrices.

3.2. Learning system

Besides the feature vectors of the training images, the knowl-
edge database also stores a cascade of classifiers, which are first
trained in an offline process based on collected training data, and
then refined by an online process based on user feedback at the
point of care.

3.2.1. Offline classifier training
The SVM algorithm is employed to train each layer of the

cascaded classifier. Given n images, each characterized by a data
point ðxi; yiÞ where xiARm is the feature vector of image i and yi is
the binary label indicating whether it shows a tube. A linear model
w> xþb is used to classify images, where wARm and b are the
weight vector and the bias term of the model, respectively. The
SVMmethod minimizes the regularized loss function λ‖w‖2þP

iξi
for the best ðw; bÞ where the losses ξi are defined by constraints
yiðw> xiþbÞZ1�ξi, and ξiZ0, i¼ 1;2;…;n and λ is the regular-
ization parameter. This optimization problem formulates a quad-
ratic program, and can be solved using CPLEX solvers [59]. After
the linear model is constructed, it can be used to determine
the label of a new image represented by x̂ by computing
signðw> x̂þbÞ.

The cascaded classifier consists of three layers as shown in
Fig. 5. Classifiers of the three layers are trained separately with
different sets of features. The first layer is designed to detect the
green-color tubes. Since the green tubes are widely used and
commonly seen in otoscopic images, a simple classifier capable of
detecting themwould facilitate the detection task and improve the
efficiency. RGB features related to the green channel are extracted
from the original images and used in the SVM training. In our

evaluation, the resultant classifier proved to be effective and
detected all green tubes in the otoscopic images that were
collected at Connecticut Children's Medical Center (CCMC).

Images downloaded from the internet contained tubes of many
other colors. We use all internet images and CCMC images with
non-green tubes to train the second layer of the cascaded classifier.
The second layer is designed to not only utilize the color property
of the tympanostomy tubes but also their shape information. We
train a SVM model using all RGB intensity features and the shape
features from edge-maps, and hence each image is represented by
a vector of 18þ4¼ 22 features.

In the third layer of the classifier, additional features as
described in Section 3.1.3 are extracted. We have also experimen-
ted with each type of the advanced features by combining them

Fig. 5. The offline procedure to train the cascaded classifier.

Fig. 6. The procedure for testing the cascaded classifier on a newly obtained image.
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individually with the basic RGB and shape features in training the
third classifier.

Fig. 6 shows the test process after the cascaded classifier is
constructed. If the first classifier classifies the image as a positive
example, meaning that it contains a tube (likely a tube of green
color), then the system outputs the prediction, and directly goes to
the visualization step. Otherwise, this image is moved to the
second classifier, and then to the third. If any of the classifiers
accepts this image as containing a tube, the system will come to a
final decision. If all three classifiers predict the image negative,
then the system will report it as not containing a tube.

3.2.2. Real-time classifier refinement
The real time refinement step allows the user to adjust the

classifier by providing feedbacks to the system. The motivation of
designing this refinement step comes from the fact that otoscopic
images may show tympanostomy tubes with significantly varying
colors, shapes, illuminance and scales when they are taken by
different clinicians, or collected from different healthcare organi-
zations. Clinicians may have different gestures when shooting the
pictures. As a result, tubes are presented distinctly in angles and
scales in the images from different practices. It is hence desirable
to have a system that is able to adapt the classifiers to the specific
setting of an organization.

However, this refinement step is not a necessary component for
the system to perform. The refinement will be triggered only when
a user corrects the system prediction on a test image. Hence, it
runs in a semi-automatic mode in the sense that as soon as a user
makes correction and saves it, the system will store the corrected
data into the database and retrain the classifiers.

Fig. 7 shows the refinement procedure. If the system misclas-
sifies an image that actually contains a tube, the user can change
the label of the image to be “þ1”, and specifies the center and
radius of a circle to properly mark out the tube region. If the
system predicts correctly but fails to mark the tube location
correctly, there exist two cases. The first case is that the tube is
largely visible on the image but the system marks a wrong
position. The user can correct those markers. The second case is
that the tube is obscured badly by wax or other structures. In this
case, no circles may be seen on the image, but the user may still
leave a marker to the area that he perceives to contain the tube. If

an image does not contain a tube, but the system makes a false
positive prediction, the user can just correct the label and remove
all the markers on the image. Based on the feedbacks, the system
will automatically refine the extracted features by adjusting the
parameters used in feature extraction algorithms.

The three layers of the cascaded classifier will be retrained
using the augmented training set that includes the test image.
Note that to retrain classifiers, the system does not need to hold
the raw images in the knowledge database but only the extracted
feature vectors of all training images and the specific test image.
The database may increase over time when more and more test
images receive corrections, but the storage of the image features
only requires a moderate amount of space. The size and model
parameters of the classifiers will be updated in the knowledge
database once retrained.

4. Empirical evaluation

The proposed system was validated on otoscopic images
collected from two sources: 235 images of real patients collected
from CCMC and 40 images downloaded from internet. The CCMC
images were taken with high quality and high resolution, and 77 of
them contained a tube. The internet images from Google or
YouTube had overall low quality: low resolutions with higher
level of artifacts and distortion, and 27 of them showed a tube.

4.1. Experimental setting

We randomly selected 40 images to form a hold-out set in
order to evaluate the system performance, including evaluating
both the offline training and the online refinement. We excluded
20 images from offline classifier training and used them to
simulate the online refinement process. The rest of 215 images
were partitioned into 3 even subsets for use in a three-fold cross
validation (CV) procedure. We stratified the partition so that each
of the above sets of images (totally, 5 of them) had equal ratios of
positive versus negative images and CCMC versus internet images.

To train a classifier, the regularization parameter λ used in the
SVM algorithm was tuned using the three-fold CV process where
two of the CV subsets were used to train a classifier with the

Fig. 7. The real-time refinement procedure to retrain the system at the point of care.
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pre-chosen value of λ, then the remaining subset was used to test
the resultant classifier. We ran the CV process with each choice of
λ from the pre-chosen values [2�14;2�8;…;20;21;…;214]. The
choice of λ that gave the best test classification performance was
used in the SVM algorithm to train the final classifier with the full
training data. The three classifiers in the cascade were all trained
separately using the above CV process. Note that the first-layer
classifier was trained with positive images of only green tubes
whereas the second-layer classifier was trained with those posi-
tive images excluded. All 215 images were used to train the third-
layer classifier.

In the classifier cascade, the first layer used 6 RGB intensity
features, and the second layer used 22 features including 18 RBG
features and 4 edge-map based features. For the third layer, 20
HOG, 20 SIFT, 58 LBP, 4 GLCM and 8 Wavelet features were
extracted. Together with the 22 baseline features used in the
second layer, we considered totally 132 features in this layer.
However, we observed that using all of the advanced features did
not necessarily improve the detection accuracy. Hence, we experi-
mented with each set of the advanced features by combining the
22 baseline features with one set at a time to find the best
classifier for the third layer.

4.2. Results

In the first two layers of the classifier cascade, final decisions
were made only for those images that were classified as positive
by any of the two classifiers. Hence, sensitivity (true positive rate)
was evaluated at the end of the second layer, but the final
specificity (true negative rate) would have to be evaluated until
the full cascade was applied. We observed that the 22 baseline
features were useful because the first two classifiers, by them-
selves, already achieved a sensitivity of 78% as estimated in the CV
(averaged over the test sets of the three CV folds), and also an
overall accuracy 87% if treating all non-classified images as
predicted negative at the second layer.

Table 1 shows the CV performance of the full cascaded classifier
where we tested the classifier separately on the set of high quality
CCMC images and the enlarged set including low quality internet
images. The best validation error rates were in bold fonts. From
Table 1, we see that each of the advanced feature sets can improve
the classification accuracy from the baseline features (from the
sensitivity 78%). The classifiers using additional HOG and Wavelet
features achieved the same validation error on the CCMC image set
but one had slightly better sensitivity and the other slightly better
specificity. The classifier using additional Wavelet features had
slightly better overall performance when tested on the enlarged
image set.

We also tested classifiers that were based only on the advanced
features with a variety of feature combinations. The classification
errors ranged from 30% to 45%. This showed that although these
advanced features improved our classifiers, they were by them-
selves not as effective as the baseline features that we proposed to
use (because the first two classifiers using the proposed features
achieved an overall accuracy of 87%).

To further measure the classifier performance, the receiver
operating characteristic (ROC) curves were drawn to show validation
performance in the CV in Fig. 8. The ROC plot is widely used to
characterize the performance of a classifier where the area under
the curve (AUC) is a statistic indicating the overall classification
performance. We observed that the classifier with SIFT features
showed comparable performance on the high quality images
(shown in Fig. 8(a)), but dropped its sensitivity on the enlarged
image set at the region of low false positive rate (shown in Fig. 8(b)).
Other classifiers performed similarly on the enlarged data set.

To tune the hyper-parameter in the SVM algorithm, Fig. 9 shows
how the classification performance varies when the regularization
parameter changes in the range from 2�14 to 214 for each layer of
the classifier. We used the parameter choices that gave the best CV
performance for each feature set in the experiments and also used
them in the refinement system. After a proper value of λ was
chosen, a classifier was obtained by running SVM on the full
training data, and then tested on the hold-out set with the test
performance shown in Table 2 (top section).

The classifier was then refined using the 20 images we held for the
refinement purpose. We conducted a simulation of how the system
will be refined when deployed into a clinical use. The 20 images were
randomly ordered and shown to the system in sequence. After each
image was tested, and if a user (we) made correction, the system
adjusted the features based on the user feedback on the image and
retrained the classifiers. After all 20 images were used, the resultant
classifier was tested on the hold-out set again. Table 2 (bottom
section) shows the refinement performance.

Table 2 shows that the offline-trained classifier with additional
HOG features achieved the best classification error rate and best
specificity. Then, the refinement step based only on 20 test images
could already improve the detection performance by 3–5%. The
best classification error rate was obtained by the classifier using
the baseline and HOG features. This classifier's accuracy was
increased by 7% in sensitivity and 1% in specificity by the
refinement step.

Fig. 10 visualizes exemplar images after the system makes
predictions for an image. The identified tubes were marked by
the red circles detected from edge-maps. It can be seen that our
systemwas able to detect the tubes of a variety of colors, as well as
tubes in different orientations or partially covered by obstructs.
Two images that were errors of the offline-trained system are also
shown in Fig. 10 and the errors were corrected during the
refinement phase. Fig. 11 shows an image used in the refinement
step. The offline-trained system was not able to correctly locate
the tube (shown in Fig. 11(a)), but a user marked out the tube area
with a blue circle (in Fig. 11(b)). After the system retrained the
classifier, the tube was correctly identified in this image.

Fig. 12 reports the run time of the proposed system when
running it in a Dell Precision T3500 machine. Fig. 12(a) shows the
average run time of feature extraction for an image in which we
compared the run time of extracting features from RGB intensities
and from edge maps. Since our empirical experiments show that
the system achieves the best performance while integrating HOG
features, we also included the averaged run time for computing
HOG features in Fig. 12(a). Fig. 12(b) shows the run time for
training each layer of the cascaded classifier when all 215 training
images are used. The refinement step takes a similar cost to that of
training due to its incremental nature. It can be seen that classifier

Table 1
Cross validation performance of the offline learning system.

Data sets 3rd layer
features

Error
rate

Sensitivity Specificity

High quality CCMC image set HOG 0.03 0.94 0.98
SIFT 0.04 0.88 0.99
LBP 0.04 0.92 0.98
GLCM 0.05 0.92 0.97
Wavelet 0.03 0.92 0.99

CCMC þ low quality internet
image set

HOG 0.06 0.89 0.96

SIFT 0.06 0.91 0.94
LBP 0.07 0.85 0.98
GLCM 0.08 0.88 0.95
Wavelet 0.05 0.92 0.95
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training only takes a small portion of the total run time, which also
ensures the efficiency of the real-time refinement. From Fig. 12,
the most time-consuming step lies in the feature extraction, and
specifically in the edge-map feature computation. This is because
we repeatedly detect circles in an image using a variety of radius
ranges.

Overall, our system was able to effectively detect tympanost-
omy tubes out of different sets of images with varying presence of
tympanostomy tubes, and with varying degrees of image qualities.
When presented with a test image, the systemwould mark around
the area where it thought the tube was located (see Figs. 10 and 11
for examples). On the high quality images we obtained a specifi-
city above 95% using all three classifiers. Our sensitivity was also
high with only SIFT features having a sensitivity below 90% at 88%.
There was a drop in both the sensitivity and specificity when the
classifier was tested on a mixed set of high quality and internet

Fig. 8. ROC comparison of the cascaded classifier trained with different choices of advanced features. Note that the axis ranges are adjusted (zoomed in) for clear illustration.

Fig. 9. The plots of validation error rate versus the regularization parameter for each classifier in the cascade. (a) First layer classifier, (b) second layer classifier, and (c) third
layer classifier.

Table 2
Detection performance on the hold-out images.

Data sets 3rd layer
feature

Error
rate

Sensitivity Specificity

Hold-out set using offline
classifier

HOG 0.10 0.85 0.92
SIFT 0.15 0.82 0.87
LBP 0.12 0.81 0.92
GLCM 0.15 0.80 0.88
Wavelet 0.13 0.92 0.85

Hold-out set using refined
classifier

HOG 0.07 0.92 0.93

SIFT 0.10 0.94 0.87
LBP 0.10 0.87 0.92
GLCM 0.13 0.87 0.88
Wavelet 0.08 0.92 0.92
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Fig. 10. (a)–(d) are exemplar images that show tympanostomy tubes of different colors and are correctly detected by the offline learning system. The system also correctly
locates the tubes. (e, f) show the errors made by the offline system. (e) shows a false negative where a green-color tube is obscured severely. Although the system correctly
locate two circles in the tube area, the system misclassifies the image as not containing a tube. (d) shows a false positive where a bright area presents a circle-like structure.
(For interpretation of the references to color in this figure, the reader is referred to the web version of this paper.)

Fig. 11. (a) shows an image used for real-time refinement. The classifier fails to label it with a tube although several circles are detected. In (b), a human user can mark out
the center location of the circle for the tube area and specify the radius (the additional circle). The label of this image and its features will be updated based on the feedbacks.
The offline-trained classifiers will be retrained using this image together with other images stored in the knowledge database. (For interpretation of the references to color in
this figure caption, the reader is referred to the web version of this paper.)
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images with sensitivities and specificities reducing to 89% and
95.5% on average. The classifier using the baseline plus the HOG
features achieved the best performance on both the high quality
CCMC image set and the enlarged image set after classifier
refinement. This performance was boosted to 92% and 93%,
respectively, in sensitivity and specificity on the enlarged image
set. Based on the experimental results, the HOG features (as shown
in Table 2) and Wavelet features (as shown in Table 1) may be
more useful in detecting the tympanostomy tube than other
advanced features.

5. Discussion

Tympanostomy tube placement is the primary surgical inter-
vention for otitis media, which is a pediatric health problem
worldwide. In a cross-sectional questionnaire study of 40,000
Norwegians, the estimated life-time prevalence of tympanostomy
tube surgery was about 12% [60]. Children under the age of 7 years
of age are at increased risk of otitis media due to the combination
of an immature immune system and a poor function of the
Eustachian tube [61]. The Eustachian tube is a slim connection
between the back of the nose and the middle ear space and
equalizes pressure with the external environment. Tympanostomy
tubes bypass the Eustachian tube by allowing equalization of
middle ear pressures with the outside environment. Placement
of tympanostomy tubes significantly improves hearing, reduces
the prevalence of middle ear effusion and may reduce the
incidence of recurrent acute otitis media.

With well over 650,000 performed each year in the United States at
an approximate cost of $2700 per surgery [62] the contribution to
health care costs is approximately 1.8 billion [2]. This, however, does
not account for follow up care. Follow-up of a tympanostomy tube
surgery is normally performed to verify the position of the tympa-
nostomy tube in the tympanic membrane and assess the patency of
the tympanostomy tube. This examination is performed using an
otoscope which is an instrument that allows illumination of the
tympanic membrane with magnification which is interpreted in
succession by a physician.

The American Academy of Otolaryngology and Head and Neck
Surgery recommends the initial control within one month after tube
placement and then at least once every six months until the tubes
extrude. Current check ups are performed by ear nose and throat
specialists at a significant financial cost for a low complexity visit.
Austad et al. [6] studied the possibility of utilizing primary care
physicians for tympanostomy tube check-up as a cost saving measure
with no difference in audiological and subjective hearing outcomes two
years after the surgery. There are however complications that can arise

from tympanostomy tube surgery such as otorrhea (drainage coming
through the tympanostomy tube) and tympanic membrane perfora-
tion, which physicians must be aware and vigilant not to miss [63].

Although computer aided diagnosis has been around for well
over a decade, its role has been mostly limited to the fields of
radiology and pathology with little participation in the process of
real time medical decision making with patients. We believe there
is the potential of computer image interpretation to perform
simple tasks allowing direct participation in patient care. Identify-
ing the presence of tympanostomy tubes may offer an alternative
to a physician follow-up visit in the future for patients with
tympanostomy tubes. Recent studies have revealed a low up rate
of post operative follow up compliance after placement of tympa-
nostomy tubes [64] and new commercially available technologies
including adaptable otoscopes to cell phones cameras can provide
those images from the comfort of the patient's home. A clinical
trial is currently being considered to evaluate the clinical usability
and efficiency of our computer vision system. In the trial, we are
not proposing complete replacement of the physician by machine
image recognition algorithms but for patients with an uncompli-
cated course it may obviate an unnecessary trip to the physician's
office. It can be an intermediate step in between visits and
reducing the cost of the follow up and it may help with the
overall follow up compliance.

We have identified several factors that make the identification
of tympanostomy tubes a good fit for computer vision. First
tympanostomy tubes consistently have an easily identifiable
circular shape and second they are usually made of bright color
plastic compounds usually green, blue, or black, which are
distinguishable from any human tissue. In this study we have
successfully implemented a computer vision system to approach
the problem of identifying tympanostomy tubes from otoscopic
images. We incorporated a variety of ear tubes of various colors
and in various locations within the tympanic membranes achiev-
ing adequate detection rate in up to 90% of cases. We have also
used images of various quality to test reliability of our methodol-
ogy even with less than ideal images.

This study represents the first attempt at incorporating com-
puter vision as a low cost alternative for a low acuity common visit
of tympanostomy tube check-up. There are, however, limitations
to our technique which are common to otoscopic examinations
such as limited visualization due to cerumen. The current real-
time refinement step retrains the system's classifier as long as a
user feedback is received. A more robust system may need to
select among the test images corrected by users to evaluate if
inclusion of such an image in classifier training will enhance
system performance. Another limitation would be to adequately
identifying patency of the tympanostomy tubes since adequate

Fig. 12. Run time of the system in feature extraction and in classifier training. (a) shows the average run time of extracting features for an image, and the computation costs
vary among the three groups of features. (b) shows the run time for training each layer of the cascaded classifier.
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visualization of the lumen of the ear tube may not be satisfactorily
achieved without multiple images from various angles which we
have not attempted in this study. Future directions may involve
utilization of multiple wavelengths to achieve different depth of
penetration of light through the tympanic membrane and contrast
enhancement as well as multiple images of the same ear at
different angles to be able to assess for patency.

6. Conclusions

We have proposed and developed a computer vision system for
automatically detecting a tympanostomy tube in an otoscopic
image of the ear drum. The proposed system comprises an offline
classifier training process and a real-time system refinement
process. The offline learning process creates a cascaded classifier
with 3 layers that is designed according to our domain knowledge
and observation on the various characteristics of tympanostomy
tubes. A state-of-the-art supervised learning method, support
vector machine, has been used to train the cascaded classifier that
is then stored in a knowledge database of the system. The
refinement process allows users to interact with the system aimed
at system adaptation over time to a user's specific setting. It seeks
user feedback on the prediction result of a test image during the
point of check-up. Based on the user feedback, the system can
automatically augment the training set by including the features
extracted from the test image to refine the classifiers stored in the
knowledge database. We propose the method to extract the RGB
intensity features and the combination with edge-map based
features to improve the quality of image representation. Other
advanced but commonly used features are also examined in our
system. Our empirical results show that the offline learning system
can achieve a detection accuracy reaching 90% and the real-time
refinement process can improve the performance of the classifier
by another 3–5%.
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