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Abstract

Electroencephalographic (EEG) recording pro-
vides a powerful measure of neural dynamics
underlying human cognition, such as working
memory. However, the analysis of multidimen-
sional EEG data is challenging because it re-
quires the modeling of temporal and spatial cor-
relations in order to determine the EEG features
most predictive of memory performance. Stan-
dard techniques, such as generalized estimating
equations (GEE), can select features and account
for sample correlation. However, they cannot
explicitly model how a dependent variable re-
lies on features measured at different memory
stages and scalp locations. We propose an ap-
proach to automatically and simultaneously de-
termine both the relevant spatial features and rel-
evant temporal points that impact the response of
a memory task. The proposed model can still
correct for the non-i.i.d nature of the data, sim-
ilar to GEE, by estimating the within-individual
correlations. Our approach decomposes model
parameters into a summation of two components
and imposes separate block-wise LASSO penal-
ties to each component when building a linear
model in terms of multidimensional EEG fea-
tures. An accelerated gradient descent algorithm
is developed to efficiently solve the related opti-
mization problem. We identified that the influen-
tial factors for working memory between healthy
subjects and schizophrenia patients differ in fre-
quency bands, scalp positions and information
processing stages.
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1. Introduction
Advances in science supporting the growth and adaptabil-
ity, or ”neuroplasticity”, of human brain cells into late
adulthood provide new promise for interventions designed
to preserve and rehabilitate brain function (May, 2011).
The merging of brain science and computer technology has
created a consumer market for software designed to train
brain functions, such as memory and attention, following
the rationale that brain circuitry can be strengthened like
muscles in response to repetitive exercise (Nahum et al.,
2013). “Computer-based cognitive training” (CBCT) soft-
ware can be purchased privately at low cost, can be used
on mobile devices, is designed to be enjoyable and moti-
vating, and can be self-administered without clinical over-
sight. However, there is an important and often overlooked
shortcoming: CBCT cannot be assumed that compromised
brain areas, or normally expected approaches to perform-
ing cognitive training exercises, will be utilized during this
training. Instead, compensatory mechanisms may be used
and reinforced during training. Underutilization of the
damaged tissue may lead to further weakening, rather than
strengthening, of its natural function.

Through the development of a brain-computer interface
(BCI) enabled training program, we may address the crit-
ical limitation of current cognitive training software. The
very first step, that is necessary if not essential, is to iso-
late the neural dysfunction associated with core cognitive
impairments that CBCT should target. The identified tar-
get and important features for a cognitive function can
then be incorporated into the design of a BCI prototype
to improve CBCT. As working memory dysfunction is a
core feature of many psychiatric disorders, it serves as a
critical target for cognitive rehabilitation and hence is our
study focus. Working memory requires network-level ac-
tivation and coordination of neural activity between pre-
frontal cortical (PFC) and cortical association areas in-
volved in sensory and attentional processes (Wang, 2010).



Spatio-temporal modeling of EEG data

Figure 1. Illustration of EEG BCI apparatus and working memory test: (left) EEG recording montage; (middle) a BCI program called
P300 speller; (right) a sample trial of Sternberg experiment depicting stages of information processing and time courses as extracted for
EEG analysis based on memory span of 4 letters.

The cortical distribution of neural activity during working
memory performance has been studied extensively using
electroencephalographic (EEG) recording (Boonstra et al.,
2013), enabling the evaluation of real-time changes in neu-
ral activity at distinct information processing stages (i.e.,
encoding, retention, retrieval) to behavioral performance
(Klimesch, 1999). In this paper, we investigate the appli-
cations of an advanced machine learning approach in EEG
analysis using data collected while participants performed
a visual Sternberg working memory task.

EEG recording provides powerful methodology for study-
ing neural dynamics of human cognition. EEG data is di-
mensional and complex, based on a time series of events
sampled with high temporal resolution (i.e, millisecond
level) and distributed spatially across multiple scalp loca-
tions (e.g., montages of 32 to 256 channels) (Figure 1(left
and middle)). Given that research-grade bio amplification
systems are capable of acquiring EEG at 1000Hz or higher,
and that EEG is typically recorded for 10 minutes or more
during psychophysiological experiments, the analysis of
these data requires many decisions about the selection of
time points and signal extraction methods used to best char-
acterize the psychophysiological phenomena under investi-
gation. We hence propose a new method, named by multi-
scale LASSO, which extends the widely used generalized
estimating equations (GEE) by imposing the LASSO reg-
ularizer at multiple scales. This approach can jointly learn
features and temporal dependency for outcome prediction
with correction for the non-independent and identically dis-
tributed (i.i.d.) data using GEE’s strategy. We use this algo-
rithm to identify the most important EEG frequency bands,
and information processing locations and stages for suc-
cessful working memory.

2. Problem description and data sets
The Sternberg data are considered ideal for testing feature
selection algorithms as there are multiple information pro-
cessing stages, frequency components, and sources of neu-
ral activity involved and no single dependent measure that,
taken alone, would appropriately account for task perfor-
mance. A feature selection procedure is needed to deter-
mine which EEG measures are most predictive of task per-

formance based on the classification of correct vs. incorrect
Sternberg trial responses. As our study data were collected
in a clinical sample of patients with schizophrenia and
healthy community members, we also seek to model dif-
ferences in neural activation during working memory per-
formance between groups. EEG features identified in this
way represent the vectors that optimally distinguish cor-
rect from incorrect trial performance for healthy controls
and schizophrenia patients, respectively, and produce coef-
ficients with valences indicating whether lesser or greater
activity on the selected feature is associated with the spec-
ified classification outcome.

Our study sample consisted of 37 individuals meeting the
diagnostic criteria for schizophrenia (SZ) and 6 healthy
normal (HN) adults enrolled in clinical trial NCT00923078
(https://clinicaltrials.gov). The study was conducted under
oversight of VA Connecticut Healthcare System (VACHS)
and Yale University institutional review boards. All par-
ticipants provided written informed consent. Our analysis
uses a subset of the sample collected from the parent study.

Inclusion was limited to individuals aged from 18 to 70, na-
tive English speaking, with stable housing for minimum of
30 days. SZ sample members had minimum of 30 days
since discharge from last hospitalization, 30 days since
last change in psychiatric medications, and were receiv-
ing mental health services through VACHS or Yale affili-
ated outpatient facilities. Subjects were excluded based on
current diagnosis of alcohol or substance abuse disorders,
history of brain trauma or neurological disease, mental re-
tardation or premorbid intelligence < 70, and auditory or
visual impairment that would interfere with study proce-
dures. Any current or past Axis I diagnosis of psychiatric
disorders was exclusionary for HN sample enrollment.

EEG was recorded using a 64-channel BioSemi ActiveTwo
(BioSemi B.V., Amsterdam, Netherlands) bio-amplifier
and electrode system with sensors located according to the
10-20 system. Additional off-cap electrodes were placed
bilaterally at mastoids (reference), the outer canthi of both
eyes (horizontal electrooculogram; HEOG), and above and
below the right orbit (vertical electrooculogram; VEOG).
Continuous EEG was monitored online in ActiView V6.05
and acquired at a 1024 Hz sampling rate with a bandpass



Spatio-temporal modeling of EEG data

filter setting of 0.16-100 Hz. The Sternberg task was ad-
ministered using Neurobehavioral Systems’ Presentation
software (Neurobehavioral Systems, Inc., Albany, CA),
with behavioral responses captured using two buttons of
a Cedrus RB-834 response pad (Cedrus Corporation, San
Pedro, CA). Total EEG set up time was approximately 30
minutes.

As shown in Figure 1(right), the Sternberg working mem-
ory task (Raghavachari, et al., 2001) used in this study con-
sisted of sequentially presented letters, with span widths
of 4-8 randomly generated letters each (1.2s inter-stimulus
interval). A total of 90 trials were administered for each in-
dividual in three blocks of 30, each lasting approximately 8
minutes. In each trial, a 3.5s retention period followed each
stimulus set (i.e., the encoding stage), terminating with a
response probe to which participants indicated using one
of two response pad buttons whether the probe letter was
or was not presented in the set (i.e., the retrieval stage).
Auditory feedback was given to indicate correct, incorrect,
and time-out trials. The early 4s period before the stimulus
set started was considered as the baseline stage which was
used for participants to prepare for the memory task.

Amplitudes of EEG signals were extracted for each trial
and each individual by Morlet wavelet decomposition on
98 scales from 0.5 Hz to 100 Hz. In this study, an EEG
record consisted of totally 60 features extracted from five
frequency bands (δ: 0.5 - 4 Hz, θ: 4 - 8 Hz, α: 8 - 12 Hz, β:
14 - 28 Hz, and γ: 30 - 58 Hz), three brain regions (Fz, Cz
and Oz), and the four memory stages (baseline, encode, re-
tain and retrieve). Within each brain region and each mem-
ory stage, outliers of the EEG feature amplitudes were ex-
cluded (outside of 2 standard deviation from the mean). A
binary label associated with each record indicated whether
the individual answered correctly (0) or incorrectly (+1)
in the trial. Because the training data contained multiple
trials of a single individual, the records are not expected
to be i.i.d.. Generalized estimating equations (GEE) are
commonly used to estimate the sample correlation simul-
taneously while constructing predictive models. However,
they build a generalized linear model (GLM) using the 60
features as a vector, and hence ignore the spatio-temporal
structure of the data.

3. The proposed algorithm and analysis
3.1. Proposed formulations

In our approach, data in the t-th record of subject i are
aligned into a d× p matrix, denoted by

X(i;t) = [x(i)
s1 ,x

(i)
s2 , · · · ,x

(i)
sp ]

where p refers to the number of information processing
stages (4 stages in our cases) and x

(i)
s1 , · · · ,x

(i)
sp refer to

the 15 features (5 frequency bands extracted from the 3 re-
gions) collected at each stage. Then a linear model can be
represented as

y
(i)
t = tr

(
X>(i;t)W

)
where W = [w1, · · · ,wp] represents the weights for each
feature across the rows and the weights for each memory
stage across the columns.

GEE estimates the parameters of a GLM taking into ac-
count the correlations in the training examples. Similar to
GLM, there exists a link function that can be used to trans-
late the nonlinear model into a linear model. The expecta-
tion of the outcome y(i)t for subject i at time t is computed
as:

E(y
(i)
t ) = µ

(i)
t = g−1(η

(i)
t ), (1)

where µ(i)
t represents the mean model, g−1 is the inverse of

a link function g in a GLM (McCullagh & Nelder, 1989),

and η(i)t =
(
x
(i)
t

)>
w. The variance of y(i)t is computed

as var(y(i)t ) = var(µ(i)
t )/φ where φ is a scaling parameter

that may be known or estimated.

GEE presumes a so-called working correlation structure,
typically denoted by R(α), where α is a parameter to be
determined from data. The common choices of R(α) in-
clude exchangeable, tri-diagonal and AR-1 formula (Liang
& Zeger, 1986). The exchangeable correlation structure,
also called equi-correlation, assumes that corr(yit, yit′) =
α for all t 6= t′. The tri-diagonal structure uses a tridiagonal
matrix as R(α) where corr(yit, yit′) = α if t′ = t±1 or 0
otherwise. The AR formula assumes a correlation structure
along continuous time analogous to the first-order autore-
gressive process, and uses corr(yit, yit′) = α|t−t

′|.

To estimate the regression coefficients w, the quasi-
likelihood methods of GEE minimize a loss function that
is defined via the model deviance (Olsson, 2002). The
model deviance measures the difference between the log-
likelihood of the estimated mean model and that of the ob-
served values. For an arbitrary distribution, it may not cor-
respond to an explicit function. For the exponential family,
it takes a special form, which is still complicated. Hence,
GEE solves the estimating equations that are defined by
setting the derivatives of the loss function to 0. Although
the deviance cannot be written out explicitly, the estimating
equations can always be computed by the following equa-
tion assuming there arem subjects and without loss of gen-
erality each subject has n repeated trial records in the data:

L(w,α) =

m∑
i=1

(
D(i)

)> (
Σ(i)

)−1
s(i) = 0. (2)

where D(i) = ∂µ(i)/∂w is a d × n matrix where µ(i)

combines all µ(i)
t ,∀t = 1, · · · , n into a vector, s(i) =
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y(i) − µ(i)(w). The n × n matrix Σ(i) is the estimated
covariance between the different trials of an individual as:

Σ(i)(α) =
(
A(i)

)1/2
R(α)

(
A(i)

)1/2
/φ (3)

where A(i) is defined as the n × n diagonal matrix with
var(µ(i)

t ) as the t-th diagonal element. Algorithms are
given in (Liang & Zeger, 1986) to compute w for the dif-
ferent choices of R(α).

To apply GEE to our model, we replace η(i)t used in GEE
by the following formula

η
(i)
t = tr

(
X>(i;t)W

)
. (4)

Substituting Eq.(4) into Eq.(1) yields a formulation simi-
lar to GEE Eq.(2). Although the model deviance cannot
be written out, for notational convenience, we denote by
Dev(i)(W,α) the deviance occurred on subject i. GEE
minimizes

∑m
i=1Dev

(i)(W,α) for the optimal W and α.

Now, to discover the most influential features and the mem-
ory stages in predicting the response y of a trial, (and also
to control the model capacity,) we apply regularizers to the
model parameters. We first decompose W into a summa-
tion of two components as W = U + V and apply dif-
ferent regularizers to U and V. The block-wise LASSO,
such as the `1,2 matrix norm, is widely used in multi-task
learning or feature selection with group structures, but has
not been explored within the GEE setting. To the best of
our knowledge, it has not been studied in spatio-temporal
analytics how to produce shrinkage effects simultaneously
on both features and contingent temporal records through
proper regularization. The general `1,p matrix norm (Zhang
et al., 2010) calculates the sum of the `p norms of the rows
in a matrix. Regularizers based on the `1,p norms encour-
age row sparsity by shrinking the entire rows to have zero
entries.

In our parameter matrix W, rows correspond to features
and columns correspond to the stages. If we apply the `1,2
norm to U (row-wisely), the optimal solution of U will
contain rows with all zero entries. Thus, a selected sub-
set of features in the p stages will be used in the predictive
model to predict the trial response. The `1,2 norm of V>

(column-wisely) encourages to select among columns of
V. If the k-th column of V contains the largest values in
the selected columns, the trial response is most contingent
on the features of that k-th stage. Overall, we solve the fol-
lowing optimization problem for the best model parameters
W which is computed as U + V:

min
U,V

∑
i

Dev(i)(U + V,α) + λ1‖U‖1,2 + λ2‖V>‖1,2 (5)

where W in the deviance is simply replaced by U + V.

The optimization of Eq.(5) is challenging. In general, even
solving the GEE formulation is not easy as it involves not
only the mean model but also the variance term Σ(i). The
algorithm that solves the GEE (i.e., the estimating equa-
tions) applies the Newton-Raphson method in the itera-
tive reweighted least squares (IRLS) procedure (Fu, 2003)
to estimate w and Σ(i). However, this method does not
solve any formula that uses regularizers. By modifying
the Newton-Raphson method or shooting algorithm (Fu,
2003), it can be extended only to the regularizers that are
decomposable into individual parameters wj . For instance,
the `1 vector norm of w can be decomposed into the sum-
mation of individual |wj |, j = 1, · · · , d. The `1,2 ma-
trix norm, unfortunately, cannot be decomposed in such a
way. Therefore, we have developed an accelerated gradi-
ent descent method based on the fast iterative shrinkage-
thresholding algorithm (FISTA) (Beck & Teboulle, 2009).
As GEE can be proved to be a convex problem in terms of
w, our formulation is convex as well in terms of U and V
with a fixed α. Our FISTA algorithm can be proved (omit-
ted) to find the global optimal solution W of Eq.(5) when
a consistent estimator of α is provided by GEE.

3.2. Optimization algorithm

To solve Eq.(5), we design an alternating optimization al-
gorithm that alternates between optimizing two working
sets of variables: one set consisting of U and V and the
other consisting of α.

(a) Find U and V when α is fixed

When α is fixed, the objective function of Eq.(5), denoted
by f(U,V), is convex with a continuously differentiable
part `(U,V) that is the deviance and a non-differential part
R(U,V) that constitutes the two regularizers. We hence
have

f(U,V) = `(U,V) +R(U,V).

We develop a FISTA algorithm in the following iterative
procedure to find optimal U and V.

Denote the iterates at the k-th iteration by Uk and Vk.
Let ∇U`(U,V), ∇V`(U,V) be the partial derivative of
`(U,V) with respect to U and V, respectively, For any
given point (Ũ, Ṽ), the followingQL,Ũ,Ṽ(U,V) is a well-
defined proximal map for the nonsmooth R

QL,Ũ,Ṽ(U,V) = `(Ũ, Ṽ) +R(U,V)

+ < ∇U`(Ũ, Ṽ),U− Ũ > +
L

2
‖U− Ũ‖2F

+ < ∇V`(Ũ, Ṽ),V − Ṽ > +
L

2
‖V − Ṽ‖2F .

If `(U,V) has Lipschitz continuous gradient with Lips-
chitz modulis L. Then, according to the Lemma 2.1 in
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(Beck & Teboulle, 2009), the inequality

f(U,V) ≤ QL,Ũ,Ṽ(U,V). (6)

holds indicating that QL,Ũ,Ṽ(U,V) is the upper bound of
f(U,V).

Starting from an initial point (U0,V0), we iteratively
search for the optimal solution. At each iteration k, we
first use the iterates (Uk−1,Vk−1) and (Uk−2,Vk−2) to
compute (at the first iteration, (Ũ1, Ṽ1) = (U0,V0))

Ũk = Uk−1 +

(
tk−1 − 1

tk

)
(Uk−1 −Uk−2)

Ṽk = Vk−1 +

(
tk−1 − 1

tk

)
(Vk−1 −Vk−2),

(7)

where tk is a scalar and updated at each iteration as:

tk+1 =
1 +

√
1 + 4t2k
2

. (8)

Then, we solve the following problem

min
U,V

< ∇U`k,U− Ũk > +
L

2
‖U− Ũk‖2F

+ < ∇V`k,V − Ṽk > +
L

2
‖V − Ṽk‖2F

+R(U,V)

(9)

for a solution (Uk,Vk), where ∇U`k and ∇V`k are
respectively the partial derivatives of ` computed at
(Ũk, Ṽk), and L acts as a learning step size.

Since there is no interacting term between U and V in
Eq.(9), the problem can be decomposed into two separate
subproblems as follows:

min
U

< ∇U`k,U− Ũk > +
L

2
‖U− Ũk‖2F + λ1‖U‖1,2,

(10)

min
V

< ∇V`k,V− Ṽk > +
L

2
‖V− Ṽk‖2F +λ2‖V>‖1,2.

(11)
The two subproblems share the same structure and thus can
be solved following the same procedure. Hence, we only
show how to solve (10) for the best U.

Eq.(10) is equivalent to the following problem

min
U

1

2

∥∥∥∥U− (Ũk −
1

L
∇U`k

)∥∥∥∥2
F

+
λ1
L
‖U‖1,2

after omitting constants, and this problem has a closed-
form solution where each row of Uk, Uk

(i,) is:

Uk
(i,) = max

0, 1− λ1

L‖P(k)
(i,)‖2

P
(k)
(i,),

and P(k) = Ũk− 1
L∇U`k. The gradient vector∇U`k (i.e.,

the gradient of the deviance) can be computed by Eq.(2)
with the fixed α, i.e.

∇U`k = reshape

(
m∑
i=1

(
D(i)

)> (
Σ(i)

)−1
s
(i)
k

)
(12)

where s
(i)
k = y(i) − µ(i), and µ(i)

t = g−1(tr(X>(i;t)(Ũk +

Ṽk))). Given our response variable is binary (classifi-
cation), the logistic link function will be used and all
the parameters can be computed as: D(i) = ∂µ(i)

∂η(i) ×
∂η(i)

∂vect(Ũk)
= A(i)

[
vect

(
X(i;1)

)
, . . . , vect

(
X(i;n)

)]>
,

and Σ(i) =
(
A(i)

)1/2
R(α)

(
A(i)

)1/2
/φ where A(i) =

diag

(
exp(η

(i)
t )(

1+exp(η
(i)
t )

)2

)
.

The calculation of the Lipschitz modulisL can be computa-
tional expensive. We therefore follow the similar argument
in (Gong et al., 2012) to find a proper approximation Lk
at each iteration k starting from L0 > 0. Recall that the
Lipschits constant L is defined:

L = max
W

λmax (∇∇`W)

where λmax(·) indicates the maximum singular value of the
formula `. Decompose the Hessian matrix ∇∇`W|W→0

into M>M where M ∈ Rdp×q and q is the rank of the
Hessian matrix. We can find the upper bound of L by:

L ≤ ||M||∞,1||M>||∞,1 (13)

where ||M||∞,1 computes the maximum value of the `1-
norm across all rows of M. Intead of using L, we compute
the upper bound L̃ in Eq.(13) in our iterations.

Algorithm 1 summarizes the steps for finding optimal U
and V with fixed α.

Algorithm 1 Search for optimal U and V with fixed α

Input: X, y, Σ, λ1, λ2
Output: U, V
1. Set k = 0, compute L̃, and t1 = 1;
2. Solve Eq.(9) to obtain Uk and Vk.
3. Compute tk+1 by Eq.(8).
4. Compute Ũk+1 and Ṽk+1 by Eq.(7).
5. k = k + 1.
Repeat 2 ∼ 5 until convergence.

(b) Find α when U and V are fixed

When U and V are fixed, the regularizers no longer appear
in the objective of Eq.(5). Eq.(5) is degenerated into just
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the GEE formula with α as the variables. Hence, α can
be estimated via the standard GEE procedure, i.e., from the
current Pearson residuals defined by:

r
(i)
t =

y
(i)
t − tr

((
X(i;t)

)>
(U + V)

)
(σ

(i)
t,t )

(1/2)
.

where σ(i)
t,t is the t-th diagonal entry in the matrix Σ(i)

(Liang & Zeger, 1986). The specific estimator of α de-
pends on the choices of R(α). This GEE-based procedure
has been shown to find a consistent estimate of α (Liang &
Zeger, 1986).

Let N = mn be the total number of data records, and q =
dp be the practical number of parameters in W. A general
approach to estimating R is given by:

Rj,k =
∑
i

r
(i)
j r

(i)
k

N − q
, (14)

for j = 1, · · · , n, and k = 1, · · · , n. In addition, the scaler
parameter φ in Eq.(3) can be estimated as follows:

φ = (N − q)/
∑
i

∑
t

(r
(i)
t )2. (15)

Algorithm 2 shows the overall procedure for solving (5).

Algorithm 2 Main algorithm - Jointly select features and
temporal points

Input: X, y, λ1, λ2
Output: U, V
1. Set R(α) = I;
2. Solve for U and V using Algorithm 1;
3. Estimate α using a proper estimator in (Liang &
Zeger, 1986) and compute R(α) by Eq.(14) and φ by
Eq.(15)).
Repeat 2 ∼ 3 until convergence.

4. Experimental results
In this section, we discuss the preliminary results we ob-
tained on our EEG trial data. In our study data, schizophre-
nia (SZ) patients went through three sessions of the Stern-
berg trials, and healthy normal (HN) members were only
included in the first session. There were 90 trials in each
session for each individual. However, very few patients
participated all sessions and many trial records had missing
values or significant level of noise or outliers, for which we
had to clean the data carefully. After data cleaning, there
were 1131 trials for 14 SZ in session 1, 761 trials for 9 SZ
in session 2, and 1191 trials for 14 SZ in session 3. Each
patient had 74 to 94 trials, and 83 on average. The rate of

incorrect responses for the SZ patients was 27.2%. There
were 519 trials for 6 HN participants. Each participant had
82 to 90 trials, and 87 on average. The rate of incorrect
responses for HN participants was 14.7%. Note that the
current study data contained a limited sample of subjects
from the parent study. Additional efforts will be needed to
clean and process the full dataset and repeat the analyses
reported here.

We validated the proposed approach by comparing it to
the most relevant method, which was the GEE (Liang &
Zeger, 1986). We experimented with the different corre-
lation structures including exchangeable, tri-diagonal, AR-
1 and independent formula. The receiver operating char-
acteristic (ROC) curves were used to evaluate the perfor-
mance of each resultant classifier and the area under the
ROC curve (AUC) was reported in Table 1 (Fawcett, 2006).
We separated our analysis for SZ and HN with the hypoth-
esis that SZ patients may use different mechanisms or brain
functions to perform memory tasks from those of HN par-
ticipants. We hence built classifiers to separate trials with
correct responses from those with incorrect responses, re-
spectively, for SZ and HN. We then compared the features
selected for use in the SZ classifiers and HN classifiers.

For each of the SZ and HN datasets, 1/3 of the records were
randomly chosen from every subject to form the test data
and the rest of the records were used in training. The hyper-
parameters λ1 and λ2 in our approach and GEE (one pa-
rameter) were tuned in a two-fold cross validation within
the training data. In other words, the training records were
further split in half: one used to build a classifier with a
chosen parameter value from a range of 1 to 10 with a step
size 0.1; and the other used to test the resultant classifier.
We chose the parameter values that gave the best two-fold
cross validation performance, which were λ1 = 5.9 and
λ2 = 10 for SZ and λ1 = 2 and λ2 = 3.1 for HN.

Table 1 provides the AUC comparison results (shown in
percentages) between the two methods and for different
datasets and sample correlation assumptions. The results
in Table 1 show that our approach outperformed the tra-
ditional GEE in almost all comparison scenarios in terms
of classification accuracy. Most importantly, our approach
was able to select along two dimensions: among the
features and among the memory information processing
stages. Traditional GEE did not have any shrinkage effect
to select features. The advanced version of GEE used in
our experiments implemented a `1 regularizer, so it could
select among all 60 features. Because it did not use the
spatio-temporal structure of the 60 features, it was unable
to model along the different dimensions (locations versus
temporal stages).

We noticed that both GEE and our approach performed
the best when using independent sample-correlation as-
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Table 1. Comparison of AUC values (in percentage) between our approach and the GEE method on both healthy normal and schizophre-
nia data and for all different assumptions of correlation structures. (ind - independent sample-correlation structure.)

GEE Our Approach
Population AR(1) Exchangeable Tri-diagonal ind AR(1) exchangeable Tri-diagonal ind

Healthy Normal (HN) 54.1 52.2 55.5 57.3 55.1 54.9 55.0 68.0
Schizophrenia (SZ) 60.3 55.5 43.6 65.0 62.6 60.0 48.2 66.3

sumption, which was naturally against our intuition be-
cause there were multiple trials from a single individual and
these trials were expected to correlate. The equi-correlated
(exchangeable) assumption assumed that the correlation
among all trials was equal and indicated by a constant. To-
gether with AR-1 and Tri-diagonal correlation structures,
these assumptions were slightly worse than the indepen-
dent correlation assumption. However, we also noticed that
the trials were not labeled in sequence in our data so the al-
gorithms would not be able to model and distinguish the
correlations between consecutive trials from those of far-
apart trials. (The trials that an individual performed in a
short continuous timeframe may correlate more strongly
than trials far apart.)

We include two figures to demonstrate the selected features
and stages in the classifiers constructed by our approach.
The selected features for SZ patients are shown in Figure 2.
The selected features for HN participants are shown in Fig-
ure 3. An obvious observation is that the two populations
selected quite different features but the most important in-
formation processing stages were the same. Some of the
selected EEG features replicate those early reports, includ-
ing upward modulation of γ in SZ patients and engagement
of α during encoding and retention periods (Chen et al.,
2014; Herrmann et al., 2004).

Figure 2. Columns and rows selected by the classifier for separat-
ing correct versus incorrect Sternberg trials of SZ patients. Red
(blue) color indicates that the corresponding features were posi-
tive (negative) predictors of the incorrect response. Features with
white color were not used in the classifier.

Figure 3. Columns and rows selected by the classifier for separat-
ing correct versus incorrect Sternberg trials of HN participants.
Red (blue) color indicates that the corresponding features were
positive (negative) predictors of the incorrect response. Features
with white color were not used in the classifier.

Based on our models, the two groups showed remarkably
different patterns, with EEG activity in higher frequency
bands during the encoding stage associated with incorrect
trial responses in SZ (Figure 2). However, these features
were positive predictors of trial accuracy in healthy partic-
ipants (Figure 3), for whom engagement of low frequency
activity was associated with incorrect responses. It appears
that the SZ patients used more brain areas in the mem-
ory tasks than the HN participants. Frontal γ was pre-
viously identified as important for both SZ and HN sub-
jects, but was not selected for HN participants in our new
model, which may warrant further investigation. On the
other hand, among the selected three stages of both groups,
the features during the retention stage tended to receive the
largest weights in magnitude on average. All these results
will require careful examination in new studies to confirm
the validity and replicate on independent samples.

5. Conclusion
We have proposed a new learning formulation for spatio-
temporal analytics. Unlike existing methods, the proposed
approach can simultaneously determine the temporal con-
tingency and the influential features to predict an outcome
of related samples. The model parameter matrix used by
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the predictive model is computed by the summation of
two component matrices: one matrix reflects the selection
among features; and the other characterizes the dependency
along the temporal line. Moreover, our approach simulta-
neously models the sample correlations in the longitudinal
data while constructing a predictive model. A new accel-
erated gradient descent algorithm can efficiently solve the
related optimization problem.

There are multiple limitations of the current work. The
sample size of our study was small, especially the num-
ber of healthy normal participants was only 6, for which
the validity of selected features may require additional ex-
amination when the sample is augmented. It may require a
significantly more effort from neuroscientists to interpret
and investigate the results stemming from new machine
learning approaches. Moreover, our approach can be eas-
ily extended to handle more dimensions. For instance, we
may organize the data into a three dimensional matrix with
one dimension for stages, one dimension for scalp loca-
tions and one dimension for frequency bands. Then we split
the model parameter matrix into the sum of three compo-
nents and apply different regularizers to them to emphasize
and separate the selection among the different dimensions,
which we will leave for future work.
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