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ABSTRACT
Longitudinal analysis is important in many disciplines, such
as the study of behavioral transitions in social science. Only
very recently, feature selection has drawn adequate atten-
tion in the context of longitudinal modeling. Standard tech-
niques, such as generalized estimating equations, have been
modified to select features by imposing sparsity-inducing
regularizers. However, they do not explicitly model how
a dependent variable relies on features measured at prox-
imal time points. Recent graphical Granger modeling can
select features in lagged time points but ignores the temporal
correlations within an individual’s repeated measurements.
We propose an approach to automatically and simultane-
ously determine both the relevant features and the relevant
temporal points that impact the current outcome of the de-
pendent variable. Meanwhile, the proposed model takes into
account the non-i.i.d nature of the data by estimating the
within-individual correlations. This approach decomposes
model parameters into a summation of two components and
imposes separate block-wise LASSO penalties to each com-
ponent when building a linear model in terms of the past τ
measurements of features. One component is used to select
features whereas the other is used to select temporal con-
tingent points. An accelerated gradient descent algorithm is
developed to efficiently solve the related optimization prob-
lem with detailed convergence analysis and asymptotic anal-
ysis. Computational results on both synthetic and real world
problems demonstrate the superior performance of the pro-
posed approach over existing techniques.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—Gradient meth-
ods; H.2.8 [Database management]: Database Applica-
tion—Data mining
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1. INTRODUCTION
A longitudinal study collects and analyzes repeated mea-

surements of a set of features for a group of subjects through
time. Longitudinal analyses are important in many areas,
such as in social and behavioral science [20, 7, 4], in eco-
nomics [18, 2], in climate[13, 2], and in genetics [21]. For
example, to predict binge drinking of college students, a
longitudinal study may be designed to monitor them weekly
or even daily in terms of multiple covariates, such as, the
level of stress, status of negative affects and social behav-
iors [4, 1]. The fluctuation of these covariates is used to
analyze and predict binge drinking (the dependent or out-
come variable) of a student at the current observation time
point. Changes of the covariates in the proximal time points
are anticipated to alter the likelihood that a student binge
drinks at the current observation point. To precisely under-
stand how covariates affect the outcome, the analysis has
to model not only the current values of the covariates but
also their proximal values as well as take into account the
correlation structure in the repeated measurements.

Typically, longitudinal data are analyzed by extending
generalized linear models (GLM) with different assumptions,
such as marginal models, random effects models, and tran-
sition models [6]. For example, a marginal model regresses
the outcome on the current observation of features but fac-
tors in a within-subject correlation matrix that is estimated
for a few proximal time points. In contrast, a random ef-
fects model reflects the variability among individuals rather
than the population average comparing with marginal mod-
els. For marginal modeling, generalized estimating equa-
tions (GEE) are the most widely used methods which esti-
mate a predictive model to predict the current outcome to-
gether with correlations among different outcomes observed
temporally. The resultant predictive models are generally
more accurate than those of classic regression analysis that
assumes independently and identically distributed (i.i.d.)
observations [12]. Research on feature selection in longi-
tudinal data leads to a new family of methods based on the
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penalized GEE (PGEE)[8]. For random effects models, gen-
eralized linear mixture model(GLMM)[11, 15] is the major
method. It explores natural heterogeneity across individuals
in the regression coefficients and represents this heterogene-
ity by a probability distribution.

None of those extensions of GLM aim to detect causal re-
lationships from temporal changes of covariates to the out-
comes of the current effect. In many studies, it is however
necessary and insightful to model simultaneously the corre-
lation among outcome records and the lagged causal effects
of covariates [1]. For example, psychologists have identified
that there is lagged effect in the alcohol use behavior. An
individual’s drinking today may be a response to an elevated
level of stress two days back rather than the current day. It
is actually an important question for psychologists to find
out both which temporal points and which covariates influ-
ence the current outcome the most. This lagged effect is not
used by temporal marginal modeling to make predictions.

On the other hand, researchers have developed machine
learning approaches for longitudinal analysis that predict an
outcome using feature values at multiple time points [2, 13].
For example, graphical Granger modeling [2], and grouped
graphical Granger modeling[13] are insightful to explore the
influences from past temporal information present in time
series data in the modeling and understanding of the causal
relationships. These methods assume that past values of cer-
tain time series features causally affect an outcome variable,
and hence construct a model based on these values to predict
future outcomes. Often, they estimate causality relationship
(causal graph) among all features. However, these methods
assume i.i.d. samples which are clearly violated in longitu-
dinal data, and moreover they are incapable of selecting the
most influential time points.

All existing methods either assume i.i.d. samples in Granger
causality modeling or assume correlated samples but do not
model temporal causal effects. Therefore, we propose a new
learning formulation that constructs predictive models as
functions of covariants not only from the current observation
but also from multiple previous consecutive observations,
and simultaneously determine the temporal contingency and
the most influential features. The proposed method has the
following advantages:

1. The proposed method makes predictions based on lagged
data from current and previous time points. It decom-
poses the model coefficients into a summation of two
components and impose different block-wise least abso-
lute shrinkage and selection operators (LASSO) to the
two components. One regularizer is used to detect the
contingency of specific time points whereas the other
is used to select covariates.

2. The proposed method also learns simultaneously a struc-
tured correlation matrix from the data. The correla-
tions among the outcomes themselves imply the chang-
ing trend of the outcomes in the proximal time points
within each subject.

3. We develop a family of methods where the outcome
variable is assumed to follow a distribution from the
exponential family, including Bernoulli, Gaussian and
Poisson distributions. The formulations for these dis-
tributions are discussed in Section 3.3.

4. We provide the convergence analysis in Section 3.1 and
asymptotic analysis in Section 3.2 to show that the
proposed algorithm can find the optimal solution for
the predictive models.

We have empirically compared the proposed method against
the state of the art on both synthetic and real world datasets.
The computational results demonstrate the effectiveness and
the capability of our approach.

Figure 1: The outcome yt at time t can be relevant to
multiple covariates x1, x2, · · · , xd observed at current
and several previous time points t− 1, t− 2, · · · , t− τ ,
which forms a data matrix X (left). If we associate
with each entry of this matrix a weight in our ad-
ditive prediction model, then our model coefficients
form a matrix W (right). If the coefficient matrix is
sparse, then the resultant model will be selective in
terms of covariates and time points.

2. METHOD
In our approach, the predictive model takes the form of

the trace of the product of the lagged data X and the model
coefficient matrix W as shown in Figure 1. The model coef-
ficients are organized into a matrix rather than a vector used
in traditional analysis because this way reflects the structure
in the lagged data. Note that the lagged observations of y
can also be included in the data matrix X to be used in the
predictive model. For notational convenience, we just use X
to represent the data that are used to form the model.

We first briefly review two most relevant sets of longitu-
dinal analytics in Section 2.1 which will help elucidate the
advantages of our proposed formulation.

2.1 Preliminaries
We introduce the notation that is used through out the

paper. A bold lower case letter denotes a vector, such as v.
The ‖v‖p refers to the `p norm of a vector v, which is formed

as ‖v‖p = (
∑d
i=1 |vi|

p)1/p, where vi is the i-th component
of v and d is the length of v. A bold upper case letter de-
notes a matrix such as M. Similarly, m(i,), m(,j) and mij

represent the i-th row, j-th column and (i, j)-th component
of M, respectively. The Frobenius norm and `p,q norm of
a matrix M refer, respectively, to ‖M‖F , which is equal to

(tr(M>M))1/2, and ‖M‖p,q, defined by
(∑n

i=1

(
‖m(i,)‖q

)p)1/p
,

where n is the number of rows in M, and tr(M) indicates
the trace of M. We assume that vect(M) is the column-
major vectorization of M, which is defined as vect(M) =
(m>(,1), · · · ,m>(,k))> assuming k columns are in M. Then,
〈M1,M2〉 is the inner product of two matrices M1 and
M2 that is computed as the inner product of vect(M1) and
vect(M2). The operator reshape(v) re-shapes v into a ma-
trix of a proper size determined by the specific context.
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Assume that we are given data of m number of individu-
als on d number of features (independent variables) that are
repeatedly measured at ni time points for each individual
i. The data of each individual i is represented by a matrix

X(i) of size d× ni, and x
(i)
t refers to the d-entry data vector

of individual i at time point t. Without loss of generality,
we assume that all individuals have data at the same con-
secutive time points (ni = n) to simplify the notation and
the subsequent analysis. Data on the dependent variable
(outcome) is also given in y(i) of length n that contains the
observations at the n time points for individual i. Typically,
a longitudinal study aims to estimate the effect of covariates
on the dependent variable.

2.1.1 Granger Causality
The notion of Granger Causality was introduced by the

Nobel prize winning economist, Clive Granger, and has proven
useful in time series analysis [10]. It is based on the intu-
ition that if a time series variable causally affects another,
the past observations of the former should be useful in pre-
dicting the future outcome of the latter.

Specifically, a time series observation x is said to Granger
cause another time series outcome, y, if the regressing for
y in terms of past y and x is significantly better than the
regressing just with past values of y. The so-called Granger
test first performs two regressions:

y
(i)
t =

τ∑
j=1

(
ajy

(i)
t−j + w>j x

(i)
t−j

)
, (1)

and y
(i)
t =

∑τ
j=1 ajy

(i)
t−j , where τ is the maximum “lag” in

the past observations, and then uses a hypothesis test such
as an F-test to determine if the outcome yt can be pre-
dicted significantly better from the past covariate x. Recent
graphical Granger models [2, 13] extend it from a single time
series covariate x to multiple covariates X. They learn the
coefficients a and w’s with LASSO type of regularizers and
evaluate if coefficients are non-zero for Granger causality.

2.1.2 Generalized Estimating Equations (GEE)
GEE estimates the parameters of a GLM while taking into

account the correlations in the training examples. Similar
to GLM, it assumes that the dependent variable comes from
a class of distributions known as the exponential family. For
each member in this family, there exists a link function that
can be used to translate the nonlinear model into a linear
model. The expectation of the outcome y

(i)
t for subject i at

time t is computed as:

E(y
(i)
t ) = µ

(i)
t = g−1(η

(i)
t ), (2)

where µ
(i)
t represents the mean model, g−1 is the inverse of

a link function g in a GLM [14], and η
(i)
t =

(
x
(i)
t

)>
w. The

variance of y
(i)
t is computed as var(y

(i)
t ) = var(µ

(i)
t )/φ where

φ is a scaling parameter that may be known or estimated.
GEE presumes a so-called working correlation structure,

typically denoted by R(α), where α is a parameter to be de-
termined from data. The common choices of R(α) include
exchangeable, tri-diagonal and the first-order autoregressive
(AR(1)) formula [12]. The exchangeable correlation struc-
ture, also called equi-correlation, assumes that corr(yit, yit′) =
α for all t 6= t′. The tri-diagonal structure uses a tridiagonal

matrix as R(α) where corr(yit, yit′) = α if t′ = t±1 or 0 oth-
erwise. The AR(1) formula assumes a correlation structure

along continuous time, and uses corr(yit, yit′) = α|t−t
′|.

To estimate the regression coefficients w, GEE uses the
the estimating equations that are formulated, in general, by
setting the derivative of an appropriate loss function to 0.
Although a loss function may not be explicitly written out,
the estimating equations always can be computed by

EE(w,α) =

m∑
i=1

(
D(i)

)> (
Σ(i)

)−1

s(i) = 0. (3)

where the n×dmatrix D(i) = ∂µ(i)/∂w where µ(i) combines

all µ
(i)
t , ∀t = 1, · · · , n into a vector, s(i) = y(i)−µ(i)(w). The

n× n matrix Σ(i) is the estimated covariance structure as:

Σ(i)(α) =
(
A(i)

)1/2
R(α)

(
A(i)

)1/2
/φ (4)

where A(i) is an n × n diagonal matrix with var(µ
(i)
t ) as

the t-th diagonal element. Algorithms are given in [12] to
compute w and α for the different choices of R(α).

2.2 The Proposed Formulation
In our approach, each training example consists of the cur-

rent and τ previous records of the repeated measurements.
Let

X(i;t) = [x
(i)
t ,x

(i)
t−1, · · · ,x

(i)
t−τ ]

be a d× (τ + 1) data matrix for subject i. Given T total
measurements for each subject, the index t of X(i;t) starts
from τ + 1 in order to have enough previous observations
in the first training example. Hence, there are totally n =
T − τ training examples for each subject. If X(i;t) includes

previous τ + 1 values of y(i) as a feature, then the model

y
(i)
t = tr

(
X>(i;t)W

)
where W = [w0,w1, · · · ,wτ ] essentially

gives the same model like Eq.(1) in the graphical Granger
models.

The Granger models would assume that the training ex-
amples are i.i.d.. However, the consecutive examples are
not mutually independent because they contain overlapping

records (e.g., X(i;t) and X(i;t+1) share τ−1 records x
(i)
t , · · · ,

x
(i)
t−τ+1). GEE provides a mechanism to estimate the sam-

ple correlation simultaneously while constructing predictive
models, and to extend the linear models to generalized lin-

ear models. To apply GEE to our model, we replace η
(i)
t

used in GEE by the following formula

η
(i)
t = tr

(
X>(i;t)W

)
. (5)

Substituting Eq.(5) for η in Eq.(2) yields a formulation sim-
ilar to GEE. The regression coefficients W can be estimated
through the well-developed GEE estimators. In particu-
lar, the quasi-likelihood methods of GEE estimate W by
minimizing a loss function that is defined via the model
deviance. The model deviance measures the difference be-
tween the log-likelihood of the estimated mean model µ(i)

and that of the observed values y(i). For instance, the
model deviance for a linearly regressive response is written
byDev(i)(W,α) = (y(i)−µ(i))>R(α)(y(i)−µ(i)) where y(i)

contains the observed responses for subject i, and µ(i) is the
estimated expectations of y for subject i. If the response
follows an arbitrary distribution, the model deviance may
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not correspond to an explicit function. For the exponential
family, it takes a special form as discussed in Theorem 1 be-
low, which is still complicated. We denote by Dev(i)(W,α)
the deviance occurred on subject i. GEE minimizes a loss
function of

∑m
i=1Dev

(i)(W,α) for the optimal W by solv-
ing the estimating equations, i.e., taking the derivatives of
the loss function and setting them to 0.

Now, to select among features and discover the most in-
fluential time points in predicting y over time, (and also to
control the model capacity,) we apply regularizers to the
model parameters. We first decompose W into a summa-
tion of two components as W = U + V and apply different
regularizers to U and V. The block-wise LASSO, such as
the `1,2 matrix norm, is widely-used in multi-task learning
or feature selection with group structures, but has not been
explored within the GEE setting. To the best of our knowl-
edge, it has not been studied in longitudinal analytics how
to produce shrinkage effects simultaneously on both features
and contingent temporal records through proper regulariza-
tion. The general `1,p matrix norm [23] calculates the sum
of the `p norms of the rows in a matrix. Regularizers based
on the `1,p norms encourage row sparsity by shrinking the
entire rows to have zero entries.

In our parameter matrix W, rows correspond to features
and columns correspond to the observation time points. If
we apply the `1,2 norm to U (row-wisely), the optimal so-
lution of U will contain rows with all zero entries. Thus, a
selected subset of features in the τ + 1 observations will be
used in the predictive model to predict the current outcome.
The `1,2 norm of V> (column-wisely) encourages to select
among columns of V. If the k-th column of V contains the
largest values in the selected columns, the current outcome
is most contingent on the previous (k − 1)-th record, thus
having the (k − 1) “lagged” effect. Overall, we solve the fol-
lowing optimization problem for the best model parameters
W which is computed as U + V:

min
U,V

m∑
i=1

Dev(i)(U + V,α) + λ1‖U‖1,2 + λ2‖V>‖1,2 (6)

where W in the deviance is simply replaced by U + V.
The optimization of Eq.(6) is challenging. In general,

even solving the GEE formulation is not easy as it estimates
not only the model expectation but also the variance term
Σ(i). The algorithm that solves the GEE (i.e., the esti-
mating equations) applies the Newton-Raphson method in
the iterative reweighted least squares (IRLS) procedure [8]

to estimate w and Σ(i). However, this method does not
solve any formula that uses regularizers. By modifying the
Newton-Raphson method or shooting algorithm [8], it can be
extended only to the regularizers that are decomposable into
individual parameters wj . For instance, the `1 vector norm
of w can be decomposed into the summation of individual
|wj |, j = 1, · · · , d. The `1,2 matrix norm, unfortunately, can
not be decomposed in such a way. Therefore, we have devel-
oped an accelerated gradient descent method based on the
fast iterative shrinkage-thresholding algorithm (FISTA) [3].
Further, the following theorem shows that Eq.(6) is a convex
optimization problem in terms of W. Our algorithm can be
proved to find the global optimal solution W of Eq.(6) when
α is fixed (to a consistent estimate given by GEE).

Theorem 1. The first term of Eq.(6) is convex and con-
tinuously differentiable with respect to U and V if the dis-

tribution of y(i) is in a natural exponential family and the
link function is continuous.

Proof. First, let us recall that the probability density
function of a distribution in the exponential family takes
the following form:

f(y
(i)
t ) = exp

{
y
(i)
t η

(i)
t − b(η

(i)
t )

a
(i)
t (φ)

+ c(y
(i)
t , φ)

}
,

where a
(i)
t (φ), b(η

(i)
t ), and c(y

(i)
t , φ) are known functions and

specified for each member of the exponential family, and η
(i)
t

is a parameter in the mean as defined in Eq.(2). Typically,

a
(i)
t (φ) = φ. Then, the deviance of the exponential family

can be computed as

Dev = 2

∑m
i=1

(
y
(i)
t (η̃

(i)
t − η̂

(i)
t )− b(η̃(i)t ) + b(η̂

(i)
t )
)

φ
,

where η̃
(i)
t denotes the true value under a saturated model,

η̂
(i)
t denotes the fitted values of the model. Thus, η̃

(i)
t and

b(η̃
(i)
t ) are constant in model fitting. The derivative of b

always satisfies b′(η
(i)
t ) = µ

(i)
t . Moreover, it has been proved

that b(η̂
(i)
t ) is a convex function on the natural parameter

space H = {η̂|b(η̂) <∞} [19]. Thus, the deviance contains
either linear terms or a convex term with respect to η̂. In
our model (5), η̂ is linear with respect to W. Hence, the
deviance term in Eq.(6) is convex with respect to U and V.

Moreover, it is true that b′(η̂
(i)
t ) = µ̂

(i)
t = g−1(η̂

(i)
t ) which

is the inverse of a continuous link function [19]. The first
term of Eq.(6) is continuously differentiable with respect to
U and V. Thus, theorem 1 holds.

2.3 Optimization Algorithm
To solve Eq.(6), we design an alternating optimization

algorithm that alternates between optimizing two working
sets of variables: one set consisting of U and V and the
other consisting of α.

(a) Find U and V when α is fixed
When α is fixed, the objective function of Eq.(6), denoted

by f(U,V), is convex with a continuously differentiable part
`(U,V) that is the deviance and a nonsmooth part R(U,V)
that constitutes the two regularizers. We hence have

f(U,V) = `(U,V) +R(U,V).

We develop a FISTA algorithm in the following iterative
procedure to find optimal U and V.

Denote the iterates at the k-th iteration by Uk and Vk.
Let∇U`(U,V),∇V`(U,V) be the partial derivative of `(U,V)
with respect to U and V, respectively, For any given point
(Ũ, Ṽ), the following QL,Ũ,Ṽ(U,V) is a well-defined proxi-
mal map for the non-smooth R

QL,Ũ,Ṽ(U,V) = `(Ũ, Ṽ) +R(U,V)

+ 〈∇U`(Ũ, Ṽ),U− Ũ〉+
L

2
‖U− Ũ‖2F

+ 〈∇V`(Ũ, Ṽ),V − Ṽ〉+
L

2
‖V − Ṽ‖2F .

If `(U,V) has Lipschitz continuous gradient with Lipschitz
modulis L. Then, according to the Lemma 2.1 in [3], the
inequality

f(U,V) ≤ QL,Ũ,Ṽ(U,V).
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holds indicating that QL,Ũ,Ṽ(U,V) is the upper bound of
f(U,V).

Starting from an initial point (U0,V0), we iteratively
search for the optimal solution. At each iteration k, we first
use the iterates (Uk−1,Vk−1) and (Uk−2,Vk−2) to compute

(at the first iteration, (Ũ1, Ṽ1) = (U0,V0))

Ũk = Uk−1 +

(
tk−1 − 1

tk

)
(Uk−1 −Uk−2),

Ṽk = Vk−1 +

(
tk−1 − 1

tk

)
(Vk−1 −Vk−2),

(7)

where tk is a scalar and updated at each iteration as:

tk+1 =
1 +

√
1 + 4t2k
2

. (8)

Then, we solve the following problem

min
U,V

〈∇U`k,U− Ũk〉+
L

2
‖U− Ũk‖2F

+ 〈∇V`k,V − Ṽk〉+
L

2
‖V − Ṽk‖2F

+R(U,V)

(9)

for a solution (Uk,Vk), where ∇U`k and ∇V`k are respec-

tively the partial derivatives of ` computed at (Ũk, Ṽk), and
L acts as a learning step size.

Since there is no interacting term between U and V in
Eq.(9), the problem can be decomposed into two separate
subproblems as follows:

min
U
〈∇U`k,U− Ũk〉+

L

2
‖U− Ũk‖2F + λ1‖U‖1,2, (10)

min
V
〈∇V`k,V − Ṽk〉+

L

2
‖V − Ṽk‖2F + λ2‖V>‖1,2. (11)

The two subproblems share the same structure and thus
can be solved following the same procedure. Hence, we only
show how to solve (10) for the best U.

Eq.(10) is equivalent to the following problem

min
U

1

2

∥∥∥∥U− (Ũk −
1

L
∇U`k

)∥∥∥∥2
F

+
λ1

L
‖U‖1,2

after omitting constants, and this problem has a closed-form
solution where each row of Uk, Uk

(i,) is:

Uk
(i,) = max

(
0, 1− λ1

L‖P(k)

(i,)‖2

)
P

(k)

(i,),

and P(k) = Ũk − 1
L
∇U`k. The gradient vector ∇U`k (i.e.,

the gradient of the deviance) can be computed by Eq.(3)
with the fixed α, i.e.

∇U`k = reshape

(
m∑
i=1

(
D(i)

)> (
Σ(i)

)−1

s
(i)
k

)
(12)

where s
(i)
k = y(i)−µ(i), and µ

(i)
t = g−1(tr(X>(i;t)(Ũk+Ṽk))).

In the above discussion, the Lipschitz modulus L is com-
puted and given. However, the calculation of L can be com-
putational expensive. We therefore follow the similar ar-
gument in [9] to find a proper approximation Lk at each
iteration k starting from L0 > 0. Recall that the Lipschits
constant L is defined:

L = max
W

λmax (∇∇`W)

where λmax(·) indicates the maximum singular value of the
Hessian of `. Decompose the Hessian matrix ∇∇`W|W→0

into M>M where M ∈ Rd(τ+1)×q and q is the rank of the
Hessian matrix. We have an upper bound of L as follows:

L ≤ ||M||∞,1||M>||∞,1. (13)

We use the upper bound L̃ in Eq.(13) as L in our itera-
tions. Using this upper bound may increase the number of
iterative steps for convergence. Algorithm 1 summarizes the
steps for finding optimal U and V with fixed α.

Algorithm 1 Search for optimal U and V with fixed α

Input: X, y, Σ, λ1, λ2

Output: U, V
1. k = 1, compute L̃ and initialize t1 = 1, U0 = Ũ1 = 0
and V0 = Ṽ1 = 0;
2. Solve Eq.(9) to obtain Uk and Vk.
3. Compute tk+1 by Eq.(8).

4. Compute Ũk+1 and Ṽk+1 by Eq.(7).
5. k = k + 1.
Repeat 2 ∼ 5 until convergence.

(b) Find α when U and V are fixed
When U and V are fixed, the regularizers no longer ap-

pear in the objective of Eq.(6). Eq.(6) is degenerated into
just the GEE formula with α as the variables. Hence, α can
be estimated via the standard GEE procedure, i.e., from the
current Pearson residuals defined by:

γ
(i)
t =

y
(i)
t − tr

((
X(i;t)

)>
(U + V)

)
(σ

(i)
t,t )

(1/2)
.

where σ
(i)
t,t is the t-th diagonal entry in the matrix Σ(i) [12].

The specific estimator of α depends on the choices of R(α).
This GEE-based procedure has been shown to find a consis-
tent estimate of α [12].

Let N = mn be the total number of training examples,
and p = d(τ + 1) be the practical number of parameters in
W. A general approach to estimating R is given by:

rj,k =

m∑
i=1

γ
(i)
j γ

(i)
k

N − p , (14)

for j = 1, · · · , n, and k = 1, · · · , n. In addition, the scaler
parameter φ in Eq.(4) can be estimated as follows:

φ = (N − p)/
m∑
i=1

n∑
t=1

(
γ
(i)
t

)2
. (15)

Algorithm 2 depicts the overall procedure for solving Eq.(6).

Algorithm 2 Main algorithm - Jointly select features and
temporal points

Input: X, y, λ1, λ2

Output: U, V
1. Set R(α) = I;
2. Solve for U and V using Algorithm 1.
3. Estimate α using a proper estimator in [12] and com-
pute R(α) by Eq.(14) and φ by Eq.(15).
Repeat 2 ∼ 3 until convergence.
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3. THEORETICAL ANALYSIS
We provide a convergence analysis for Algorithm 1 and an

asymptotic analysis for the proposed formulation.

3.1 Convergence Analysis
We show that Algorithm 1 converges to the optimal solu-

tion with a convergence rate of O(1/k2). The proof follows
largely the arguments in [3]. We only provide a sketch here.

Theorem 2. Let Uk and Vk be the pair of the matrix
generated by Algorithm 1. Then for any k ≥ 1

f(Uk,Vk)− f(Û, V̂) ≤
2L̃
(
||U0 − Û||2F + ||V0 − V̂||2F

)
(k + 1)2

where (Û, V̂) is a globally optimal solution of Eq.(6).

Proof. We start with defining the following quantities

vk =f(Uk,Vk)− f(Û, V̂),

ak =
2

Lk
t2kvk,

bk =||tkUk − (tk − 1)Uk−1 − Û||2F
+||tkVk − (tk − 1)Vk−1 − V̂||2F ,

c =||Ũ1 − Û||2F + ||Ṽ1 − V̂||2F
=||U0 − Û||2F + ||V0 − V̂||2F ,

where Ũ1 = U0, Ṽ1 = V0, and subsequent Ũk and Ṽk are
defined by Eq.(7). Following the proof of Theorem 4.4 in [3],
in the first iteration, given t1 = 1, we have a1 = 2

L1
v1, and

b1 = ||U1 − Û||2F − ||V1 − V̂||2F . We show that a1 + b1 ≤ c
by applying Lemma 2.3 in [3], which yields

f(Û, V̂)− f(U1,V1) = −v1

≥L1

2
||U1 − Ũ1||2F + L1〈Ũ1 − Û,U1 − Ũ1〉

+
L1

2
||V1 − Ṽ1||2F + L1〈Ṽ1 − V̂,V1 − Ṽ1〉

=
L1

2
(||U1 − Û||2F − ||Ũ1 − Û||2F )

+
L1

2
(||V1 − V̂||2F − ||Ṽ1 − V̂||2F ).

Reorganizing the above inequality yields

2

L1
t21v1 + ||U1 − Û||2F + ||V1 − V̂||2F ≤

||Ũ1 − Û||2F + ||Ṽ1 − V̂||2F

Thus, a1 + b1 ≤ c holds.
Then, according to Lemma 4.1 in [3], we have for every

k ≥ 1, ak − ak+1 ≥ bk+1 − bk, together with a1 + b1 ≤ c,
which derives into the following inequality,

c ≥ a1 + b1 ≥ a2 + b2 ≥ · · · ≥ ak + bk ≥ ak.

Therefore, we obtain that

2

Lk
t2kvk ≤ ||U0 − Û||2F + ||V0 − V̂||2F , (16)

Given tk is updated according to Eq.(8), it is easy to show

that tk ≥
(k + 1)

2
. Substituting this inequality into Eq.(16)

yields

vk ≤
2Lk

(
||U0 − Û||2F + ||V0 − V̂||2F

)
(k + 1)2

By the Remark 3.2 in [3] and the inequality (13), we also

know that an upper bound of Lk is L̃. Hence,

f(Uk,Vk)− f(Û, V̂) ≤
2L̃
(
||U0 − Û||2F + ||V0 − V̂||2F

)
(k + 1)2

In our algorithm, we set Lk = L̃,∀k.

Remark 1. The loss function, `(U,V), of an exponen-
tial distribution has Lipschitz continuous gradient within the
range {||U||1,2 ≤ δ1, ||V>||1,2 ≤ δ2} where δ1, δ2 are con-
stant values in terms of λ1, λ2, respectively to guarantee the
non-trivial step size λ

L
. Otherwise, it may lead to a sub-

optimal solution.

3.2 Asymptotic Analysis
To facilitate the asymptotic analysis, we re-write the no-

tation as follows: let

β = [vect(U)>, vect(V)>]>, H(i) = [h
(i)
τ+1, · · · ,h

(i)
n ]

and

h
(i)
t = [vect(Xi;t)

>, vect(Xi;t)
>]>

where one block Xi;t corresponds to U and the other to

V. Then, correspondingly, we have η
(i)
t = (h

(i)
t )>β, and

f(U,V) can be re-written as f(β) = `(β) +R(β;λ1, λ2).
Solve Eq.(6) yields a solution to the penalized estimating

equations: ∑
i

(D(i))>(Σ(i))−1s(i) + λ
∂R(β)

∂β
= 0 (17)

assuming λ1 = λ2 = λ for notational convenience which
will not change the property. Given our model definition
(5), D(i) = A(i)(H(i))>. The first term in (17) is the es-
timating functions in GEE [12] whereas the second term
corresponds to the regularizers. The asymptotic property
of Eq.(6) can be naturally derived from the results in [12]
which have proved that the estimating equations L(β) =∑
i(D

(i))>(Σ(i))−1s(i) of GEE gives a consistent estimator
of β. We extend the same argument to our formulation
Eq.(6) in Theorem 3 under the following regularity condi-

tions: H(i) is bounded, and limm→∞(
∑
i H

(i))/m = H(0),

and (H(i))>H(i) are not singular, and the following limit is
also not singular

lim
m→∞

(
∑
i

(H(i))>H(i))/m;

Moreover, L(β) is twice continuously differentiable with re-
spect to β, and ∂L/∂β is positive definite.

Theorem 3. Assume that: (1) α̂ is a consistent estima-

tor given β; (2) φ̂ is a consistent estimator given β; and
(3) the tuning parameter λm = o(

√
m). Under the regu-

larity conditions listed above, optimizing Eq.(6) yields an
asymptotically consistent and normally distributed estima-
tor β̂, that is:

√
m(β̂ − β∗)→d N(0,Σ) as m→∞
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where β∗ is the true model coefficients in a model of E(y
(i)
t ) =

g−1((h
(i)
t )>β) and Σ is a positive definite variance-covariance

matrix (see [12] for details of Σ).

Proof. Multiplying 1/m to both sides of Eq.(17) yields

1

m

∑
i

(D(i))>(Σ(i))−1s(i) +
λm
m

∂R(β)

∂β
= 0. (18)

It is known that solving 1
m

∑
i(D

(i))>(Σ(i))−1s(i) = 0 yields

an estimate of β̂ that is asymptotically consistent with β∗:
√
m(β̂ − β∗)→d N(0,Σ) as m→∞ [12].

Since our regularizer R (based on the `1,2 matrix norm)
is Lipschitz continuous, its partial derivative ∂R(β)/∂β is
bounded. The second term of Eq.(18) vanishes when m →
∞, and thus the conclusion holds.

Recall how α̂ and φ̂ are estimated in the proposed method.
Those estimates from the Pearson residuals are consistent.
Thus, the estimate β̂ in the proposed method is asymp-
totically consistent and normally distributed according to
Theorem 3.

3.3 Exemplar Exponential Families with Lip-
schitz Condition

The purposed algorithm is suitable to optimize any loss
function that has Lipschitz continuous gradient. In this sec-
tion, we discuss that three exemplar exponential families:
Gaussian, Bernoulli, and Poisson, satisfy the Lipschitz con-
dition. We specify how to compute the gradient of the loss
function for these distributions. The gradients will instanti-
ate (and replace) Eq.(12) used in our algorithm.

3.3.1 Gaussian Distribution
If the outcome follows a Gaussian distribution, then the

outcome y is linearly regressive in terms of the covariates in
the observations. The mean and the conditional covariance
of y with a working correlation structure R(α) are calcu-
lated as:

E(y
(i)
t ) = µ

(i)
t = tr

(
X>(i;t)W

)
,

cov(y(i)) = Σ(i) = R(α),

so the gradient ∇U`k in Eq.(12) at the k-th iteration can be
computed as

∇U`k = reshape

(
m∑
i=1

(
D(i)

)>
(R(α))−1 s

(i)
k

)
,

where D(i) = ∂µ(i)

∂vect(Ũk)
=
[
vect

(
X(i;1)

)
, . . . , vect

(
X(i;n)

)]>
,

and s
(i)
k = y(i)−

(
D(i)

)>
vect(Ũk). The gradient ∇V`k can

be similarly computed. Hence, the gradient is linear in terms
of β, and thus Lipschitz continuous.

3.3.2 Bernoulli Distribution
If the generalized variables µ follow a Bernoulli distribu-

tion and the outcomes are binary variables. The relationship
between the outcome and covariates can be learned by a lo-
gistic regression which is a special case of the GLM with the
Bernoulli assumption. Hence, the mean and the conditional
covariance of y with the working correlation structure R(α)

are formulated as

E(y
(i)
t ) = µ

(i)
t =

exp(η
(i)
t )

1 + exp(η
(i)
t )

(19)

cov(y(i)) = Σ(i) =

(
A(i)

)1/2
R(α)

(
A(i)

)1/2
φ

where A(i) = diag
(
〈µ(i), 1− µ(i)〉

)
= diag

(
exp(η

(i)
t )(

1+exp(η
(i)
t )

)2

)
and η

(i)
t = tr(X>(i;t)W).

The gradient ∇U`k in Eq.(12) can be written as:

reshape

((
D(i)

)>
(A(i))−1/2R(α)−1(A(i))−1/2s

(i)
k

)
where D(i) = ∂µ(i)

∂η(i) × ∂η(i)

∂vect(Ũk)

= A(i)
[
vect

(
X(i;1)

)
, . . . , vect

(
X(i;n)

)]>
, and s

(i)
k = y(i) −

µ(i)(Ũk). The gradient ∇V`k can be similarly computed.

3.3.3 Poisson Distribution
If the generalized variables µ follow a Poisson distribution

and the outcomes contain count values. The relationship of
the outcome and covariates is learned by a Poisson regres-
sion. The mean and the conditional covariance of y with the
working correlation structure R(α) are formulated as

E(y
(i)
t ) = µ

(i)
t = exp(η

(i)
t )

cov(y(i)) = Σ(i) =

(
A(i)

)1/2
R(α)

(
A(i)

)1/2
φ

where A(i) = diag
(

(µ(i))′
)

= diag
(

exp(η
(i)
t )
)

. The gradi-

ent∇U`k can be computed using the general formula Eq.(12).
The loss function of Poisson regression does not have glob-
ally Lipschitz continuous gradient. But the regularized loss
function is equivalent to requiring the constraints, ||U||1,2 ≤
δ1 and ||V>||1,2 ≤ δ2 [17] for appropriate values of δ1 and
δ2 that are determined according to λ1 and λ2. The loss
function of Poisson regression does have Lipschitz continu-
ous gradient within the confined region.

4. EMPIRICAL EVALUATION
We validated the proposed approach by comparing it to

several most relevant and recent methods. Three GLM-
based [16] methods: GEE [12], GLMM [11, 15], and RE-EM
tree1 [18] were compared. The recent graphical Granger
modeling2 [13] and a support vector machine based method
called CSVM were also used. RE-EM tree and graphical
Granger modeling could only be applied to regression prob-
lems (linearly regressive data from Gaussian distributions),
and CSVM was only suitable to classification tasks (logis-
tically regressive data from Bernoulli distributions). We
named our approach by LGL (longitudinal group lasso). The
normalized mean squared error (nMSE), which is the MSE
divided by the variance of y [22, 9], was used to measure
regression performance. The area under the ROC curve
(AUC) [5] was used to measure classification performance.
1An R package is available in the Comprehensive R Archive
Network (CRAN)
2downloaded from the author’s website http://www-
bcf.usc.edu/∼liu32/code.html
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Figure 2: The model constructed by our approach
LGL on a synthetic dataset.

Figure 3: Comparison between the constructed
models by LGL and Granger.

4.1 Synthetic Data
We generated a data matrix X ∈ Rd×Tm from the normal

distribution N(0, 16), where d = 200, T = 30, and m = 400.
All training examples X(i;t)(i = 1, · · · ,m, ∀t = τ+1, · · · , T )
and τ = 4 were formed from the matrix X. Then, U and V
were generated from the normal distribution N(0, 49). We
set the rows corresponding to features from 1 to 150 in U
to zero and the columns 2 and 5 of V to zero, and com-
puted W = U + V. The residuals s(i) of every subject were
generated from a multivariate normal distribution of differ-
ent variances, N(0, 12), N(0, 22), N(0, 32). The covariance
matrix of the residual followed different working correlation
structures R(α) with the parameter α = 0.64. We generated
9 sets of regression residuals by choosing different combina-
tions of the variances and the working correlation structures.
Finally, the outcome variables y(i) were computed as

y(i) =
[
vect

(
X(i;τ+1)

)
, . . . , vect

(
X(i;n)

)]>
vect(U+V)+s(i).

The above procedure produced regression data. Using the

same data X, the outcome y
(i)
t of a classification problem

was generated from the Bernoulli Distribution with B(1, µ
(i)
t )

where we used Eq.(19) with the regression y(i) to obtain

µ(i). We hence obtained totally 18 synthesized data with 9
datasets for each distribution. We used the 25 early records
of each subject to compose the training data and the rest 5
records to form test data.

Table 1 shows the results where we can see that LGL out-
performed all other methods on all the simulated datasets.
The proposed method with correct correlation assumptions
always performed the best. The graphical Granger model-

ing performed reasonably well but lacked of consideration of
temporal correlation in the consecutive records. When the
simulated noise increased, the performance of all methods
had dropped as expected. We further demonstrate the se-
lected features and temporal contingency. Figure 2 shows
the constructed U,V, and W by the LGL on the regression
data with the AR(1) covariance structure and N(0, 32) resid-
ual where darker colors indicate larger values (and white
means 0). Most of the features from 150 to 200 were selected
in U and the correct columns (i.e., 1, 3, 4) were selected in
V. We compared our approach with the Granger model that
also learned W in Figure 3. Obviously, the Granger model
excluded too many variables in the model. These results
demonstrate the capability of LGL in terms of simultane-
ously capturing the important features and lagged effects.

4.2 Real-world Data
We tested our approach on two real-world datasets: the

college alcohol use dataset; and the national longitudinal
survey of youth (NLSY) dataset3. All comparison methods
were used except GLMM due to its prohibitive computa-
tional costs. The college alcohol use dataset consisted of
data from 504 college students on 52 variables in a period of
continuous 30 days. The 52 variables measured each subject
on daily stress, moods, emotion and substance use behav-
ior. One of the variables measured the number of night-time
drinks, which was our outcome variable, forming a regres-
sion problem. We also predicted the binge drinking behav-
ior which is defined as having 5 or more night-time drinks,
which formed a classification problem. The NLSY dataset
consisted of 11 yearly data for 3,376 subjects on 27 variables.
The outcome variable measured the number of days that a
subject had binge drinking in past 30 days, forming a re-
gression problem. The other 26 variables measured features,
such as smoking, drug use, family support and education.

For the college alcohol use data, we experimented with
using the last t = 3, 5, 8, 10 days of records as test data,
and the rest for training. We found τ = 3 was feasible.
Larger τ would not change the results because the extra
time points would be excluded by our model. However, it
practically would cut down the sample size of each subject.
The parameters λ1 and λ2 in our approach and any tuning
parameters in other methods were tuned in a three-fold cross
validation within the training data. Table 2 shows the re-
sults where our approach LGL outperformed other methods
in most settings. Among the four different correlation as-
sumptions, LGL with AR(1) obtained the best performance
on three of the four settings. The results also confirmed that
modeling the correlation among repeated observations im-
proved prediction performance [12]. We also observed that
for instance, 16 out of 51 variables were selected when we
used the last 5 days to test binge drinking prediction. Fea-
tures related to exited mood, under stress and interacting
with friends during night time were the risk factors for binge
drinking. The past 3 days were all included in the model,
showing there was “lagged” effects in alcohol use. The effect
of past days was reduced with prolonged time lag.

For the NLSY dataset, we experimented respectively with
using the last one, two and three years from each subject
for test and the rest in training. We also considered τ = 3,
which means we used 3 year lagged data to predict the cur-
rent year’s behavior. All tuning parameters were tuned us-

3http://www.bls.gov/nls/nlsy97.htm
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Table 1: Comparison of different algorithms on synthetic data: (top) regression; (bottom) classification.
R

e
g
re

ss
io

n

LGL GEE
Structures e AR(1) exchangeable Tri-diag ind AR(1) exchangeable Tri-diag ind GLMM RE-EM tree Granger

N(0, 12) 0.0018 0.0020 0.0019 0.0020 0.6613 0.6615 0.6614 0.6617 0.6657 0.9873 0.0664
AR(1) N(0, 22) 0.0025 0.0026 0.0028 0.0039 0.7223 0.7236 0.7224 0.7242 0.7323 0.9998 0.0667

N(0, 32) 0.0032 0.0034 0.0036 0.0038 0.7191 0.7185 0.7182 0.7192 0.7179 0.9924 0.0676
N(0, 12) 0.0018 0.0016 0.0015 0.0022 0.6872 0.6875 0.6872 0.6873 0.6914 0.9977 0.0656

exchangeable N(0, 22) 0.0024 0.0023 0.0024 0.0025 0.6927 0.6930 0.6927 0.6930 0.6931 0.9982 0.0691
N(0, 32) 0.0027 0.0026 0.0028 0.0032 0.7204 0.7204 0.7204 0.7205 0.7204 0.9797 0.0635
N(0, 12) 0.0021 0.0021 0.0021 0.0022 0.7514 0.7514 0.7514 0.7514 0.7515 0.9925 0.0665

Tri-diag N(0, 22) 0.0018 0.0023 0.0013 0.0026 0.6790 0.6792 0.6791 0.6793 0.6840 0.9991 0.0680
N(0, 32) 0.0033 0.0035 0.0031 0.0041 0.7226 0.7235 0.7226 0.7226 0.7222 0.9998 0.0660

C
la

ss
ifi

c
a
ti

o
n

LGL GEE
Structures e AR(1) exchangeable Tri-diag ind AR(1) exchangeable Tri-diag ind CSVM

N(0, 12) 96.490% 96.485% 96.485% 96.417% 77.691% 77.700% 77.699%77.715% 76.644%
AR(1) N(0, 22) 96.442% 96.431% 96.432% 96.653% 74.682% 74.727% 74.682%74.731% 75.249%

N(0, 32) 95.921% 95.917% 95.917% 95.805% 77.704% 77.746% 77.708%77.754% 77.547%
N(0, 12) 95.913% 95.937% 95.912% 95.883% 76.115% 75.812% 76.114%75.923% 75.232%

exchangeable N(0, 22) 95.139% 95.161% 95.147% 95.150% 70.290% 70.231% 70.275%70.206% 71.687%
N(0, 32) 94.127% 94.091% 94.135%93.470% 73.839% 73.782% 73.831%73.776% 73.894%
N(0, 12) 95.976% 95.941% 95.978%95.889% 77.628% 77.634% 77.625%77.617% 76.778%

Tri-diag N(0, 22) 95.231% 95.231% 95.245%94.395% 72.132% 72.060% 72.126%72.054% 71.615%
N(0, 32) 95.092% 95.087% 95.094%94.231% 77.755% 77.533% 77.748%77.637% 77.572%

Table 2: Comparison of different algorithms on the college alcohol use dataset: (top) predicting the number
of night-time drinks (regression); (bottom) predicting the occurrence of binge drinking (classification).

R
e
g
re

ss
io

n

LGL GEE
# observations AR(1) exchangeable tri-diag ind AR exchangeable tri-diag ind RE-EM tree Granger

3 0.933513 0.933863 0.935120 0.961841 1.064792 1.073358 1.063948 1.065760 1.115627 1.369948
5 0.951999 0.954740 0.951953 0.976299 1.051219 1.067303 1.049305 1.072745 1.005753 1.420547
8 0.759935 0.760450 0.760136 0.762205 0.787731 0.793329 0.787497 0.794089 0.759968 0.909706
10 0.769303 0.769492 0.769428 0.774937 0.812622 0.818834 0.812011 0.806301 0.774797 0.940940

C
la

ss
ifi

c
a
ti

o
n LGL GEE

# observations AR(1) exchangeable tri-diag ind AR exchangeable tri-diag ind CSVM
3 79.737% 75.677% 79.772% 78.579% 78.401% 74.145% 78.650% 77.831% 80.698%
5 83.290% 77.237% 83.070% 82.323% 80.371% 78.363% 80.646% 80.438% 83.187%
8 88.570% 87.331% 87.936% 87.787% 85.999% 86.330% 85.714% 86.014% 88.017%
10 89.484% 87.574% 88.853% 88.578% 85.979% 86.622% 85.721% 85.783% 89.041%

Figure 4: The model constructed by our approach
on the NLSY dataset.

ing a within-training two-fold cross validation. The results
are reported in Table 3. For any assumption of the work-
ing correlation structure, LGL had comparative performance
with RE-EM tree and consistently outperformed GEE in all
of the three experiments. LGL with tri-diagonal correlation
performed the best on this dataset. The results here again
show that taking care of the correlation among repeated ob-
servations improves the performance (given we see that LGL

with the independent correlation assumption had the worst
performance among all LGL variants).

The gray map of U, V and W constructed by LGL is
shown in Figure 4 to illustrate an example for the tri-diagonal
working correlation assumption. Out of the 26 features, 12
were selected by LGL and we list them below.
F2: # days of smoking a cigarette in the past 30 days
F3: Received a training certificate or vocational license
F7: The grade began during the academic year
F8: # months that respondent did not attend school during
the academic year
F12: The college degree working toward or attained
F13: The highest grade completed as of the survey year
F15: The highest grade attended as of the survey day
F16: The highest grade completed as of the survey day
F17: # days of using marijuana in the past 30 days
F19: # times of using some drug or other substance right
before school or during school or work hours
F25: As the victim of a violent crime in the survey year
F26: Divorced parents.
This list shows that a subject’s smoking, drug use, educa-
tion background and family support influenced his or her
drinking behavior. Figure 4 demonstrates that the data in
the third prior year might be obsolete to predict this year’s
behavior as LGL only selected the past two years for use in
the model as seen in the plot of V.
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Table 3: Comparison of different algorithms on the NLSY dataset in terms of test nMSE values.
LGL GEE

# observations AR(1) exchangeable tri-diag ind AR exchangeable tri-diag ind RE-EM tree Granger
1 0.906552 0.908932 0.904760 0.909446 0.911543 0.918691 0.911885 0.914043 0.904260 1.370135
2 0.888608 0.891761 0.887294 0.891051 0.898132 0.904225 0.897920 0.898320 0.888822 1.363714
3 0.885448 0.885814 0.883617 0.887579 0.892963 0.895863 0.892633 0.890937 0.883958 1.360430

5. DISCUSSION
We have proposed a new learning formulation for longi-

tudinal analytics. Unlike existing methods, the proposed
approach can simultaneously determine the temporal con-
tingency and the influential features in predicting an out-
come over time. The model parameter matrix is computed
by the summation of two component matrices: one matrix
reflects the selection among covariates; and the other char-
acterizes the dependency along the temporal line. More-
over, our approach simultaneously models the sample cor-
relations in the longitudinal data while constructing a pre-
dictive model. The related optimization problem can be
efficiently solved by a new accelerated gradient descent al-
gorithm. Convergence analysis shows that the algorithm
can find the global optimal solution for the model with a
quadratic convergence rate. An asymptotic analysis shows
that the solution of our formulation is a consistent estimate
of the model parameters. Hence, the proposed approach
solves an underdeveloped problem - jointly learning the rel-
evant features and determining how current outcome relies
on past observations. Empirical studies on both synthetic
and real-world problems demonstrate the superior perfor-
mance of the proposed approach over the state of the art.
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