
A Fast Iterative Algorithm for Fisher Discriminant using
Heterogeneous Kernels

Glenn Fung glenn.fung@siemens.com
Murat Dundar murat.dundar@siemens.com
Jinbo Bi jinbo.bi@siemens.com
Bharat Rao bharat.rao@siemens.com

Computer Aided Diagnosis & Therapy Solutions, Siemens Medical Solutions, 51 Valley Stream Parkway, Malvern
PA 19355

Linear Fisher Discriminant, Heterogeneous Kernels, Mathematical Programming, Binary Classification.

Abstract

We propose a fast iterative classification algo-
rithm for Kernel Fisher Discriminant (KFD)
using heterogeneous kernel models. In con-
trast with the standard KFD that requires
the user to predefine a kernel function, we
incorporate the task of choosing an appro-
priate kernel into the optimization problem
to be solved. The choice of kernel is defined
as a linear combination of kernels belonging
to a potentially large family of different pos-
itive semidefinite kernels. The complexity of
our algorithm does not increase significantly
with respect to the number of kernels on the
kernel family. Experiments on several bench-
mark datasets demonstrate that generaliza-
tion performance of the proposed algorithm is
not significantly different from that achieved
by the standard KFD in which the kernel pa-
rameters have been tuned using cross vali-
dation. We also present results on a real-life
colon cancer dataset that demonstrate the ef-
ficiency of the proposed method.

1. Introduction

In recent years, kernel based methods have been
proved to be an excellent choice to solve classification
problems. It is well known that the use of an appropri-
ate nonlinear kernel mapping is a critical issue when
nonlinear hyperplane-based methods such as Kernel
Fisher Discriminant (KFD) are used for classification.
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Typically, kernels are chosen by predefining a kernel
model (Gaussian, polynomial, etc.) and adjusting the
kernel parameters by means of a tuning procedure.
The selection is based on the classification performance
on a subset of the training data that is commonly re-
ferred to as the validation set. This kernel selection
procedure can be computationally very expensive and
is particularly prohibitive when the dataset is large;
furthermore, there is no warranty that the predefined
kernel model is an optimal choice for the classifica-
tion problem. In recent years, several authors (Hamers
et al., 2003; Lanckriet et al., 2003; Bennet et al., 2002;
Bach et al., 2004) have proposed the use of a linear
combination of kernels formed by a family of different
kernel functions and parameters; this transforms the
problem of choosing a kernel model into one of find-
ing an “optimal” linear combination of the members
of the kernel family. Using this approach there is no
need to predefine a kernel; instead, a final kernel is con-
structed according to the specific classification prob-
lem to be solved without sacrificing capacity control.
By combining kernels, we make the hypothesis space
larger (potentially, but not always), but with appro-
priate regularization, we improve prediction accuracy
which is the ultimate goal for classification.

The drawback of using a linear combination of ker-
nels is that it leads to considerable more complex op-
timization problems . We propose a fast iterative algo-
rithm that transforms the resulting optimization prob-
lem into several relatively computationally less expen-
sive strongly convex optimization problems.

At each iteration, our algorithm only requires to solve
a simple system of linear equations and a relatively
small quadratic programming problem with nonneg-
ativity constraints, which makes the proposed algo-
rithm easy to implement. In contrast with some of the



previous work, the complexity of our algorithm does
not depend directly on the number of kernels in the
kernel family.

We now outline the contents of the paper. In Section
2, we formulate the linear classification problem as a
Linear Fisher Discriminant (LFD) problem. In section
3, using the result (Mika et al., 2000), we show how
the classical Fisher discriminant problem can be refor-
mulated as a convex quadratic optimization problem.
Using this equivalent mathematical programming LFD
formulation and using mathematical programming du-
ality theory, we proposed a kernel Fisher discriminant
formulation similar to the one proposed in (Mika et al.,
1999), our formulation. Then we introduce a new for-
mulation that incorporates both the KFD problem and
the problem of finding an appropriate linear combina-
tion of kernels into an quadratic optimization problem
with nonnegativity constraints on one set of the vari-
ables. In Section 4, we propose an algorithm for solv-
ing this optimization problem and we discuss the com-
plexity and convergence of the proposed algorithm. In
Section 5, we give some computational results includ-
ing those for a real life colorectal cancer dataset as well
as five other publicly available datasets.

First, we briefly describe our notation. All vectors will
be column vectors unless transposed to a row vector
by a prime superscript ′. The scalar (inner) product
of two vectors x and y in the n-dimensional real space
Rn will be denoted by x′y, the 2-norm of x will be
denoted by ‖x‖. The 1-norm and ∞-norm will be de-
noted by ‖ · ‖1 and ‖ · ‖∞ respectively. For a matrix
A ∈ Rm×n, Ai is the ith row of A which is a row vector
in Rn. A column vector of ones of arbitrary dimension
will be denoted by e and the identity matrix of ar-
bitrary order will be denoted by I. For A ∈ Rm×n

and B ∈ Rn×l, the kernel K(A,B) (Vapnik, 2000;
Cherkassky & Mulier, 1998; Mangasarian, 2000) is
an arbitrary function which maps Rm×n × Rn×l into
Rm×l. In particular, if x and y are column vectors in
Rn then, K(x′, y) is a real number, K(x′, A′) is a row
vector in Rm and K(A,A′) is an m×m matrix.

2. Linear Fisher’s Discriminant (LFD)

We know that the probability of error due to the Bayes
classifier is the best we can achieve. A major disadvan-
tage of the Bayes error as a criterion, is that a closed-
form analytical expression is not available for the gen-
eral case. However, by assuming that classes are nor-
mally distributed, standard classifiers using quadratic
and linear discriminant functions can be designed.

The well-known Fisher’s Linear Discriminant (LFD)

(Fukunaga, 1990), arises in the special case when
the classes have a common covariance matrix. LFD
is a classification method that projects the high di-
mensional data onto a line (for a binary classifica-
tion problem) and performs classification in this one-
dimensional space. This projection is chosen such that
either the ratio of the scatter matrices (between and
within classes) or the so called Rayleigh quotient is
maximized.

More specifically, let be A ∈ Rm×n a matrix containing
all the samples and let Ac ⊆ A ∈ Rlc×n be a matrix
containing the lc labeled samples for class c, xi ∈ Rn,
c ∈ {±}. Then, the LFD is the projection u, which
maximizes,

J (α) =
uT SBu

uT SW u
(1)

where

SB = (M+ −M−) (M+ −M−)T (2)

SW =
∑

c∈{±}

1
lc

(
Ac −Mce

T
lc

) (
Ac −Mce

T
lc

)T
(3)

are the between and within class scatter matrices re-
spectively and

Mc =
1
lc

Acelc (4)

is the mean of class c and elc is an lc dimensional
vector of ones. Traditionally, the LFD problem has
been addressed by solving the generalized eigenvalue
problem associated with Equation (1).

When classes are normally distributed with equal co-
variance, α is in the same direction as the discriminant
in the corresponding Bayes classifier. Hence, for this
special case LFD is equivalent to the Bayes optimal
classifier. Although LFD relies heavily on assumptions
that are not true in most real world problems, it has
proven to be very powerful. Generally speaking when
the distributions are unimodal and separated by the
scatter of means, LFD becomes very appealing. One
reason why LFD may be preferred over more complex
classifiers is that as a linear classifier it is less prone to
overfitting.

For most real world data, a linear discriminant is
clearly not complex enough. Classical techniques
tackle these problems by using more sophisticated dis-
tributions in modeling the optimal Bayes classifier,
however these often sacrifice the closed form solution
and are computationally more expensive. A relatively
new approach in this domain is the kernel version of



Fisher’s Discriminant (Mika et al., 1999). The main
ingredient of this approach is the kernel concept, which
was originally applied in Support Vector Machines and
allows the efficient computation of Fisher’s Discrimi-
nant in the kernel space. The linear discriminant in
the kernel space corresponds to a powerful nonlinear
decision function in the input space. Furthermore, dif-
ferent kernels can be used to accommodate the wide-
range of nonlinearities possible in the data set. In
what follows, we derive a slightly different formulation
of the KFD problem based on duality theory which
does not require the kernel to be positive semidefinite
or what is equivalent,does not require the kernel to
comply with Mercer’s condition (Cristianini & Shawe-
Taylor, 2000).

3. Automatic heterogeneous kernel
selection for the KFD problem

As shown in (Xu & Zhang, 2001) and similar to (Mika
et al., 2000), with the exception of an unimportant
scale factor, the LFD problem can be reformulated as
the following constrained convex optimization prob-
lem:

min
(u,γ)∈Rm+1

ν 1
2‖y‖

2 + 1
2 (u′u)

s.t. y = d− (Au− eγ).
(5)

where m = l+ + l− and d is an m-dimensional vector
such that:

di =
{

+m/l+ if xi ∈ A+

−m/l− if xi ∈ A−
(6)

and the variable ν is a positive constant introduced
in (Mika et al., 2000) to address the problem of
ill-conditioning of the estimated covariance matrices.
This constant can also be interpreted as a capacity
control parameter. In order to have strong convexity
on all variables of problem (5) we can introduce the ex-
tra term γ2 on the corresponding objective function.
In this case, the regularization term is minimized with
respect to both orientation u and relative location to
the origin γ. Extensive computational experience, as
in (Fung & Mangasarian, 2003; Lee & Mangasarian,
2001) and other publications, indicates that in similar
problems (Fung & Mangasarian, 2001) this formula-
tion is just as good as the classical formulation, with
some added advantages such as strong convexity of the
objective function. After adding the new term to the
objective function of the problem (5) the problem be-
comes

min
(u,γ,y)∈Rm+1+m

ν 1
2‖y‖

2 + 1
2 (u′u + γ2)

s.t. y = d− (Au− eγ).
(7)

The Lagrangian of (7) is given by

L(u, γ, y, v) = ν
1
2
‖y‖2+

1
2
‖
[
u

γ

]
‖2−v′((Au−γe)+y−d)

(8)
Here v ∈ Rm is the Lagrange multiplier associated
with the equality constrained problem (7). Solving
for the gradient of (8) equal to zero, we obtain the
Karush-Kuhn-Tucker (KKT) necessary and sufficient
optimality conditions (Mangasarian, 1994, p. 112) for
our LFD problem with equality constraints as given
by

u−A′v = 0
γ + e′v = 0
νy − v = 0
Au− eγ + y − d = 0

(9)

The first three equations of (9) give the following ex-
pressions for the original problem variables (u, γ, y) in
terms of the Lagrange multiplier v:

u = A′v, γ = −e′v, y =
v

ν
. (10)

Replacing these equalities in the last equality of (9)
allows us to obtain an explicit expression involving v
in terms of the problem data A and d, as follows:

AA′v + ee′v + v
ν − d =

(
HH ′ + I

ν

)
v − d = 0

(11)
where H is defined as:

H = [A (−e)]. (12)

From the two first equalities of (10) we have that[
u
γ

]
= H ′v (13)

Using this equality and pre-multiplying by H’ in (11)
we have (

H ′H +
I

ν

) [
u
γ

]
= H ′d (14)

Solving the linear system of equations (14) gives the

explicit solution
[

u
γ

]
to the LFD problem (7). To

obtain our “kernelized” version of the LFD classifier
we modify our equality constrained optimization prob-
lem (7) by replacing the primal variable u by its dual
equivalent u = A′v from (10) to obtain:

min
(v,γ,y)∈Rm+1+m

ν 1
2‖y‖

2 + 1
2 (v′v + γ2)

s.t. y = d− (AA′v − eγ).
(15)

where the objective function has also been modified to
minimize weighted 2-norm sums of the problem vari-
ables. If we now replace the linear kernel AA′ by a



nonlinear kernel K(A,A′) as defined in the Introduc-
tion, we obtain a formulation that is equivalent to the
kernel Fisher discriminant described in (Mika et al.,
1999):

min
(v,γ,y)∈Rm+1+m

ν 1
2‖y‖

2 + 1
2 (v′v + γ2)

s.t. y = d− (K(A,A)′v − eγ).
(16)

Recent SVM formulations with least squares loss
(Suykens & Vandewalle, 1999) are much the same in
spirit as the problem of minimizing ν 1

2‖y‖
2 + 1

2w′w
with constraints y = d − (Aw − eγ). Using a similar
duality analysis to the one presented before, and then
“kernelizing” they obtain the objective function

ν
1
2
‖y‖2 +

1
2
v′K(A,A′)v. (17)

The regularization term v′K(A,A′)v determines that
the model complexity is regularized in a reproducing
kernel Hilbert space (RKHS) associated with the spe-
cific kernel K where the kernel function K has to sat-
isfy Mercer’s conditions and K(A,A′) has to be posi-
tive semidefinite.

By comparing the objective function (17) to problem
(16), we can see that problem (16) does not regularize
in terms of RKHS. Instead, the columns in a kernel
matrix are simply regarded as new features K(A,A′)
of the classification task in addition to original fea-
tures A. we can construct then, classifiers based on
the features introduced by a kernel in the same way
as how we build models using original features in A.
More precisely, in a more general framework (regular-
ized networks (Evgeniou et al., 2000a)) our method
could produce linear classifiers (with respect to the
new kernel features K(A,A′)) which minimize the cost
function regularized in the span space formed by these
kernel features. Thus the requirement for a kernel to
be positive semidefinite could be relaxed, at the cost in
some cases, of an intuitive geometrical interpretation.
In this paper, however, since we are considering a Ker-
nel fisher discriminant formulation, we will require the
kernel matrix to be positive semidefinite. This require-
ment allows to conserve the geometrical interpretation
of the KFD formulation since the kernel matrix can
be seen as a “covariance” matrix on the higher dimen-
sional space induced implicitly by the kernel mapping.

Next, Let us suppose that instead of the kernel K be-
ing defined by a single kernel mapping (i.e Gaussian,
polynomial, etc.), the kernel K is instead composed
of a linear combination of kernel functions Kj , j =
1, . . . , k, as below

K(A,A′) =
k∑

j=1

ajKj(A,A′), (18)

where aj ≥ 0. As it is pointed out in (Lanckriet et al.,
2003), the set {K1(A,A′), . . . ,Kk(A,A′)} can be seen
as a predefined set of initial “guesses” of the kernel
matrix. Note that the set {K1(A,A′), . . . ,Kk(A,A′)}
could contain very different kernel matrix models, e.g.,
linear, Gaussian, polynomial, all with different param-
eter values. Instead of fine tuning the kernel parame-
ters for a predetermined kernel via cross-validation,
we can optimize the set of values ai ≥ 0 in or-
der to obtain a PSD linear combination K(A,A′) =∑k

j=1 ajKj(A,A′) suitable for the specific classifica-
tion problem. Replacing equation (18) in equation (16)
and solving for y in and replacing it on the objective
function in (16), we can reformulate the KFD problem
optimization for heterogeneous linear combinations of
kernel as follows

min
(v,γ,a≥0)∈Rm+1

ν 1
2‖d− ((

∑k
j=1 ajKj)v − eγ)‖2

+ 1
2 (v′v)

(19)
where Kj = Kj(A,A′). When considering linear com-
binations of kernels the hypothesis space may become
larger, making the issue of capacity control an impor-
tant one. It is known that if two classifiers have similar
training error, a smaller capacity may lead to better
generalization on future unseen data (Vapnik, 2000;
Cherkassky & Mulier, 1998). In order to reduce the
size of the hypothesis and model space and to gain
strong convexity in all variables, an additional regu-
larization term a′a = ‖a‖2 is added to the objective
function of problem (19). The problem then becomes,

min
(v,γ,a≥0)∈Rm+1

ν 1
2‖d− ((

∑k
i=1 aiKi)v − eγ)‖2

+ 1
2 (v′v + γ2 + a′a)

(20)
The corresponding nonlinear classifier to this nonlin-
ear separating surface is then:

 k∑
j=1

(ajKj(x′, A′))

 v−γ =

 > 0, then x ∈ A+,
< 0, then x ∈ A−,
= 0, then x ∈ A+ ∪A−.

(21)
Furthermore, problem (20) can be seen as a biconvex
program of the form,

min
(S,T )∈(Rm+1,Rk)

F (S, T ) (22)

where S =
[

v
γ

]
and T = a



When T = â is fixed, problem (22) becomes:

min
(S)∈(Rm+1)

F (S, â) =

min
(v,γ)∈Rm+1

ν 1
2‖d− (K̂v − eγ)‖2

+ 1
2 (v′v + γ2)

(23)
where K̂ =

∑k
j=1 âjKj . This is equivalent to solve

(16) with K = K̂. On the other hand when Ŝ =
[

v̂
γ̂

]
is fixed, problem (22) becomes:

min
T≥0∈(Rk)

F (Ŝ, T ) = min
a≥0∈(Rk)

F (Ŝ, a) =

min
a≥0∈Rk

ν 1
2

∥∥∥d− ((
∑k

j=1 Λjaj)− eγ̂)
∥∥∥2

+ 1
2 (a′a)

(24)
where Λj = Kjv. Subproblem (23) is an unconstrained
strongly convex problem for which a unique solution in
close form can be obtained by solving a (m+1)×(m+1)
system of linear equations. On the other hand, sub-
problem (24) is also a strongly convex problems with
the simple nonnegativity constraint a ≥ 0 on k vari-
ables (k is usually very small) for which a unique solu-
tion can be obtained by solving a very simple quadratic
programming problem. We are ready now to describe
our proposed algorithm.

4. Automatic kernel selection KFD
Algorithm

Algorithm 4.1 Automatic kernel selection
KFD Algorithm (A-KFD)
Given m data points in Rn represented by the m × n
matrix A and vector L of ±1 labels denoting the class
of each row of A , the parameter µ and an initial
a0 ∈ <k, we generate the nonlinear classifier (21) as
follows:

(0) Calculate K1, . . . ,Kk , the k kernels on the kernel
family, where for each i, Ki = Ki(A,A′). Define
the vector d as in (7).

For each iteration i do:

(i) given an a(i−1) calculate the linear combination
K =

∑k
j=1 a

(i−1)
j Kj.

(i) Solve subproblem (23) to obtain (v(i), γ(i)).

(ii) Calculate Λl = Klv
(i) for l = 1, . . . , k.

(iii) Solve subproblem (24) to obtain ai.

Stop when a predefined maximum number of iterations
is reached or when there is sufficiently little change
of the objective function of problem (20) evaluated in
successive iterations.

Let Ni be the number of iterations of algorithm 4.1,
when k << m that is usually the case, this is when
the number of kernels functions considered on the ker-
nel family is much smaller than the number of data
points, then the complexity of the Algorithm 4.1 is ap-
proximately Ni(O(m3)) = O(m3), since Ni is bounded
by the maximum of iterations and the cost of solving
the quadratic programming problem (24) it is “domi-
nated” by the cost of solving problem (23). In practice,
we found that Algorithm 4.1 typically converges in 3-4
iterations (3 or 4) to a local solution of problem (20).

Since each of the two optimization problems ( (23)
and (24)) that are required to be solved by the A-
KFD algorithm are strongly convex and thus each of
them have a unique minimizer, the A-KFD algorithm
can also be interpreted as an Alternate Optimization
(AO) problem (Bezdek & Hathaway, 2003). Classical
instances of AO problems include fuzzy regression c-
models and fuzzy c-means clustering.

The A-KFD algorithm then, inherits the convergence
properties and characteristics of AO problems. As
stated in (Bezdek & Hathaway, 2002), the set of points
for which Algorithm 4.1 can converge can include cer-
tain type of saddle points (i.e. a point that behaves like
a local minimizer only when projected along a subset
of the variables). However, it also stated that is ex-
tremely difficult to find examples where converge oc-
curs to a saddle point rather than to a local minimizer.
If the initial estimate is chosen sufficiently near a so-
lution, a local q-linear convergence result is also pre-
sented by Bezek et al in (Bezdek & Hathaway, 2002).
A more detailed convergence study in the more general
context of of regularization networks (Evgeniou et al.,
2000a; Evgeniou et al., 2000b), including SVM type
loss functions, is in preparation.

5. Numerical Experiments

We tested our algorithm on five publicly available
datasets commonly used in the literature for bench-
marking from the UCI Machine Learning Repository
(Murphy & Aha, 1992): Ionosphere, Cleveland Heart,
Pima Indians, BUPA Liver and Boston Housing. Ad-
ditionally, a sixth dataset, the colon CAD dataset,
relates to colorectal cancer diagnosis using virtual
colonoscopy derived from computer tomographic im-
ages. We will refer to this dataset as the colon CAD
dataset. The dimensionality and size of each dataset



are shown in Table 1.

5.1. Numerical experience on five publicly
available datasets

We compared our proposed A-KFD against standard
KFD as described in equation (7) where the kernel
model is chosen using a cross-validation tuning proce-
dure. For our family of kernels we chose a family of 5
kernels: A linear kernel (K = AA′) and 4 Gaussians
kernels with µ ∈ {0.001, 0.01, 0.1, 1}:

(Gµ)ij = (K(A,B))ij = ε−µ‖Ai
′−B·j‖2

i = 1 . . . , m, j = 1 . . . , n.
(25)

where A ∈ Rm×n, B = A′ ∈ Rn×m. For all the ex-
periments, in algorithm 4.1, we used an initial a0 such
that:

K =
k∑

j=1

a
(i−1)
j Kj = AA′ + G1 (26)

That is, our initial kernel is an equally weighted
combination of a linear kernel A′A (the kernel with
less fitting power) and G1 (the kernel with the
most fitting power). The parameter ν required for
both methods was chosen to be on the following
set {10−3, 10−2, . . . , 100, . . . , 1011, 1012}. To solve the
quadratic programming (QP) problem (24) we used
CPLEX 9.0 (CPL, 2004), although, since the problem
to solve has nice properties and it is “small” in size
(k = 5 in our experiments) any publicly available QP
solver can be used for this task. Next, we describe the
methodology used in our experiments:

1. Each dataset was normalized between −1 and 1.

2. We randomly splitted the dataset into two groups
consisting of 70 % for training and 30% for testing.
We called the training subset TR and the training
set TE .

3. On the training set TR we used a ten-fold cross-
validation tuning procedure to select “optimal”
values for the parameter ν in A-KFD and for
the parameters ν and µ in the standard KFD. By
“optimal” values, we mean the parameters values
that maximize the ten-fold cross-validation test-
ing correctness. A linear kernel was also consid-
ered as a kernel choice in the standard KFD.

4. Using the “optimal” values found in step 3, we
build a final classification surface (21), and then
evaluate the performance on the testing set TE .

Steps 1 to 4 are repeated 10 times and the average test-
ing set correctness is reported in Table 1. The average

Table 1. Ten-fold and testing set classification accuracies
and p-values for five publicly available datasets (best and
statistical significant values in bold).

Data set A-KFD KFD + kernel p-value

(m× n) tuning

Ionosphere 94.7% 92.73% 0.03
(351× 34)
Housing 89.9% 89.4 % 0.40
(506× 13)

Heart 79.7 % 82.2 % 0.04
(297× 13)

Pima 74.1% 74.4 % 0.7
(768× 8)

Bupa 70.9% 70.5% 0.75
(345× 6)

times over the ten runs are reported in Table 2. A
paired t-test (Mitchell, 1997) at 95% confidence level
was performed over the ten runs results to compare
the performance of the two algorithms tested. In most
of the experiments, the p-values obtained show that
there is no significant difference between A-KFD and
the the standard KFD where the kernel model is cho-
sen using a cross-validation tuning procedure. Only
on two of the datasets, ionosphere and housing there
is a small statistically significant difference for the two
methods, with the performance of A-KFD being the
better of the two for the ionosphere dataset and the
standar tunning being the best for the housing dataset.
These results suggest that the two methods are not sig-
nificantly different regarding generalization accuracy.

In all experiments, the A-KFD algorithm converged
in average on 3 or 4 iterations, thus obtaining the final
classifier in a considerable faster time that the stan-
dard KFD with kernel tuning. Table 2 shows that
A-KFD was up to 6.3 times faster in one of the cases.

5.2. Numerical experience on the Colon CAD
dataset

In this section of the paper we performed experiments
on the colon CAD dataset. The classification task as-
sociated with this dataset is related to colorectal can-
cer diagnosis. Colorectal cancer is the third most com-
mon cancer in both men and women. Recent stud-
ies (Yee et al., 2003) have estimated that in 2003,
nearly 150,000 cases of colon and rectal cancer would
be diagnosed in the US, and more than 57,000 people
would die from the disease, accounting for about 10%
of all cancer deaths. A polyp is an small tumor that
projects from the inner walls of the intestine or rec-
tum. Early detection of polyps in the colon is critical



Table 2. Average times in seconds for both methods: A-
KFD and standard KFD where the kernel width was ob-
tained by tuning. Times are the averages over ten runs.
Kernel calculation time and ν tuning time are included in
both algorithms(Best in bold).

Data set A-KFD (secs.) KFD + kernel

(m× n) tuning (secs.)

Ionosphere 55.3 350.0
(351× 34)
Housing 134.4 336.9
(506× 13)

Heart 39.7 109.2
(297× 13)

Pima 341.5 598.4
(768× 8)

Bupa 48.2 81.7
(345× 6)

because polyps can turn into cancerous tumors if they
are not detected in the polyp stage.

The database of high-resolution CT images used in
this study was obtained at NYU Medical Center. One
hundred and five (105) patients were selected so as to
include positive cases (n=61) as well as negative cases
(n=44). The images are preprocessed in order to cal-
culate features based on moments of tissue intensity,
volumetric and surface shape and texture characteris-
tics. The final dataset used in this paper is a balanced
subset of the original dataset consisting of 300 candi-
dates, 145 candidates are labeled as a polyp and 155 as
non-polyps. Each candidate is represented by a vec-
tor of 14 features that have the most discriminating
power according to a feature selection pre-processing
stage. The non-polyp points were chosen from can-
didates that were consistently misclassified by an ex-
isting classifier that was trained to have a very low
number of false positives on the entire dataset. This
means that in the given 14 dimensional feature space,
the colon CAD dataset is extremely difficult to sepa-
rate.

For the tests, we used the same methodology described
in subsection 5.1 obtaining very similar results. The
standard KFD performed in an average time of 122.0
seconds over ten runs and an average test set correct-
ness of 73.4 %. The A-KFD performed in an average
time of 41.21 seconds with an average test set correct-
ness of 72.4 %. As in Section 5.1, we performed a
paired t-test (Mitchell, 1997) at 95% confidence level
with a p-value of 0.32 > 0.05, this indicates that there
is no significant difference between both methods in
this dataset at the 95% confidence level.

In summary, A-KFD had the same generalization ca-
pabilities and ran almost 3 times faster than the stan-
dard KFD.

6. Conclusions and Outlook

We have proposed a simple procedure for generat-
ing heterogeneous Kernel Fisher Discriminant classifier
where the kernel model is defined to be a linear combi-
nation of members of a potentially larger pre-defined
family of heterogeneous kernels. Using this approach,
the task of finding an “appropriate” kernel that satis-
factory suits the classification task can be incorporated
into the optimization problem to solve. In contrast
with previous works that also consider linear com-
bination of kernels, our proposed algorithm requires
nothing more sophisticated than solving a simple non-
singular system of linear equations of the size of the
number of training points m and solving a quadratic
programming problem that is usually very small since
it depends on the predefined number of kernels on the
kernel family (5 in our experiments). The practical
complexity of the A-KFD algorithm does not explic-
itly depend on the number of kernels on the predefined
kernel family.

Empirical results show that the proposed method com-
pared to the standard KFD where the kernel is selected
by a cross-validation tuning procedure, is several times
faster with no significant impact on generalization per-
formance.

The convergence of the A-KFD algorithm is justified
as a special case of the alternate optimization algo-
rithm described in (Bezdek & Hathaway, 2003). Fu-
ture work includes a more general version of the pro-
posed algorithm in the context of regularized networks,
where the convergence results are presented in a more
detailed manner. Future work also includes the use
of sparse kernel techniques and random projections to
improve further computational efficiency. We also plan
to explore the use of weak kernels (kernels that de-
pends on a subset of the original input features) for
feature selection in this framework.
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