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ABSTRACT
Classical Linear Discriminant Analysis (LDA) is not ap-
plicable for small sample size problems due to the singu-
larity of the scatter matrices involved. Regularized LDA
(RLDA) provides a simple strategy to overcome the singu-
larity problem by applying a regularization term, which is
commonly estimated via cross-validation from a set of can-
didates. However, cross-validation may be computationally
prohibitive when the candidate set is large. An efficient al-
gorithm for RLDA is presented that computes the optimal
transformation of RLDA for a large set of parameter candi-
dates, with approximately the same cost as running RLDA
a small number of times. Thus it facilitates efficient model
selection for RLDA.

An intrinsic relationship between RLDA and Uncorrelated
LDA (ULDA), which was recently proposed for dimension
reduction and classification is presented. More specifically,
RLDA is shown to approach ULDA when the regularization
value tends to zero. That is, RLDA without any regular-
ization is equivalent to ULDA. It can be further shown that
ULDA maps all data points from the same class to a com-
mon point, under a mild condition which has been shown
to hold for many high-dimensional datasets. This leads to
the overfitting problem in ULDA, which has been observed
in several applications. The theoretical analysis presented
provides further justification for the use of regularization
in RLDA. Extensive experiments confirm the claimed the-
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oretical estimate of efficiency. Experiments also show that,
for a properly chosen regularization parameter, RLDA per-
forms favorably in classification, in comparison with ULDA,
as well as other existing LDA-based algorithms and Support
Vector Machines (SVM).

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database Applications - Data Mining

General Terms: Algorithms

Keywords: Dimension reduction, Linear Discriminant Anal-
ysis, regularization, model selection

1. INTRODUCTION
Linear Discriminant Analysis (LDA) is a well-known clas-

sification method that projects high-dimensional data onto
a low-dimensional space where the data is reshaped to max-
imize class separability [7, 9, 15]. The optimal projection or
transformation in classical LDA is obtained by minimizing
the within-class distance and maximizing the between-class
distance simultaneously, thus achieving maximum discrimi-
nation. Classical LDA involves three scatter matrices, i.e.,
the within-class, between-class, and total scatter matrices.
The total scatter matrix is a multiple of the sample covari-
ance matrix and is required to be nonsingular. However,
in many applications such as text mining, microarray data
classification, and face recognition, all scatter matrices in
question can be singular since the data points are in a very
high-dimensional space and the sample size does not exceed
this dimension. This is known as the singularity or under-
sampled problem [17].

Regularized LDA (RLDA) provides an effective solution
for the singularity problem. The idea is to add a constant λ
to the diagonal elements of the total scatter matrix, where
λ > 0 is known as the regularization parameter. Regular-
ization stabilizes the sample covariance matrix estimation
and improves the classification performance of LDA. RLDA



has applications in many areas, including face recognition
[4, 18], microarray classification [11], medical image analy-
sis [6], etc.

Choosing an appropriate regularization value is a critical
issue in RLDA, as a large λ may significantly disturb the
information in the scatter matrix, while a small λ may not
be effective enough to solve the singularity problem. Cross-
validation is commonly used to estimate the optimal λ from
a finite set, Λ = {λ1, · · · , λm}, of m candidates. Selecting
an optimal value for a parameter such as λ is called model
selection [15]. The computational cost of model selection
for RLDA can be high, especially when m is large, since
it requires expensive matrix computations for each λi ∈ Λ.
However, a large m is often desirable in practice to obtain a
good λ.

1.1 Related work
Besides regularized LDA, other methods have been brought

to bear on such high-dimensional, small sample size prob-
lems, including Penalized LDA (PLDA) [12], Diagonal LDA
(DLDA) [5], Uncorrelated LDA (ULDA) [16], Orthogonal
LDA (OLDA) [24], and PCA+LDA [2], where PCA stands
for Principal Component Analysis. Many of these LDA-
based methods have the same computational cost. We show
an interesting relationship between RLDA and ULDA in this
paper. This relationship implies that single-model RLDA
(with m = 1) and ULDA are of the same time complexity.
Thus our experimental studies on efficiency concentrate on
the comparison between single-model RLDA and multiple-
model RLDA (with m > 1).

From the perspective of computing the discriminant score
for classification, rather than feature extraction, Hastie et al.
[14, 11] proposed an efficient algorithm for RLDA. However,
these algorithms tend to be numerically unstable when the
regularization parameter λ is close to 0. Friedman [8] consid-
ered a more general formulation of RLDA and proposed an
efficient algorithm when leave-one-out cross-validation was
applied. It did not address the high computational cost as-
sociated with estimating the best regularization parameter
from a large set of candidates, which has recently been ad-
dressed in [25].

Regularization is the key to many other machine learn-
ing methods such as Support Vector Machines (SVM) [22],
spline fitting [23], Quadratic Discriminant Analysis (QDA)
[8], etc. The tuning of the regularization parameter also
consumes time in SVM training. Hastie et al. [13] proposed
an algorithm for SVM, which fits the entire path of SVM so-
lutions for every value of the regularization parameter, with
essentially the same computational cost as fitting one SVM
model. This dramatically reduces the computational cost of
model selection in SVM training.

1.2 Contributions
This paper aims to reduce the computational cost of the

regularized LDA approach on high-dimensional, small sam-
ple size problems. The primary contributions of this work
include the following:

• A theoretical property of RLDA is established, that is,
regularizing the total scatter matrix is equivalent to
regularizing its nonzero eigenvalues. This result shows
the essential dimension where the regularization takes
place. We call this property the essential regulariza-
tion property.

• An efficient algorithm for solving RLDA is proposed,
using the essential regularization property to speed up
the model selection process for RLDA.

• The proposed algorithm also makes RLDA model more
stable. Note that the optimization in traditional RLDA
involves the calculation of the inverse of the regularized
total scatter matrix, and is thus subject to numerical
instability problems as λ→ 0.

• RLDA is shown to approach Uncorrelated LDA, as
λ → 0. Thus, the range of λ for RLDA is extended
to [0,∞), overcoming the limitation of the traditional
RLDA algorithms.

• Uncorrelated LDA (ULDA) is shown to map all points
from the same class to a common point, under a mild
condition which has been shown to hold for many high-
dimensional data. This leads to the overfitting prob-
lem in ULDA, which further justifies the need for reg-
ularization applied in RLDA.

Besides the theoretical results that guarantee the efficiency
of the proposed model selection algorithm for RLDA, experi-
ments on computational efficiency confirm our theoretically-
established bounds. Moreover, our experiments also show
favorable performance of the algorithm in terms of classifi-
cation, in comparison of several other LDA-based methods
and SVM. In summary, we propose in this paper a new im-
plementation of RLDA, which allows model selection to be
optimized over a large set of candidates with low computa-
tional effort.

The rest of the paper is organized as follows. An overview
of classical LDA and regularized LDA is given in Section 2.
The essential regularization property of Regularized LDA
is presented in Section 3. Efficient RLDA algorithms are
described in Section 4. Section 5 includes the experimental
results. We conclude in Section 6.

2. REVIEW OF CLASSICAL LDA
AND REGULARIZED LDA

We briefly review the classical LDA formulation and the
regularized LDA formulation in this section.

2.1 Classical LDA
Given a data matrix A ∈ IRd×n, classical LDA computes

a linear transformation G ∈ IRd×� that maps each column
ai of A, for 1 ≤ i ≤ n, in the d-dimensional space to a vector
yi in the �-dimensional space: G : ai ∈ IRd → yi = GT ai ∈
IR� (� < d).

Let the data matrix A be partitioned into k classes as
A = [A1, · · · , Ak], where Ai ∈ IRd×ni , and

�k
i=1 ni = n. In

discriminant analysis [9], three scatter matrices, i.e., within-
class, between-class, and total scatter matrices are defined
as follows:

Sw =
1

n

k�
i=1

�
x∈Ai

(x− c(i))(x− c(i))T , (1)

Sb =
1

n

k�
i=1

ni(c
(i) − c)(c(i) − c)T , (2)

St =
1

n

n�
j=1

(aj − c)(aj − c)T , (3)



where the centroid c(i) of the i-th class is defined as c(i) =
1

ni
Aie

(i) with e(i) = (1, 1, · · · , 1)T ∈ IRni , and the global

centroid c is defined as c = 1
n
Ae with e = (1, 1, · · · , 1)T ∈

IRn. It follows from the definition that St = Sb + Sw.
Define the matrices

Hw =
1√
n

[A1 − c(1)(e(1))T , · · · , Ak − c(k)(e(k))T ], (4)

Hb =
1√
n

[
√

n1(c
(1) − c), · · · ,√nk(c(k) − c)], (5)

Ht =
1√
n

(A− ceT ). (6)

Then the three scatter matrices: Sw, Sb, and St in Eqs. (1)–
(3) can be expressed as

Sw = HwHT
w , Sb = HbH

T
b , St = HtH

T
t . (7)

In the lower-dimensional space resulting from the linear trans-
formation G, the scatter matrices Sw, and Sb, and St be-
come GT SwG, GT SbG, and GT StG, respectively. An opti-
mal transformation G∗ in classical discriminant analysis can
be computed by solving the following optimization problem
[9]:

G∗ = arg max
G

�
trace((GT SwG)−1GT SbG)

�
, (8)

which can be shown to be equivalent to

G∗ = arg max
G

�
trace((GT StG)−1GT SbG)

�
, (9)

using the following equality: St = Sb + Sw.
The optimization problem in Eq. (9) is equivalent to find-

ing x that satisfies Sbx = λStx, for λ �= 0 [9]. The solution
can be obtained by applying an eigen-decomposition on the
matrix S−1

t Sb, if St is nonsingular. Note that there exist
no more than k − 1 eigenvectors corresponding to nonzero
eigenvalues, since the rank of the matrix Sb is bounded from
above by k−1. Therefore, the reduced dimension of classical
LDA is at most k − 1.

Classical LDA is equivalent to maximum likelihood clas-
sification assuming normal distribution for each class with
the common covariance matrix. Although relying on heavy
assumptions which are not true in many applications, LDA
has been proved to be effective. This is mainly due to the
fact that a simple, linear model is more robust against noise,
and most likely will not overfit.

2.2 Regularized LDA
Classical discriminant analysis requires the total scatter

matrix St to be nonsingular, which may not hold for small
sample size data. A simple way to deal with the singularity
of St is to apply regularization, by adding some constant
value to the diagonal elements of St as S̃t = St + λId, for
some λ > 0, where Id is the identity matrix of size d. Since
St is positive semi-definite, St + λId is positive definite [10],
and hence nonsingular.

An optimal transformation of RLDA can be computed by
solving the following optimization problem:

G∗ = arg max
G

�
trace((GT (St + λI) G)−1GT SbG)

�
. (10)

Similarly, the solution to Eq. (10) can be achieved by com-
puting the eigen-decomposition of (St +λI)−1Sb. The com-
putation can be divided into two stages. First the Singular

Value Decomposition (SVD) [10] of Ht in Eq. (6) is com-
puted:

Ht = ÛΣ̂V̂ T ,

where Û ∈ Rd×d and V̂ ∈ Rn×n are orthonormal square
matrices, and Σ̂ ∈ Rd×n is diagonal. It follows from Eq. (7)
that

St = HtH
T
t = ÛΣ̂Σ̂T ÛT .

Therefore

S̃t = St + λId = Û(Σ̂Σ̂T + λId)ÛT = ÛΣ̃lÛ
T , (11)

where Σ̃l = Σ̂Σ̂T + λId. For high-dimensional data, the size
of Σ̃l is large. However, we will show that Σ̃l can be replaced
by a much smaller matrix whose size is the same as the rank
of St, a number much smaller than d for high-dimensional,
small sample size data.

Next, let UbΣbV
T

b be the SVD of

Σ̃
−1/2
l ÛT Hb,

where Hb is defined in Eq. (5). Let

X = ÛΣ̃
−1/2
l Ub.

Then from Eq. (7), we have

XT S̃tX =
�
ÛΣ̃

−1/2
l Ub

�T �
ÛΣ̃lÛ

T
�

ÛΣ̃
−1/2
l Ub = Id,

XT SbX =
�
ÛΣ̃

−1/2
l Ub

�T �
HbH

T
b

�
ÛΣ̃

−1/2
l Ub = Σ2

b .

The optimal transformation G for RLDA consists of the
first q columns of X, where q = rank(Sb).

The time complexity of the above algorithm is O(nd2),
which can be expensive for high-dimensional data. Espe-
cially, when v-fold cross-validation (v = 5 in our experi-
ments) is performed for choosing the best λ, the above al-
gorithm needs to be repeated v times. It is often compu-
tationally prohibitive, and thus restricts the application of
RLDA to data of small size.

Remark 2.1. Note that in the traditional RLDA formu-
lation, Sw is applied instead of St as in Eq. (10). The reg-
ularization value λ is thus required to be positive and the
algorithm is subject to numerical instability problems, when
λ is close to 0. The modified formulation for RLDA used
in this paper overcomes this limitation, by showing that the
limit of the solution to RLDA exists, when λ → 0, and is
equal to ULDA. More details can be found in Section 4.4.

3. ESSENTIAL REGULARIZATION
PROPERTY

In this section, we present a key property of regularized
LDA, establishing that regularizing the total scatter matrix
St, in the context of LDA, is equivalent to regularizing the
nonzero eigenvalues of St. This property has significant im-
plications in designing an efficient RLDA algorithm for small
sample size problems.

The result of this section is motivated by the following
fact: if the rank of Ht is r (r � d), the orthonormal matrices
in the SVD decomposition have redundant columns. Only
the first r columns of Û and V̂ corresponding to the first
r rows and the first r columns in Σ̂ where diagonal entries
are nonzero play a role in the reconstruction of Ht. Let



U ∈ IRd×r and V ∈ IRd×r denote the first r columns of Û
and V̂ , respectively. Let the square matrix Σ consist of the
first r rows and the first r columns of Σ̂. Then we have

Ht = ÛΣ̂V̂ T = UΣV T .

It is clear that

St + λId = Û(Σ̂Σ̂T + λId)ÛT �= U(Σ2 + λIr)U
T .

However, our main result of this section shows that

(St + λId)−1Sb = Û(Σ̂Σ̂ + λIr)
−1ÛT Sb

= U(Σ2 + λIr)
−1UT Sb.

One of the basic tools used in our proof is the Sherman-
Woodbury-Morrison formula [10]: Let P ∈ IRd×d, and Q, R ∈
IRd×n. Assuming that both the matrices P and (I+RT P−1Q)
are nonsingular, we have

(P + QRT )−1 = P−1 − P−1Q(I + RT P−1Q)−1RT P−1.
(12)

Proposition 3.1. Let the scatter matrices St and Sb be
defined as above, and let UΣV T be the skinny SVD of Ht,
where U ∈ IRd×r and V ∈ IRn×r have orthonormal columns,
Σ ∈ IRr×r is diagonal, and r = rank(St). We have

(St + λId)−1Sb = U(Σ2 + λIr)
−1UT Sb + λ−1U⊥UT

⊥Sb.
(13)

where d is the dimension of data points, and U⊥ is the or-
thogonal complement of U .

Proof. From Ht = UΣV T , we have

St = HtH
T
t = UΣ2UT .

Substituting P = λId, and Q = R = UΣ into the Sherman-
Woodbury-Morrison formula as in Eq. (12), we have

S̃−1
t = λ−1Id − λ−2U(Σ(Ir + λ−1Σ2)−1Σ)UT .

Note that Σ(Ir + λ−1Σ2)−1Σ is a diagonal matrix. Using
the equality

σ2

λ(λ + σ2)
=

1

λ
− 1

λ + σ2
,

we can show that

λ−2Σ(Ir + λ−1Σ2)−1Σ = λ−1Ir − (Σ2 + λIr)
−1,

and thus

S̃−1
t = λ−1Id + U((Σ2 + λIr)

−1 − λ−1Ir)U
T

= U(Σ2 + λIr)
−1UT + λ−1(Id − UUT ).

Note that U⊥ ∈ IRd×(d−r) is the orthogonal complement
of U , that is, [U, U⊥] ∈ IRd×d is orthogonal. Using the fact
that

[U, U⊥][U, U⊥]T = UUT + U⊥UT
⊥ = Id,

we have

S̃−1
t = U(Σ2 + λIr)

−1UT + λ−1U⊥UT
⊥ ,

and the result follows by multiplying by Sb on both sides.

The computation of the transformation G via the eigen-
decomposition of the matrix in Eq. (13) may be sensitive to
numerical disturbances as λ→ 0, due to the presence of λ−1

in the second term. Interestingly, it can be overcome using
the result in the following lemma:

Lemma 3.1. Let U⊥, St, and Sb be defined as above. Then,
the null space of St, denoted as Null(St) is a subset of the
null space, Null(Sb), of Sb. That is, Null(St) ⊆ Null(Sb).
Furthermore, UT

⊥Sb = 0.

Proof. The proof directly follows from the fact that St =
Sb + Sw, and both Sb and Sw are positive semi-definite.

With Proposition 3.1 and Lemma 3.1, we have the follow-
ing main result of this section:

Theorem 3.1. Let St, Sb, U , V , Σ, d, and r be defined
as in Proposition 3.1. Then for any λ > 0, the following
equality holds:

(St + λId)−1Sb = U(Σ2 + λIr)
−1UT Sb. (14)

Theorem 3.1 implies that regularizing the total scatter
St, in the context of LDA, is equivalent to regularizing the
nonzero eigenvalues of St. The eigenvectors of S̃−1

t Sb can
be computed as follows:

Theorem 3.2. Let y be an eigenvector of S̃−1
t Sb corre-

sponding to a nonzero eigenvalue μ, then y = Ux for some
x, where x is an eigenvector of (Σ2 + λIr)

−1UT SbU .

Proof. Let y be an eigenvector of S̃−1
t Sb corresponding

to a nonzero eigenvalue μ. Then

y =
1

μ
U(Σ2 + λIr)

−1UT Sby = Ux,

for some x.
Next, we show that x is an eigenvector of (Σ2+λIr)

−1UT SbU .
Multiplying both sides of the following equation by UT :

U(Σ2 + λIr)
−1UT Sby = μy,

we have

(Σ2 + λIr)
−1UT Sb(Ux) = λUT (Ux) = μx.

This completes the proof of the theorem.

Denote Σ̃s = Σ2 + λIr. In contrast to Σ̃l used in tradi-
tional RLDA, as given in Eq. (11), the size of Σ̃s is typi-
cally small for high-dimensional small sample size data. So
is the size of Σ̃−1

s UT SbU , an important matrix introduced
in Theorem 3.2. It is also worth noting that computing U
is independent of the regularization value λ. Thus, Theo-
rem 3.2 leads to a two-step computation of the eigenvectors
of S̃−1

t Sb:

• compute U ; and

• compute the eigen-decomposition of Σ̃−1
s UT SbU .

In the following, we describe an efficient way of computing
the eigenvectors of Σ̃−1

s UT SbU , which is

Σ̃−1/2
s (Σ̃−1/2

s UT Hb)(Σ̃
−1/2
s UT Hb)

T Σ̃1/2
s ,

since Sb = HbH
T
b as in Eq. (7), where Hb is defined in

Eq. (5). Let UbΣbV
T
b be the SVD of Σ̃

−1/2
s UT Hb, then we

have

Σ̃−1
s UT SbU = Σ̃−1/2

s UbΣ
2
bU

T
b Σ̃1/2

s

= (Σ̃−1/2
s Ub)Σ

2
b(Σ̃

−1/2
s Ub)

−1.

That is, Σ̃
−1/2
s Ub diagonalizes the matrix Σ̃−1

s UT SbU . Thus,

the columns of Σ̃
−1/2
s Ub form the eigenvectors of Σ̃−1

s UT SbU .
The above computation is more efficient than directly ap-
plying the eigen-decomposition to Σ̃−1

s UT SbU since the size

of Σ̃
−1/2
s UT Hb is much smaller (i.e., r × k).



4. EFFICIENT RLDA ALGORITHMS
In this section, we present efficient RLDA algorithms for

both the single model, where |Λ| = 1 (Λ is the candidate set
for regularization) and the multiple model, where |Λ| > 1.

4.1 Single model (|Λ| = 1)
Given a fixed training dataset and a fixed regularization

value λ, our proposed single-model RLDA algorithm is sum-
marized in Algorithm 1 below.

The time complexity of this algorithm is dominated by
Lines 2 and 3. For small sample size problems, the cost
of Lines 4-6 is significantly smaller than the cost of Line 2.
(More details will be given in Section 4.2.) Note that Lines
2 and 3 are independent of λ. This observation is the key
for the efficient multiple-model RLDA algorithm proposed
next.

Algorithm 1: Single-model RLDA
1. Construct Hb and Ht as in Eqs. (5) and (6),

r ← rank(Ht);
2. Compute the SVD of Ht: Ht = UΣV T ;
3. Hb,L ← UT Hb;

4. Σ̃s ← (Σ2 + λIr);

5. Compute SVD of Σ̃
−1/2
s Hb,L = UbΣbV

T
b ;

6. G← UΣ̃
−1/2
s Ub.

4.2 Multiple model (|Λ| > 1)
Let Λ = {λ1, · · · , λm} be the candidate set for the regular-

ization λ. In multiple-model RLDA, v-fold cross-validation
is applied, where the data is divided into v subsets of (ap-
proximately) equal size. All subsets are mutually exclusive,
and in the i-th fold, the i-th subset is held out for test
and all other subsets are used for training. For each λj ,
j = 1, · · · , m, we compute the cross-validation accuracy,
Accu(j), defined as the mean of the accuracies for all folds.
The best regularization value λj∗ is the one with

j∗ = arg max
j

Accu(j).

The pseudo-code for multiple-model RLDA is given in Al-
gorithm 2. Note that the k-nearest neighbor (k = 1), called
1-NN, is used for classification as in [24].

4.3 Time complexity
Line 4 takes O(n2d) time for the SVD computation. Lines 5

and 6 take O(drk) and O(rdn) time, respectively, for the
matrix multiplication. For each choice λj , Line 9 and 10
take O(rk2) time for the eigen-decomposition and matrix
multiplication. Line 11 takes O(krn) time for the matrix
multiplication. The computation of the classification accu-
racy by 1-NN in Line 12 takes O(n2k) time. Thus, the total
time complexity, T (m), for estimating the best parameter is

T (m) = O
�
v
�
n2d + rnd + drk

+ m(rk2 + krn + n2k)
��

= O
�
v(n2d + mn2k)

�

= O
�
vn2(d + mk)

�
.

We can compare T (m) with T (1), where m = 1, and obtain

T (m)

T (1)
≈ vn2(d + mk)

vn2(d + k)
≈ 1 +

mk

d
.

For small sample size problems, where the number, k, of
classes is much smaller than the dimension d, i.e., k � d,
the overhead of estimating the optimal regularization value
among a large set is small.

Algorithm 2: Multiple-model RLDA
1. For i = 1 : v / / v-fold cross validation

2. Construct Ai and Aî;
/ / Ai = i-th fold, for training

/ / Aî = rest, for testing
3. Construct Ht and Hb using Ai;
4. Compute the SVD of Ht: Ht = UΣV T ;
5. Hb,L ← UT Hb, r = rank(Ht);

6. Ai
L ← UT Aî; Aî

L ← UT Aî;
7. For j = 1 : m / / m choices for λ

8. Σ̃← (Σ2 + λjIr)
−1/2;

9. Compute SVD of Σ̃Hb,L = UbΣbV
T
b ;

10. G← Σ̃Ub;

11. Ai
L ← GT Ai

L; Aî
L ← GT Aî

L;

12. Run 1-NN on
�
Ai

L, Aî
L

�
and compute the

accuracy, denoted as Accu(i, j);
13. EndFor
14. EndFor
15. Accu(j)← 1

v

�v
i=1 Accu(i, j);

16. j∗ ← arg maxj Accu(j);
17. Output λj∗ as the best parameter.

4.4 Relationship between RLDA and ULDA
Uncorrelated LDA (ULDA) [24] was proposed for feature

extraction on small sample size problems. One key property
of ULDA is that the features in the transformed space are
uncorrelated, thus ensuring minimum redundancy among
the features in the reduced space. It was shown [24] that
the transformation by ULDA consists of the first q eigen-
vectors of S+

t Sb, where q = rank(Sb). Interestingly, we can
show that the limit of RLDA when λ → 0 is equivalent to
ULDA based on the following lemma:

Theorem 4.1. Let St and Sb be defined as above and λ >
0. Then

lim
λ→0

(St + λId)−1Sb = S+
t Sb.

Proof. The proof follows directly from Theorem 3.1.

Remark 4.1. Theorem 4.1 implies that the range of the
parameter λ in RLDA is [0,∞). Note that for traditional
RLDA algorithms, the range of λ is [η,∞) for some positive
η. When λ is close to 0, these algorithms tend to have nu-
merical instability problems, since they follow the optimiza-
tion problem in Eq. (8), while the proposed RLDA algorithm
follow the one in Eq. (9).

Theorem 4.1 implies that ULDA is a special case of RLDA
when λ = 0. With a properly chosen λ through multiple-
model RLDA in Section 4.2, RLDA is expected to outper-
form ULDA, which is confirmed by the empirical results pre-
sented in the next section. It was shown [24] that ULDA
has the same computational cost as many other competi-
tive LDA methods, including Orthogonal LDA. So in our
experimental study on efficiency, we will concentrate on the



comparison between the single-model RLDA and multiple-
model RLDA.

One interesting property of ULDA [26] is that under a
mild condition that

rank(Sb) + rank(Sw) = rank(St), (15)

the optimal transformation G lies in the null space of the
within-class scatter matrix, that is, GT Sw = 0. It has
been shown [26] that the condition in Eq. (15) holds for
many high-dimensional data, including most datasets used
in our studies in Section 5. We show in the following that if
GT Sw = 0, then ULDA maps all points from the same class
to a common vector.

Proposition 4.1. Let G be the transformation in ULDA,
and let x be a data point from the i-th class. Assume GT Sw =
0. Then GT x = GT c(i), where c(i) is the centroid of the i-th
class. That is, all data points from the i-th class are mapped
to the common vector GT c(i).

Proof. Since GT Sw = 0, we have

0 = GT SwG = GT HwHT
wG, (16)

where Hw is defined as in Eq. (4):

Hw = [(A1 − c(1)(e(1))T ), · · · , (Ak − c(k)(e(k))T )],

where Ai is the data matrix of the i-th class, and e(i) is the
vector of all ones. It follows from Eq. (16) that GT Hw = 0.
Considering the i-th block of GT Hw, we have that

GT
�
Ai − c(i)(e(i))T

�
=
�
GT Ai −GT c(i)(e(i))T

�
= 0.

Hence, GT x = GT c(i), for each column x in Ai. This com-
pletes the proof of the proposition.

Proposition 4.1 above shows that under a mild condition,
ULDA maps all points from the same class to a common
point. This leads to perfect separation between different
classes, however, this may also lead to overfitting. The prob-
lem may be worse especially when the data is noisy. Regu-
larization applied in RLDA is thus expected to alleviate this
problem, provided that a good regularization parameter can
be estimated.

5. EXPERIMENTS
In this section, we experimentally evaluate the perfor-

mance of RLDA. All of our experiments are performed on
a P4 2.80GHz Linux machine with 1GB memory. As in [5],
the data is randomly partitioned into a training set consist-
ing of two-thirds of the whole set and a test set consisting
of one-third of the whole set. 1-Nearest-Neighbor (1-NN)
algorithm is applied for classification. To give a better es-
timation of accuracy, the splitting is repeated 50 times and
the resulting accuracies are averaged.

5.1 Datasets
We use three types of data in our studies: text documents

(Doc1 and Doc2), gene expression data (GCM and ALL),
and face images (ORL and PIX).

• Doc1 and Doc2 are from Reuters-21578 text catego-
rization test collection Distribution 1.0.1 Doc1 has 4

1www.research.att.com/∼lewis

classes, each with 80 instances; its dimension is 2887.
Doc2 has 5 classes, each with 98 instances; its dimen-
sion is 3759.

• GCM has 14 classes (cancer types) and totally 198
instances (human tumor samples); its dimension is
16063. The dataset was first studied in [20, 27]. ALL [28]
has 6 classes (diagnostic groups) and totally 248 in-
stances; its dimension is 12558.

• ORL2 has 40 classes (persons), each with 10 instances;
its dimension is 10304 (same as original image size
92 × 112). PIX3 has 30 classes (persons), each with
10 instances; its dimension is 10000 (subsampled from
original image size 512× 512).

The statistics of the test datasets are summarized in table 1.

Table 1: Statistics for our test datasets.
size dimensionality # of classes

dataset (n) (d) (k)

Doc1 320 2887 4
Doc2 490 3759 5
GCM 198 16063 14
ALL 248 12558 6
ORL 400 10304 40
PIX 300 10000 30

5.2 Efficiency
In this experiment, we test the efficiency of multiple-model

RLDA. Table 2 shows the computational time (in seconds)
of RLDA on different m, i.e., the size of Λ, ranging from 1
to 1024. It is clear that the cost of multiple-model RLDA
grows slowly as m increases. For example, we can observe
that T (1024)/T (1) on different datasets ranges from 1.35 to
4.42. Among the six datasets, the two image datasets have
relatively larger increasing rate than the others. Note that
the number of classes for the image datasets is relatively
larger than the others, and so is the ratio k/d. The exper-
imental results on efficiency evaluation are consistent with
the theoretical estimation given in Section 4.2.

5.3 Classification performance
In this experiment, we evaluate RLDA in classification

and compare it with other three LDA-based methods: ULDA,
DLDA [5], and OLDA [24], as well as SVM4. The results
are summarized in Table 3. We set m to be 1000 for all
cases. We have found that using a small value of m usu-
ally degrades the classification performance for our datasets.
This confirms the effectiveness of using large candidate set
to choose a good regularization value.

The results in Table 3 show that RLDA is competitive
with other methods in classification. RLDA outperforms
ULDA in most cases. For Doc1, GCM, and ORL, RLDA
outperforms ULDA by a large margin. Interestingly, ULDA

2www.uk.research.att.com/facedatabase.html
3peipa.essex.ac.uk/ipa/pix/faces/manchester/test-hard/
4Linear SVM is used as it is shown to be comparable to non-
linear SVM using kernels [3, 21] in most cases due to the high
dimensionality of the data. The value of the regularization
parameter in SVM is estimated through cross-validation.



Table 2: Computational time (in seconds) of RLDA for different m = |Λ|.
m Doc1 Doc2 GCM ALL ORL PIX

1 6.68 19.14 16.04 20.85 39.95 22.66
2 6.68 19.19 16.10 22.23 39.98 22.57
4 6.77 19.23 16.15 22.11 40.42 22.67
8 6.86 19.32 16.33 22.34 40.75 23.15
16 6.96 19.53 16.43 22.48 41.84 23.72
32 7.13 20.35 16.46 22.92 44.15 24.38
64 7.32 21.47 17.18 23.31 48.25 26.30
128 7.80 22.90 17.92 23.63 56.85 30.24
256 8.87 26.84 19.91 23.99 74.24 37.59
512 11.01 34.36 23.36 24.66 107.9 52.92
1024 15.36 49.59 30.15 28.14 176.7 81.74

T (1024)/T (1) 2.30 2.59 1.88 1.35 4.42 3.61
k/d(× 1e3) 1.39 1.33 0.87 0.48 3.88 3.00

has a better performance than RLDA for Doc2. However,
the difference is not significant. Recall from Section 4.4 that
ULDA is equivalent to RLDA with λ = 0. The experimental
results further confirm the effectiveness of choosing the best
λ from a large set of candidates.

OLDA appears to be very competitive with RLDA in
many cases. However, there exist certain cases (such as the
Doc1 dataset), where the difference is significant. It appears
that RLDA, with a sufficiently large set of regularization
candidates, is more robust to the diversity of training data
than other LDA-based methods. Overall, RLDA is compet-
itive with SVM.

6. CONCLUSIONS
An efficient algorithm for RLDA is proposed for small

sample size problems. A key advantage of the proposed al-
gorithm is that the optimal transformation of RLDA for a
set of different regularization values can be computed with
approximately the same cost as running the RLDA algo-
rithm a very small number of times. Thus it dramatically
reduces the computational cost for RLDA.

We analyze the intrinsic relationship between RLDA and
ULDA. More specifically, we show that RLDA without any
regularization is equivalent to ULDA, while ULDA maps all
data points from the same class to a common point, under
a mild condition which has been shown to hold for many
high-dimensional data. The theoretical analysis presented
provides insights on the use of regularization in RLDA. Ex-
periments on a variety of data show that RLDA is com-
petitive with several other LDA-based methods and SVM,
in terms of classification, which shows the effectiveness of
regularization applied in RLDA.

Discriminant analysis can also be studied in the non-linear
fashion, so-called kernel discriminant analysis [1, 18, 19]. It
is desirable if the data has weak linear separability. One of
the directions for future work is to extend the current work
to the nonlinear case.
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