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ABSTRACT
Identifying genetic variation underlying a complex disease
is important. Many complex diseases have heterogeneous
phenotypes and are products of a variety of genetic and en-
vironmental factors acting in concert. Deriving highly her-
itable quantitative traits of a complex disease can improve
the identification of genetic risk of the disease. The most
sophisticated methods so far perform unsupervised cluster
analysis on phenotypic features; and then a quantitative
trait is derived based on each resultant cluster. Heritability
is estimated to assess the validity of the derived quantita-
tive traits. However, none of these methods explicitly max-
imize the heritability of the derived traits. We propose a
quadratic optimization approach that directly utilizes heri-
tability as an objective during the derivation of quantitative
traits of a disease. This method maximizes an objective
function that is formulated by decomposing the traditional
maximum likelihood method for estimating heritability of
a quantitative trait. We demonstrate the effectiveness of
the proposed method on both synthetic data and real-world
problems. We apply our algorithm to identify highly her-
itable traits of complex human-behavior disorders includ-
ing opioid and cocaine use disorders, and highly heritable
traits of dairy cattle that are economically important. Our
approach outperforms standard cluster analysis and several
previous methods.

Categories and Subject Descriptors
G.1.6 [Numerical]: Optimization—Quadratic programming
methods; H.2.8 [Database management]: Database Ap-
plication—Data mining

General Terms
Algorithms, Performance, Experimentation

∗Correspondence to: Jinbo Bi, jinbo@engr.uconn.edu

Keywords
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1. INTRODUCTION
Identifying genetic variants that underlie complex pheno-

types is important in genetics. Genetic correlation analysis
can help to uncover the underlying biological processes mod-
erating or regulating a complex disease, such as cancer, heart
disease, and substance dependence disorders, which facili-
tates the development of more effective treatments. Com-
plex phenotypes, however, exhibit great heterogeneity, and
are often products of a variety of genetic and environmental
factors acting in concert. Refinement of a complex pheno-
type to reduce phenotypic heterogeneity that is aimed at
separating genetic and environmental effects, and dissecting
its genetic heterogeneity is a challenging problem.

The success of genetic correlation with a complex trait
depends on the heritability of the trait. Heritability of a
phenotype measures the proportion of the total phenotypic
variance due to additive genetic effects [10]. It is a key popu-
lation parameter that helps to understand the genetic archi-
tecture of traits. Higher heritability of a phenotype implies
that the phenotype is more genetically influenced. Thus,
there is chance to detect its causal genetic variants. Methods
to obtain unbiased estimates of heritability from family pedi-
gree data are well developed for quantitative phenotypes [6].
For example, SOLAR [1], a genetic linkage analysis software
package, can estimate the heritability (both broad-sense and
narrow-sense) of a quantitative trait.

In the context of genetic analysis, phenotypic heterogene-
ity means that there are diverse forms of a particular trait.
Complex disease phenotypes are often characterized by a
variety of clinical variables and symptoms. For example, to
diagnose whether a patient has a lifetime drug dependence,
clinicians interview the patient to understand many aspects
of the patient’s drug use and related behaviors, the negative
consequences of drug use and treatment history, together
with an assessment of other co-occuring medical conditions.
All of these variables are used to make a diagnosis of depen-
dence on certain drug. Hence the phenotype of dependence
on a drug, such as opioid or cocaine, is characterized by all
of these parameters.

Although a large number of variables are involved in the
clinical diagnosis, multivariate data mining of these clinical
features has seldom been utilized. In genetic analysis of a
complex disease, the diagnosis itself is often regarded as the
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phenotype, which is a binary trait, partitioning the popula-
tion into two groups, one with the drug dependence disorder,
and the other without. This binary trait simply cannot dif-
ferentiate the heterogeneous clinical manifestations of the
disorder, and is likely attributable to heterogeneous genetic
causes. Hence, insights into the genetic etiology of drug de-
pendence are limited. In general, diagnosis-induced binary
traits often have low heritability and are not optimal for
genetic association studies [12].

In the effort to identify clinical traits that are suitable for
genetic analysis, researchers can perform a simple phenome
scan which assesses the heritability of each collected clini-
cal feature used in the diagnosis. This univariate analysis
approach, however, cannot evaluate the interplay between
different clinical features. It cannot answer the question of
whether a combination of several clinical features will form
a trait with higher heritability. In the few studies that have
used multivariate analysis of clinical symptoms and features
[8, 12, 5, 21], the most sophisticated approach is unsuper-
vised cluster analysis, which is used to find sub-groups of a
population that are homogeneous in their clinical features.
Quantitative traits can be derived for each resultant clus-
ter by calculating the membership likelihood in a cluster for
each subject. Then heritability of the derived quantitative
trait is estimated and used to assess the validity of the clus-
ters. Since cluster analysis is completely unsupervised, the
resultant clusters are not guaranteed to achieve high heri-
tability. There is currently no empirically derived and sta-
tistically rigorous method to identify the optimal trait for a
complex disease such as psychiatric illness [9].

In this paper, we propose to make explicit use of the heri-
tability estimate during the derivation of quantitative traits
of a complex phenotype. The problem of deriving a highly
heritable quantitative trait based on a collected sample dif-
fers from traditional supervised or unsupervised machine
learning problems where a human expert can either label
each sample subject with a precise label, e.g. the member-
ship of a subtype, or give no guidance at all. Mathematically,
we are given data Xn×d on a set of d phenotypic features
x for a total of n subjects from multiple families, and our
objective is to project X into some dimensions so that the
empirical heritability of the projected traits is high.

We propose to construct a quantitative trait y in the linear
form of y = x�w, and find the weight vector w that maxi-
mizes the empirical heritability of y. Non-linear projections,
if desirable, can be formulated using kernel machines [20] fol-
lowing the proposed approach here. A quadratic optimiza-
tion problem is formulated by decomposing the traditional
maximum likelihood method for estimating heritability of a
quantitative trait. We develop an efficient solver to optimize
the proposed quadratic optimization problem, and evaluate
the proposed algorithms on both synthetic and real world
data. The computational results demonstrate the effective-
ness and efficiency of our approach in deriving quantitative
trait with high heritability. In particular, we apply the ap-
proach to analyze clinical features related to opioid depen-
dence and cocaine dependence and pedigrees of small nuclear
families. To further show the general applicability of our ap-
proach, we apply it to a set of dairy cattle traits collected
for animal improvement together with extended pedigrees.
Our approach can define quantitative traits of drug use with
much higher heritability than those obtained by cluster anal-

ysis, and derive highly heritable quantitative traits for dairy
cattle.

The rest of this paper is organized as follows. We briefly
review the literature that is most relevant to the proposed
work in Section 2. We describe our formulation that derives
highly-heritable quantitative traits based on phenotypic fea-
tures in Sections 3 and 4, followed by an algorithm evalua-
tion on both synthetic and real world data in Section 5. We
conclude this paper with a discussion in Section 6.

2. RELATEDWORK
To date, the most sophisticated phenotypic refinement

methods come from multivariate cluster analysis and latent
class analysis that have been mainly used to subtype human
disease phenotypes [5, 12, 14, 7, 8]. Traditional clustering
algorithms such as k-means [19] and hierarchical clustering
[18] have been extensively applied to phenotype complex
diseases [22, 23, 4, 3]. Many of the studies lack a quantita-
tive and objective measure to validate the clusters. Cluster
analysis requires that the subtypes differ significantly on the
disease-specific phenotypic parameters that are used. More
recently, heritability was used to assess the validity of the
clusters [8, 5].

Figure 1 shows the flowchart of a common approach [7, 8,
16] for phenotypic subtyping. First, a standard clustering
strategy, relying either on a single clustering method or k-
means combined consecutively with hierarchical clustering,
was applied to the phenotypic data to partition the sam-
ple. It assigns each subject to a specific cluster. To form
a quantitative trait, a classification approach, typically lo-
gistic regression, is used to separate subjects in different
clusters with a probabilistic classifier that is a function of
an individual’s phenotypic features. The resulting classifier
is expected to report a higher membership score for subjects
in the cluster than those who are not. The score computed
for each subject is regarded as a quantitative trait character-
izing the specific cluster, and its heritability is empirically
estimated using software such as SOLAR [1]. This approach
is limited by the fact that, although heritability is used to
validate the clusters, it is not used in their creation.

Figure 1: A common approach to phenotypic subtyping.

In very recent work [21], an approach was proposed to
identify stable and heritable subtypes of opioid use and re-
lated behavior traits using a three-step sequence: variable
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selection, clustering, and classification. This approach ad-
vanced the subtyping methodology by assuming that highly-
heritable traits can be derived based on the clinical features
that are also heritable. In the variable selection step, clinical
features were selected based on their estimated heritability
and used in cluster analysis. This method resulted in two
highly-heritable opioid-use subtypes [21]. However, there
are several limitations that may prevent successful applica-
tions of this approach to other data sets. First, some of
the clinical features are binary traits, such as the response
variable to a question of “have you used opiates more than
11 times in your lifetime?” is binary with two possible an-
swers “Yes” or ‘No”. It is not straightforward to estimate
the heritability of a binary trait. Second, it is unclear that
combining only highly heritable clinical features will neces-
sarily lead to traits that are more heritable. Third, similar
to the standard approach reviewed above, heritability was
not used directly in the clustering process.

3. PROPOSED QUADRATIC
OPTIMIZATION

In this paper, we propose a new approach to maximize a
heritability-derived objective. Let Xn×d be the data matrix
on a set of d phenotypic features x for a total of n subjects
from multiple families. The goal is to find a y : y = x�w
that yields a high heritability estimate. We limit our dis-
cussion to linear projections. The proposed approach can
be extended to non-linear combinations, if desirable, by us-
ing kernel machines [20].

The heritability of a quantitative trait y can be estimated
using a well-established maximum likelihood method based
on linear mixture models [13, 2]. It assumes that the phe-
notype yi of a family i follows a multivariate normal distri-
bution with covariance Ωi and separate means for male and
female family members, μm and μf respectively. The reason
to have separate means for males and females is that it aligns
with the general observation that male and female subjects
present differences in quantitative traits, such as height and
weight. Each entry of Ωi is the phenotypic covariance of
two family members j and k, given by (1).

cov(yi
j , y

i
k) = 2σ2

aΦ
i
jk + σ2

dΔ
i
jk + σ2

eγ
i
jk (1)

σ2
a and σ2

d are genetic components representing additive ef-
fects and dominant effects, respectively; σ2

e denotes the vari-
ance due to environmental factors. Here another genetic
component: epistatic effects σ2

I is not considered, but the
approach can be extended to include this component or ef-
fects from any other source. The quantity Φi

jk is the kinship
coefficient between members j and k. It is the probability
that two alleles randomly drawn from j and k at a genetic
locus are identical by descent (IBD), which means that these
two alleles are identical copies of the same ancestral allele.
An allele is one of the alternative forms of a gene or a genetic
locus. As the human genome is diploid, each human subject
has two copies of an allele that can be in different forms at
a specific genetic locus. The quantity Δi

jk is the probability
of members j and k sharing both alleles at a genetic locus.
Both matrices Φi and Δi can be calculated from the family
pedigrees. Readers can consult Chapter 32 in [2] for de-
tails. Exemplar entries of Φ and Δ between selected family
members are illustrated in Table 1 where random mating is

Table 1: Elements of the matrices Φ and Δ for selected
relationships in a family when random mating is assumed

Relationship Φ Δ
Same person 1/2 1
Parent-Child 1/4 0
Full-siblings 1/4 1/4
Half-siblings 1/8 0
Monozygous twins 1/2 1
Grandparent-grandchild 1/8 0
Uncle/aunt-nephew/niece 1/8 0
First cousins 1/16 0
Double first cousins 1/8 1/16
Spouses 0 0

assumed. The parameter γi
jk is an environmental indicator

that encodes whether j and k live together (γi
jk = 1) or

apart (γi
jk = 0).

The five parameters: μm, μf , σ
2
a, σ

2
d and σ2

e , are estimated
by maximizing the log likelihood of pedigrees over all sample
families [13]. The log likelihood is computed by the following
equation (2)

LL =
∑
i

−1

2
ln|Ωi| − 1

2
(yi − μi)�Ω−1

i (yi − μi), (2)

where μi denotes a vector of the respective means μm, μf for
male or female members in the family i. Both gradient and
Hessian of the equation (2) with respect to μm, μf , σ

2
a, σ

2
d

and σ2
e can be calculated, and a Newton-Raphson algorithm

or a scoring method [13] can be applied to maximize the log
likelihood (2).

The narrow sense heritability is defined by h2 = σ2
a/σ

2
p

where σ2
p given by (3) is the total variance in y.

σ2
p = σ2

a + σ2
d + σ2

e (3)

The broad sense heritability is defined by the portion of to-
tal variance due to all genetic variation: H2 = (σ2

a+σ2
d)/σ

2
p.

In this paper, we target quantitative traits with higher nar-
row sense heritability, which we call heritability through the
remainder of this paper. If higher broad sense heritability is
desirable, our formulation can be easily adapted to derive a
quantitative trait of that sort.

To derive a trait y that has the highest possible heritabil-
ity, i.e., 1, the variance or covariance of y, cov(yi

j , y
i
k) should

be due to the additive effect σ2
a only, and σ2

d = σ2
e = 0. Mo-

tivated by this fact, we propose to search for the optimal w,
μm and μf such that the resulting trait y = x�w achieves
the maximal log likelihood LL in (2) with Ωi fixed to:

(Ωi)jk = cov(yi
j , y

i
k) = 2σ2

aΦ
i
jk.

Given that a scaling factor will not change the results, we
scale σa = 1. Then, maximizing the log likelihood LL in (2)
is equivalent to finding the optimal solution of the following
objective (4) after constants are eliminated:

min
w,μm,μf

∑
i

(Xiw − μi)�Φ−1
i (Xiw − μi). (4)

Let β = [w�, μm, μf ]
�, and H be defined by

Hi = [Xi, [−1/0]im, [−1/0]if ]
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where [1]i, [−1/0]im and [−1/0]if are column vectors with
length equal to the number of members in family i, [1]i con-
sists of all 1’s. For males in the family, −1 is assigned at their
corresponding entries in [−1/0]im and 0 at other positions
of the vector. The vector of [−1/0]if is similarly defined for
female family members. Then Problem (4) can be simplified
to the following optimization problem (5):

min
β

β�(
∑
i

H�
i Φ

−1
i Hi)β (5)

This objective function can be scaled with the magnitude
of β. We control the magnitude of β by fixing the sample
variance of the resulting trait to 1, which corresponds to
a constraint β�H�Hβ − n = 0. Clearly, μm and μf are
related to the sample means of clinical features x for male
and female respectively. They are not true free parameters
as they are determined once w is determined. Actually, μm

and μf are equal to the sample phenotypic means of male
and female, respectively when the optimal β is found. Let
μm, μf be respectively the two vectors of male and female
means on features x. Both μm and μf have a length of d.
Let

am = [μm,−1, 0],af = [μf , 0,−1]

Then the equality of μm = Mean(x�w) on all male family
members is translated into amβ = 0. Similarly, we also have
afβ = 0.

Imposing all of these constraints yields an optimization
problem with a quadratic objective subject to both quadratic
and linear equality constraints as shown in (6).

min
β

β�(
∑
i

H�
i Φ

−1
i Hi)β

subject to β�H�Hβ − n = 0

amβ = 0,afβ = 0

(6)

In many applications, sparsity on the clinical features may
be a desirable target. In other words, we expect to use
few clinical features in the projection. In such a case, the
objective can be regularized by a regularization term on w,
R(w). Then the overall optimization problem becomes:

min
β

β�(
∑
i

H�
i Φ

−1
i Hi)β + λR(w)

subject to β�H�Hβ − n = 0

amβ = 0,afβ = 0

(7)

where λ is a pre-specified tuning parameter for balancing
the two terms in the objective function, and R(w) can be
realized in different forms according to specific requirement
of an application. For example, if less features should be
included in the projection, R(w) can be implemented with
the �1 vector norm: ||w||1 which is defined by

∑
i |wi|, where

wi is the i-th entry of w. When features in x are clustered
in different groups, R(w) can be implemented by the �1,2
vector norm defined as

||w||2,1 =

L∑
�=1

√∑
i∈G�

w2
i . (8)

where G� contains the feature indices of a group �. More
specifically, if we focus on the implementation of (7) with the

�1 norm, i.e., we solve the following optimization problem:

min
β

β�(
∑
i

H�
i Φ

−1
i Hi)β + λ||w||1

subject to β�H�Hβ − n = 0

amβ = 0,afβ = 0.

(9)

We next introduce an algorithm to solve Problem (9) in the
following section. Note that Problem (6) can be treated as
a special case of Problem (9) at λ = 0. Hence, the solver for
Problem (7) with λ = 0 serves a solver for Problem (6).

4. OPTIMIZATION
The objective function in (9) is not continuously differ-

entiable because of the one norm regularization term. In
order to convert it to a canonical optimization problem and
gradient-based methods can be applied, we introduce two
sets of variables u ≥ 0 and v ≥ 0 both with equal length
of w. We replace w by u− v. Then ||w||1 =

∑d
i=1 ui + vi.

Correspondingly, we re-organize the variables as follows

γ = [u�,v�, μm, μf ]
�.

Let

Ci = [Xi,−Xi, [−1/0]im, [−1/0]if ],

and

a�
m = [μm,−μm,−1, 0],a�

f = [μf ,−μf , 0,−1],

b = [ 2d, 0, 0],

where 2d is a vector with length of 2d consisting of all
ones. By change of variables, Problem (9) can be proved to
be equivalent to Problem (10):

min
γ

f : γ�(
∑
i

C�
i Φ

−1
i Ci)γ + λ

2d∑
i=1

γi

subject to g1 : γ�C�Cγ − n = 0

g2 : a�
mγ = 0

g3 : a�
f γ = 0

g4:e : b · γ � 0

(10)

where e = 2d + 5 is the total number of constraints in the
problem. As we have an equality constraint in a quadratic
form, Problem (10) is not a convex optimization problem.
However, considering its special structure, we can solve it ef-
ficiently in the framework of sequential quadratic program-
ming (SQP) [15], as the gradient of both the objective func-
tion f and the constraints gi:i=1:e can be calculated as fol-
lows:

�f = (
∑
i

C�
i Φ

−1
i Ci)γ + λb

�g1 = C�Cγ,�g2 = a′
m,�g3 = a′

f

�g4:e =

[
I2d×2d 0

0 0

]

where I2d×2d is the identity matrix of dimension 2d × 2d.
The Lagrange function for this problem is,

L(γ,α) = f(γ) +
∑
i

αigi(γ). (11)
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where α contains all Lagrangian multipliers. The Hessian
of L with respect to γ can be calculated as,

�2
γγL =

∑
i

C�
i Φ

−1
i Ci + α1C

�C (12)

As other SQP methods, we solve the proposed problem
iteratively. At each iteration t + 1, we solve a quadratic
programming subproblem given in (13) to find the direction
to move towards one optimal solution.

min
p

f(γt) + �f(γt)
�p+

1

2
p��2

γγL(γt,αt)p

subject to �gi(γt)
�p+ gi(γt) = 0, i ∈ [1 : 3]

�gi(γt)
�p+ gi(γt) � 0, i ∈ [4 : e]

(13)

where p is a direction to be determined along with the ob-
jective function can be reduced. The solution p̂t to this sub-
problem together with its corresponding optimal Lagrangian
multipliers q̂t are used to update γ and α as follows:

γt+1 = γt + sp̂t,αt+1 = αt + s(q̂t −αt). (14)

where s is the learning step size which is a scalar and can be
found by general line search with �1 merit function defined
as following:

φ(γ, z) = f(γ) + z
3∑

i=1

|gi(γ)|. (15)

z is a multiplier that can be chosen in each step with the
following constraint:

z ≥ �f(γt)
�p̂t + (σ/2)p̂t

��2
γγL(γt,αt)p̂t

(1− ρ)
∑3

i=1 |gi(γt)|
, (16)

for some parameter ρ ∈ (0, 1). σ is a constant, either 1
when �2

γγL(γt,αt) is positive definite, otherwise 0. The
directional derivative of φ in the direction p̂t is given in
(17).

D(φ(γt, z), p̂t) = �f(γt)�p̂t − z

3∑
i=1

|gi(γt)| (17)

Algorithm 1 summarizes the algorithm that we used to solve
Problem (10).

5. EVALUATION
In our experiments, we first evaluated the effectiveness of

our approach using synthetic data for which we knew the
ground truth to test against. We then compared our ap-
proach on real-world data sets with several clustering ap-
proaches [12, 5, 21]. To the best of our knowledge, these
methods [12, 5, 21] are most suitable for comparison with
the proposed one. Heritability for the derived traits was esti-
mated using the polygenic program in the SOLAR software
package [1]. The polygenic function estimates the narrow
sense heritability of a quantitative trait.

5.1 Synthetic data
We synthesized data by creating the pedigrees for 250 nu-

clear families, each of which had 4 family members: father,
mother and two children. Hence, we had 1000 subjects in
total in the pedigree. The gender of all of the children were
randomly assigned. Both the kinship matrixΦ and the delta

Algorithm 1 A sequential quadratic programming ap-
proach for solving problem (10)

Input: Ci, Φi, a
′
m, a′

f , λ
Output: γ
1. Initialize γ with u = 1, v = 0, and μm, μf equal to
the sample male and female means of the obtained trait
when w = 1 applied.
2. Initialize α with all ones.
3. Evaluate f , �f , �gi and �2

γγL with γ and α.
4. Solve problem (13) to obtain p̂ and q̂.
5. Choose z satisfy Eq. (16).
6. Do line search to find a step size s satisfying Eq.(18)
with η ∈ (0, 0.5).

φ(γ + sp̂, z) ≤ φ(γ, z) + ηsD(φ(γ, z), p̂) (18)

7. Update γ and α as in Eq.(14).
Repeat 3-7 until γ reaches a fixed point.

matrix Δ were calculated for each family. Since all simu-
lated families had the exact same structure, they had the
exact same kinship matrix and delta matrix as follows:

Φ =

⎡
⎢⎢⎣
0.5 0 0.25 0.25
0 0.5 0.25 0.25

0.25 0.25 0.5 0.25
0.25 0.25 0.25 0.5

⎤
⎥⎥⎦ ,

Δ =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0.25
0 0 0.25 1

⎤
⎥⎥⎦ ,

with family members aligned in such order: father, mother,
the first child and the second child in both columns and
rows.

We then simulated a quantitative trait y which corre-
sponded to a vector where each entry was the phenotype
of a subject in the pedigree. The simulation procedure
was designed according to how the heritability of a quan-
titative trait was typically estimated. We randomly drew
points from a 4-dimensional multivariate Gaussian distri-
bution: N(μ,Ω) for each family. The 4 dimensions corre-
sponded to the 4 family members in each simulated fam-
ily. Notice that the μ used in the simulation of each family
may vary between families according to the gender of family
members. More precisely, if a family member is male, μ was
set to μm; or otherwise it was set to μf . The covariance
matrix Ω was given as follows:

Ω = 2σ2
aΦ+ σ2

dΔ+ σ2
eI. (19)

Without loss of generality, for simplicity, here we use identity
matrix I as the matrix γ in (1). The quantitative trait was
simulated with the following choice of parameters

[σ2
a, σ

2
d, σ

2
e , μm, μf ] = [0.8, 0.1, 0.1, 0.5, 1.1]. (20)

We next simulated 5 phenotypic features by randomly
drawing from a Gaussian distribution and used them to ap-
proximate the simulated quantitative trait by a linear func-
tion of yi = x�

i w for each simulated subject i. We regressed
on the simulated xi and the quantitative trait yi and the
best w = [1.3, 1.5, 0.7, 0, 1.1] in the simulation. The
fourth variable had no effect on this simulated trait.
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Before we ran the proposed algorithm, we estimated the
heritability of the simulated quantitative trait. The heri-
tability reported by SOLAR was 0.75, which was close to
the parameters we set and was accurate enough taking into
account the random nature of the simulation. The heri-
tability we implanted in the data was 0.8 according to (20).
This means that there is at least one specific combination of
the 5 simulated features that gives us a trait of around 0.75
heritability. Hence, if our approach works, it should yield
quantitative traits with a heritability estimate of at least
0.75.

We conducted a set of experiments with the proposed algo-
rithm where we chose λ = 0, 1, 2, 3, 4 in succession. For all
of the choices of λ tested, the proposed method can recover
the true w with good accuracy. And as expected, w was
shrunk when we increased λ. The proposed algorithm could
completely rule out the effect of the fourth variable when
λ = 4. The estimated heritability of the five derived quan-
titative traits (corresponding to λ = 0, 1, 2, 3, 4) are as
following: 0.797, 0.796, 0.796, 0.796, 0.796 and 0.789, all of
which are higher than the implanted one. This result shows
that our approach can successfully derive quantitative traits
of high heritability. When λ increases, heritability tends to
decrease but without significant changes for all tested λs.

5.2 Two data sets of drug use and related be-
haviors

We evaluated the proposed approach on two real-world
problems in genetic studies of opioid use and cocaine use
separately. Subjects were recruited from multiple sites, in-
cluding the University of Connecticut Health Center, Yale
University School of Medicine, the University of Pennsylva-
nia School of Medicine, McLean Hospital and the Medical
University of South Carolina. All subjects gave written, in-
formed consent to participate, using procedures approved
by the institutional review board at each participating site.
All of the subjects identified themselves as either African
American (AA) or European American (EA). Opioid use
or cocaine use and related behaviors were assessed with
two separate sections of the interview, each of which was
dedicated to the diagnosis of opioid dependence or cocaine
dependence. The computer-assisted interview is called the
Semi-Structured Assessment for Drug Dependence and Al-
coholism (SSADDA) [17].

5.2.1 Opioid use and related behaviors
A total of 4964 subjects with 1888 from small nuclear

families and 3076 unrelated individuals were aggregated for
the opioid use study. We included unrelated individuals in
the analysis, because they contribute to phenotypic variance
estimation even though they have no effect on covariance
estimation. There are 23 questions in the opioid dependence
section of the SSADDA, resulting in 220 clinical variables.
These variables represent features of opioid use and related
behaviors, including age of onset and frequency of opioid use,
the occurrence of psychosocial and medical consequences of
opioid use, etc. Of the 220 variables, 69 were identified and
used as key features for the purpose of subtyping opioid use
and related behaviors in a previous study [21]. We used
these selected features in the current analysis.

We ran the proposed algorithm on this dataset and we set
λ from 0 to 10 with a step size of 1. Estimated heritabil-
ity of the derived quantitative traits is reported in Figure

2, which also shows the percentage of clinical variables that
were selected by the �1 norm sparse regularization in our
analysis. As was observed in the synthetic data, the her-
itability dropped when as features were removed from the
model. We obtained the highest heritability, approximately
1, at λ = 0, where all features were used in the model. The
lowest heritability of 0.9543 was obtained at λ = 10, where
less than 44% of the features were selected for use in the
model.

Figure 2: Heritability estimates of derived quantitative
traits for opioid use and related behaviors when λ varies
(marked by diamonds) and the percentage of clinical vari-
ables included in the corresponding models (marked by tri-
angles).

We also examined the 10 clinical features that received
the highest weights in the model. Figure 3 shows the coef-
ficients w of these 10 clinical features (i.e., when λ = 10).
The clinical questions corresponding to these 10 variables
are listed below. These features may be worth investigating
in future genetic studies of opioid dependence.

• A1: When you stopped, cut down, or went without
(OPIATE, which reflects the opioid drug used most
commonly by the respondent), did you have nausea,
or did you vomit and have other withdraw symptoms
for most of the day for 2 days or longer?

• A2: Please think about the period when you were
using (OPIATE) the most. During that period, how
many days per month did you use (OPIATE)?

• A3: Have you given up or greatly reduced important
activities like sports, work, or associating with friends
or relatives while using opiate?

• A4: Because of your (OPIATE) use, did you ever ex-
perience having trouble concentrating or having such
trouble thinking clearly for more than 24 hours that it
interfered with your functioning?

• A5: Did you ever bring up any problems you might
have had with (OPIATE) with any professional?

• A6: Did using (OPIATE) cause you to have an over-
dose?

• A7: Because of your (OPIATE) use, did you ever ex-
perience feeling jumpy or easily startled or nervous for
more than 24 hours to the point that it interfered with
your functioning?
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• A8: Because of your (OPIATE) use, did you ever ex-
perience feeling depressed or uninterested in things for
more than 24 hours to the point that it interfered with
your functioning?

• A9: How many times you have ever injected an opiate
drug?

• A10: When you stopped, cut down, or went without
(OPIATE), did you yawn and have other withdraw
symptoms for most of the day for 2 days or longer?

Figure 3: Weights of the top 10 variables used in the model
that characterized a quantitative trait of opioid use and re-
lated behaviors.

We compared the proposed approach with a cluster anal-
ysis method published recently [21], which created a quanti-
tative trait of estimated heritability of 0.76 using the same
data. In the original study using this approach [21], it was
applied to a larger sample, which included the current data
as a subset and yielded five clusters, with the highest esti-
mated heritability of the clusters being 0.76. The heritabil-
ity was estimated using the same function in the SOLAR.

Another cluster analysis method [5] was also applied to
the same sample used in our study. The highest heritability
that the method in [5] achieved in its derived quantitative
traits was 0.66. Using the proposed method, we were able
to derive quantitative traits that approximated the highest
possible heritability, which demonstrated a clear benefit of
our algorithm.

5.2.2 Cocaine use and related behaviors
Phenotype data were collected for a set of 9436 subjects

for the studies of cocaine use and related behavior. Of these
9436 subjects, 2268 were from small nuclear families; and
7268 of them were unrelated individuals. The sample over-
lapped with the one used for opioid dependence, but the vari-
ables were derived from a different section of the SSADDA
interview. The cocaine use section of the SSADDA contains
25 questions on (1) age of onset, frequency, and intensity of
cocaine use; (2) route of cocaine administration; (3) occur-
rence of psychosocial and medical consequences of cocaine
use; (4) attempts to quit cocaine use; and (5) cocaine abuse
treatment sought and received, resulting in 160 variables.
There were 68 variables identified as key variables in the
derivation of highly heritable quantitative traits for cocaine
use and related behaviors [12]. We used these variables as
inputs in the proposed method.

Similar to the analysis on opioid use data, we also ran our
algorithm with λ ranging from 0 to 10 with a step size of
1. Figure 4 reports the heritability of the derived traits and
the percentage of clinical variables retained in the model.
Heritability decreased when fewer features were used in the
quantitative trait model. We reached the highest heritability
of 0.88 when λ = 0 and the corresponding quantitative trait
used all clinical features. The lowest heritability was 0.87
when λ = 10, where more than 54 % of the clinical features
were ruled out. Even when the number of features used
in the formation of the traits was significantly reduced, the
heritability of the resulting trait was more or less stable. The
results suggested that the phenotypic and clinical features
of cocaine use and related behaviors appeared to be less
heritable than those of opioid use.

Figure 4: Heritability estimates of derived quantitative
traits for cocaine use and related behaviors when λ varies
(the diamond line) and the percentage of features included
in the corresponding models (the triangle line).

The 10 clinical variables that received a large magnitude
of weights when λ = 10 were examined. Their corresponding
weights are shown in Figure 5. The questions corresponding
to these 10 variables are listed as follows:

• A1: Did you ever use cocaine at least once a week for
a month or more?

• A2: Have you often wanted to stop or cut down on
cocaine?

• A3: Have you ever been under the effects of cocaine
when it increased your chances of getting hurt, for in-
stance, when driving a car or boat, using knives, ma-
chinery or guns, crossing against traffic, climbing or
swimming?

• A4: How old were you the first time when you injected
cocaine?

• A5: Has there ever been a period of a month or more
when a great deal of your time was spent using cocaine,
getting cocaine, or getting over its effects?

• A6: Have you ever stayed high from cocaine for a
whole day or more?

• A7: How many times in your life have you used co-
caine?

• A8: Did you ever use alcohol or any other drug to
make yourself feel better when coming down from the
effects of cocaine?
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• A9: Have you ever used cocaine to keep from having
any these problems (or to make them go away)?

• A10: Have you often used cocaine on more days or in
larger amounts than you intended to?

Figure 5: Weights of the top 10 variables in the model that
characterizes the quantitative trait for cocaine use and re-
lated behaviors.

A subset of our cocaine-use data was employed previously
in [12] to derive highly heritable quantitative traits for co-
caine use and related behaviors. The highest heritability
reported in [12] was 0.5. We applied that cluster analysis
method to the same sample used in this study to search for
highly heritable traits, and the highest heritability we could
find was 0.644. Instead, the proposed method achieved a
quantitative trait with a much higher heritability (i.e., 0.88).

5.3 Economically important traits of
dairy cattle

A subset of pedigrees consisting of 2,544 extended families
and 19,097 individuals selected from a large cattle pedigree
data set (downloaded from http://aipl.arsusda.gov/eval.htm)
were used in our analysis. All individual bulls are of Holstein
breed and are from the United States. Among the 19,097
individuals, 10,216 bulls were evaluated on 38 quantitative
traits, such as reliability of yield and average number of
lactations per daughter. We first estimated the heritability
for all 38 individual traits and found 11 traits with low-to-
moderate heritability. Of these 11 traits, 8 had an estimated
heritability less than 0.35, and the other three had an esti-
mated heritabilities of 0.64, 0.65 and 0.73. We ran our algo-
rithm on the 11 traits to derive highly heritable quantitative
traits. Similar to the analysis for human subjects, we tested
multiple choices of λ ranging from 0 to 10.

The heritability estimates of the derived traits when λ
varies are plotted in Figure 6 together with the percentage
of features remaining in the model. As expected, we ob-
tained the highest heritability of 0.907 when λ = 0. The
heritability decreased slightly when λ increased, with the
lowest heritability of 0.898 when λ = 10. Two features are
dropped by the model when λ ≥ 6. All of the 11 derived
traits had a higher heritability than that of any single input
trait, which shows the effectiveness of our algorithm when
heritability is estimated using extended pedigrees.

Figure 6: Heritability estimates of derived quantitative
traits of dairy cattle when λ varies (the diamond line) and
the percentage of features included in the corresponding
models (the triangle line).

6. CONCLUSION
Discovering genetic risk factors for complex diseases is an

important task in medicine and biology. The power of most
genotype-phenotype association studies is positively associ-
ated with the heritability of the quantitative traits stud-
ied [2]. However, for many complex diseases, such as sub-
stance use disorders, currently no highly heritable quantita-
tive traits are available, despite the fact that twin studies
show them to be heritable diseases [11]. There is a lack
of effective methods to derive such a trait, a problem that
is exacerbated by the complicated structure of their clini-
cal features. Researchers have been using cluster analysis
to identify subgroups of a study population and then de-
rive cluster-based quantitative traits to maximize heritabil-
ity and homogeneity of the clinical features [12, 5, 21]. How-
ever, all previous approaches search for quantitative traits
without explicitly maximizing heritability, using heritability
only as the evaluation metric.

In this paper, we have proposed a quadratic optimiza-
tion problem to derive quantitative traits of a linear form
y = x�w by explicitly maximizing heritability. We searched
for the optimal w that maximizes the log likelihood in the
heritability estimation. An optimization algorithm based on
the framework of sequential quadratic programming was de-
veloped to efficiently solve the proposed formulation. The
proposed approach was evaluated on synthetic data and
three real-world problems. The empirical results demon-
strate the effectiveness of the proposed approach to the iden-
tification of highly heritable quantitative traits. Comparing
the results with those from existing cluster analysis meth-
ods on the two real-world substance dependence data sets
clearly showed that the new approach was superior. Our
future work will include a more thorough evaluation of the
proposed method on multiple other datasets that represent
difficult subtyping problems. We plan to implement the pro-
posed method with a few more choices of other regulariza-
tion terms, such as the �1,2-norm discussed in an early sec-
tion of this paper. These different regularization terms can
help to deal with complex data structures in the clinical fea-
tures, such as the different groups of clinical features in the
opioid and cocaine use datasets.
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