
Automatic Medical Coding of Patient Records via Weighted Ridge Regression

Jian-Wu Xu, Shipeng Yu, Jinbo Bi, Lucian Vlad Lita, Radu Stefan Niculescu and R. Bharat Rao
CAD and Knowledge Solutions, Siemens Medical Solutions USA, Inc.

51 Valley Stream Parkway, Malvern, PA 19355, USA
{firstname.lastname}@siemens.com

Abstract

In this paper, we apply weighted ridge regression to
tackle the highly unbalanced data issue in automatic large-
scale ICD-9 coding of medical patient records. Since most
of the ICD-9 codes are unevenly represented in the medical
records, a weighted scheme is employed to balance positive
and negative examples. The weights turn out to be associ-
ated with the instance priors from a probabilistic interpre-
tation, and an efficient EM algorithm is developed to au-
tomatically update both the weights and the regularization
parameter. Experiments on a large-scale real patient data-
base suggest that the weighted ridge regression outperforms
the conventional ridge regression and linear support vector
machines (SVM).

1. Introduction

Medical coding is best described as translation from the
original language in the medical documentation about the
diagnoses and procedures related to a patient into a series of
code numbers that describe the diagnoses or procedures in
a standard manner. Medical coding influences which med-
ical services are paid, how much they should be paid and
whether a person is considered a “risk” for insurance cover-
age. Medical coding is an essential activity that is required
for reimbursement by all medical insurance providers. It
drives the cash flow by which health care providers operate.
Additionally, it supplies critical data for quality evaluation
and statistical analysis.
There are several standardized systems for patient diag-

nosis coding, with ICD-9 (International Classification of
Diseases, [9]) being the version currently in use. In most
cases, an ICD-9 code is a real number consisting of a 2-3
digit disease category followed by a 1-2 decimal subcate-
gory. For instance, the ICD-9 code of 428 represents Heart
Failure (HF), with subcategories 428.0 (Congestive HF, Un-
specified), 428.1 (Left HF), 428.2 (Systolic HF), 428.3 (Di-
astolic HF), 428.4 (Combined HF) and 428.9 (HF, Unspeci-

fied). There are more than 12,000 different ICD-9 diagnosis
codes with a sophisticated hierarchy and interplay among
exams, decision-making, and documenting the diagnosis.
The coding approach currently used in hospitals relies

heavily on manual labeling performed by skilled and/or not
so skilled personnel. This is not only a time consuming
process, but also very error-prone given the large number
of ICD-9 codes and patient records. Some studies (e.g., [2])
show that only 60% ∼ 80% of the assigned ICD-9 codes re-
flect the exact patient medical diagnosis. Furthermore, vari-
ations in medical language usage can be found in different
geographic locales, and the sophistication of the term us-
age also varies among different types of medical personnel.
Therefore, an automatic medical coding system is of great
importance and can not only speed up the whole process,
but also improve the coding accuracy significantly.
Not much work has been done so far along this direc-

tion, partly because the patient records with ICD-9 labels
are hard to get (due to HIPAA regulations), and also because
of the extremely unbalanced training data for most of the
codes (i.e., only very few records are labeled as positive ex-
amples). Earlier approaches to medical coding include rule-
based engines [1, 10], automatic or semi-automatic methods
[6, 8]. Several companies, such as CodeRite1 and A-Life2,
provide semi-automatic solutions based on keywords in the
disease name. However these approaches require signifi-
cant human involvement after the keywords are spotted in
the patient record.
In our previous work [7], we collected probably the

largest set of patient records so far in the literature (with
labeled ICD-9 codes), compared a few known classifica-
tion methods on five of the most balanced ICD-9 codes,
and developed a system that can automatically assign codes
to a new patient record. In this paper, we propose a novel
classification procedure based onweighted ridge regression,
which is able to automatically learn both the weights and the
regularization parameter. This algorithm is specifically de-
signed to tackle the unbalanced training data problem, and

1http://coderitetraining.com/index.html
2http://www.alifemedical.com/
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is shown to improve the performance of 50 ICD-9 codes in-
cluding both balanced problems and unbalanced problems.
The paper is organized as follows. We first review ridge

regression and weighted ridge regression in Sec. 2, and then
introduce their probabilistic interpretations with EM algo-
rithms in Sec. 3. The experimental results are presented in
Sec. 4, and finally Sec. 5 concludes the paper with some
discussions as well as several ideas for future work.

2. Weighted Ridge Regression

Ridge regression is a well-known linear regression
method and has been proven to be effective for classifica-
tion problems in the text mining domain. Suppose we have
a sample set of pairs (xi, yi), i = 1, · · · , N , where xi ∈ Rd
is the i-th feature vector and yi ∈ {+1,−1} is the cor-
responding label. Denote X ∈ RN×d the feature matrix
whose i-th row contains the features for the i-th data point,
and y the label vector of N labels. The conventional lin-
ear ridge regression constructs a hyperplane-based function
w>x to approximate the output y by minimizing the fol-
lowing loss function [3]:

LRR(w) = ky−Xwk2 + λkwk2, (1)

where k · k denotes the 2-norm of a vector and λ > 0 is
the regularization parameter. Here the first term is the least
square loss of the output, and second term is the regular-
ization term which penalizes the w with high norm. λ here
balances off the two terms. By zeroing the derivative of L
with respect to w, it is not difficult to see that ridge regres-
sion has a closed-form solutionw = (X>X+λI)−1X>y.
Traditional ridge regression sets equal weights to all the

examples. When it is employed to solve classification prob-
lems (as is widely applied for text categorization), difficul-
ties are encountered when the class distribution is highly
unbalanced. For example, in our ICD-9 code database of
96,557 patient records, we only have 774 records assigned
to the code 410.41 (which stands for “acute myocardial in-
farction of inferior wall”). Even if we misclassify all these
patients, we may still have acceptable cost value in the clas-
sic ridge regression setting. Moreover, some examples can
be very noisy due to contamination in the feature vectors
or high uncertainty associated with the labels. It would be
helpful to have different weights for different observations
such that their costs of mislabeling are different.
This leads to the weighted ridge regression, which was

studied decades ago [4]. Let αi > 0 be the weight for the
i-th observation. The optimal set of hyperplane parameters
w can be found by minimizing the following loss function:

LWRR(w) =
X
i

αi(yi −w>xi)2 + λkwk2

= (y−Xw)>A(y−Xw) + λkwk2, (2)

whereA is aN ×N diagonal matrix with its (i, i)-th entry
being αi. Correspondingly, the closed-form solution for the
weighted ridge regression is:

w = (X>AX+ λI)−1X>Ay.

3. Probabilistic Interpretations

The regularization parameter λ and weight matrixA are
important for getting a good linear weight vector w. They
are mostly tuned via a cross-validation procedure, though
there are some other ways of estimating λ in the ridge re-
gression literature (see [4]). Here we present a probabilistic
interpretation for these methods and derive a principled way
of adapting these parameters.

3.1. Interpretation of Ridge Regression

Suppose the output yi follows a Gaussian distribution
with meanw>xi and variance σ2, i.e., yi ∼ N (w>xi, σ2),
and the weight vector w follows a Gaussian prior distribu-
tion: w ∼ N (0, I). Then the negative log-posterior density
of w is exactly the LRR(w) as defined in (1), with λ = σ2.
This interpretation is well-known in the literature (see [3]).
One advantage of this interpretation is that one can op-

timize the regularization parameter λ = σ2 by maximizing
the marginal likelihood of the data, which is also called the
evidence maximization (or the type-II likelihood):

logP (y|σ2) =− N

2
log 2π − 1

2
log |XX> + σ2I|

− 1
2
y>(XX> + σ2I)−1y.

Alternatively, one can also derive an EM algorithm, taking
w as the missing data and σ2 the model parameter. In this
approach, we estimate the posterior distribution of w in the
E-step, which is a GaussianN (μw,Cw), with

μw = (X
>X+ σ2I)−1X>y,

Cw = σ2(X>X+ σ2I)−1.

Then in the M-step we maximize the “complete” log-
likelihood with respect to σ2, assuming the posterior of w
as given in the E-step. This leads to the following update
for σ2:

σ2 =
1

N

h
ky−Xwk2 + tr(XCwX>)

i
.

The final algorithm iterates the E-step and M-step until con-
vergence. The posterior mean of w can be used to make
predictions for test observations, and we can also report the
variances of these predictions (by considering the posterior
covariance of w).
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3.2. Interpretation of Weighted Ridge Regression

When the weights of the observations are not fixed as the
same, there is also an interesting interpretation for weighted
ridge regression. Instead of having a common variance
term σ2 for all the observations as in ridge regression, in
weighted ridge regression we assume

yi ∼ N
µ
w>xi,

σ2

αi

¶
, (3)

which means if the weight of the i-th observation is high,
the variance of the output is small. Here σ2 is the common
variance term shared by all the observations, and αi is spe-
cific only to each observation i. With the same prior for
w, i.e., w ∼ N (0, I), one can easily check that the nega-
tive log-posterior density of w is exactly the LWRR(w) as
defined in (2), with λ = σ2.
A similar EM algorithm can be derived to optimize σ2

and αi iteratively. In the E-step we have the estimated pos-
terior ofw asN (μw,Cw), with

μw = (X
>AX+ σ2I)−1X>Ay, (4)

Cw = σ2(X>AX+ σ2I)−1. (5)

Note how the weight matrix A influences the posterior
mean and variance of w. In (4) and (5), the contribution
of each observation i depends on the weight αi: it con-
tributes more if the weight is higher (i.e., this is a good and
important observation) and contributes less if the weight is
smaller (i.e., it is a noisy observation).
In the M-step, we have (recall thatA(i, i) = αi)

σ2 =
1

N

h
(y−Xw)>A(y−Xw) + tr(XCwX>A)

i
,

αi =
σ2

(yi −w>xi)2 + x>i Cwxi
. (6)

Since the scales of σ2 andA are inter-dependent (i.e., only
the ratio σ2/αi is of interest), one might need to normalize
A such that tr(A) = 1 after each update. Note that (6)
provides one way to update the weights in a reweighted least
square scheme, in which not only the residual but also a
covariance term should be considered.
It is seen from the EM algorithm that the weight ma-

trix A does not need to be a diagonal matrix in general.
A non-diagonal A essentially assumes that the N outputs
for these N observations are not i.i.d. sampled, i.e., y ∼
N (Xw, σ2A−1). In the case of ICD-9 code classification,
this is useful when one observation (i.e., one record) is only
for one visit of a certain patient, and doctors need to con-
sider the records from multiple visits (i.e., multiple obser-
vations) to make one decision (i.e., output).
In practice, however, it is not always good to update the

weight matrix A in this way, especially when we have a

large number of observations. Overfitting is very likely to
occur in this situation. One can constrain the matrixA even
further, in order to reduce the number of free parameters,
by assuming some observations share a common weight.
One popular choice is to assume all the positive observa-
tions share one weight α+, and all the negative ones share
α−. The updates in this case will be

α+ =
1

N+

X
{i|yi=+1}

σ2

(yi −w>xi)2 + x>i Cwxi
,

α− =
1

N−

X
{i|yi=−1}

σ2

(yi −w>xi)2 + x>i Cwxi
,

whereN+ andN− are the numbers of positive and negative
examples, respectively. One might also normalize such that
α+ + α− = 1.
The EM update for the α+ and α− might not necessarily

optimize the F1 or AUC (Area Under ROCCurve) measures
because it only minimizes the regularized least square of
classification errors. Therefore, we use the validation set to
select optimal α+ and α− such that maximize the F1 in the
experiments. Finally we iterate the E-step and M-step until
convergence. As before we can use μw to make predictions
for new observations.

4. Experiments

In this section, we describe the experimental setup and
compare results using weighted ridge regression with the
canonical ridge regression and linear SVM.

4.1. Data Collection and Preprocessing

The diagnosis coding task is a very complex classifica-
tion problem also in that the concept of a document is not
very well defined. First, for every patient in the medical
database there are one or more visits to one or more hos-
pitals – in our experiments we focus on data from only
one hospital [7]. During each hospital visit, patients un-
dergo several examinations, treatments and procedures, as
well as evaluations. For most of these events, documents
in electronic format are authored by different people with
different qualifications (e.g., physician, nurse, etc). Each of
these documents inserted in the patient database represents
an event in the patient’s hospital stay: e.g., radiology note,
personal physician note, lab test, etc. The number of docu-
ments varies from 1 to more than 200 per patient. For the
purpose of this paper we limit the number of notes to 200.
Because of all of these elements, the patient data will be
very unbalanced in the number of medical notes per patient
visit. In this work we combine the notes for each patient
visit to create a hospital visit profile that we define to be
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Table 1. Statistics of the 50 ICD-9 codes
ICD-9 Freq Description
786.50 0.446 Chest pain
414.00 0.262 Coronary atherosclerosis of unspecified

type of vessel, native or graft
401.9 0.246 Unspecified hypertension
272.4 0.163 Unspecified hyperlipidemia
786.09 0.157 Other dyspnea & respiratory abnormalities
...

...
...

410.9 0.021 AMI: Unspecified site
427.32 0.018 Atrial flutter
410.71 0.014 AMI: Subendocardial infarction
423.9 0.013 Unspecified disease of pericardium
410.41 0.008 AMI: Other inferior wall

an individual document. The corpus extracted from the pa-
tient database contains diagnostic codes for each individual
patient visit, and therefore for each of our documents.
Very often, a previous doctor’s note is copied and parts of

it are modified as the patient visit progresses. This means
that a document may contain redundant data that was not
intended to provide additional information. During pre-
processing, we eliminate redundancy at a paragraph level
throughout each document, then perform tokenization and
split each paragraph into sentences using a combination of
uni-gram frequency and constraint-based approach. Tokens
then go through a process of number and pronoun class
smoothing, during which all numbers are replaced with a
meta token and all person pronouns are replaced with an-
other meta token. After that the uni-gram features with an
occurrence frequency greater than or equal to 10 are ex-
tracted, which amounts to 29,063. Finally, a feature selec-
tion step is performed for each ICD-9 code using the χ2
strategy (see, [11] for details), and the top 1,500 features
with the highest χ2 values were selected to make up the fea-
ture vector. To account for the various document lengths,
as the last step we normalize each document to have unit
Euclidean norm.
Our corpus consists of 96,557 visit-level documents after

the consolidation, and 2,618 distinct ICD-9 codes associ-
ated with these visits. In this experiment we pick up the 50
most frequently appearing codes, some of which are listed
in Table 1 with frequencies (i.e., the percentage of positive
examples over all documents) and descriptions, in the or-
der of decreasing frequency. Fig. 1 plots the percentage for
each of 50 codes. The figure clearly shows that around 80%
of 50 codes have less than 10% of instances over the entire
corpus, which attests the unbalance of ICD-9 codes. We
then randomly split the visits into training, validation, and
test sets which contain 70%, 15%, and 15% of the corpus
respectively. We train binary classifiers for each individual
diagnostic code (label), use the validation set to adjust the
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Figure 1. Frequency of the 50 ICD-9 codes

parameters, and then test on the unseen test set. The train-
ing set consists of 67,745 patient visits, which is probably
the largest training set so far in the ICD-9 coding litera-
ture. This corpus is real-world— a corpus built on an actual
patient database, and ICD-9 codes assigned by profession-
als — making these experiments more realistic compared
to previous work, such as the medical text dataset used in
the very recent Computation Medicine Center competition3
which uses overall 2,216 sub-paragraph level documents.

4.2. Variation of Performance With Respect To α

First we present a simple test to validate the proposed
method. A fixed α is assigned to the training examples with
positive labels, and (1−α) to the ones with negative labels
respectively. Hence we have a convex combination weight-
ing on the training examples by varying α between 0 and
1. When α = 0.5, the weighted ridge regression reduces to
the conventional ridge regression. Therefore variations of
different performance measures with respect to α indicate
the performance of the proposed method.
We randomly split the training data into 100 folds, each

time pick 99 folds as training examples for a given α, and
evaluate the performance of trained model on the remain-
ing 1 fold original samples. Two representative ICD-9
codes, 250.00 and 401.9, are shown in Fig. 2. Code 250.00
(diabetes mellitus) only appears 4,811 times out of over-
all 96,557 data samples in the whole corpus, while code
401.9 (unspecified hypertension) has 23,720 instances. We
plot the mean values of F1 and AUC measures out of 100
Monte Carlo simulations as functions of weight α with er-
ror bars being the standard deviations. These figures clearly
show the effects of different weighting on the performance
of weighted ridge regression in terms of F1 and AUC. As
the weighted ridge regression assigns more weight on the

3See http://www.computationalmedicine.org/challenge/index.php for
details of the competition and the results.
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Figure 2. Variations of F1 and AUC w.r.t. α for the codes 250.00 (left two) and 401.9 (right two)

training examples with positive labels, the performance im-
proves. However, over-weighting might deteriorate the re-
sults. An optimal α can be selected depending on the per-
formance measure we choose. By selecting an optimal α,
the weighted ridge regression outperforms the conventional
un-weighted ridge regression (α = 0.5 in the figures).

4.3. Results

We present the classification results on 50 ICD-9 codes
with the proposed method, the canonical ridge regression
and linear SVM here. The comparison measures are given
by the precision, recall, F1 and AUC. The precision, recall
and F1 measures are standard criteria in text classification.
The AUC criterion offers an overall performance for a clas-
sifier. We use SVM light toolkit [5] with a linear kernel and
default regularization parameter. In the experiment, we set
the cost factor as the number of negative training examples
over the positive one. Table 2 shows the experiment results
over all 50 ICD-9 codes for SVM, the canonical ridge re-
gression and the weighted ridge regression. The order of
the codes is sorted by the frequency of codes with the most
frequent ones on the top. We highlight the maximum val-
ues over 3 methods for the F1 and AUC measures. As the
data becomes more and more unbalanced, the performance
of SVM deteriorates even though we have set the cost factor
accordingly. The weighted ridge regression achieves better
results over the canonical one. For some codes with extreme
unbalance, significant improvements can be seen in the ta-
ble. For example, weighted ridge regression improves 9%
in F1 over the canonical one for the code 410.41, which is
the most infrequent code in the corpus. These results sug-
gest that our method outperforms canonical ridge regression
and SVM for unbalanced ICD-9 code classification.

5. Conclusions

In this paper we investigated the use of the weighted
ridge regression algorithm to perform classification of un-
balanced ICD-9 codes on a population of patients seen at a
hospital. Contrary to the conventional approach of selecting
the regularization parameter by cross validation, we auto-
matically update this parameter through an EM algorithm.

This approach speeds up the computation for the large scale
ICD-9 codes database. The weights assigned to different ex-
amples can also be updated through the same scheme. Our
experiments show the weighted ridge regression improves
the performance when compared to canonical ridge regres-
sion and SVMs in terms of F1 measure and AUC score.
Several interesting directions for future work include ex-
ploiting correlations between different ICD-9 codes of the
same patient and testing the methods described above on
data coming from a previously unseen hospital.
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Table 2. Comparison on the 50 ICD-9 code classification, with bold numbers indicating highest values
over 3 methods for F1 and AUC measures.

ICD-9 SVM RIDGE REGRESSION WEIGHTED RIDGE REGRESSION
CODE PREC REC F1 AUC PREC REC F1 AUC PREC REC F1 AUC
786.50 0.702 0.760 0.730 0.827 0.636 0.831 0.721 0.815 0.643 0.851 0.733 0.825
414.00 0.751 0.830 0.789 0.930 0.790 0.779 0.785 0.924 0.789 0.795 0.792 0.930
401.9 0.506 0.851 0.635 0.859 0.582 0.689 0.631 0.850 0.600 0.703 0.647 0.861
272.4 0.478 0.830 0.607 0.904 0.565 0.694 0.623 0.897 0.568 0.716 0.634 0.905
786.09 0.119 0.853 0.208 0.573 0.452 0.586 0.510 0.811 0.446 0.608 0.514 0.820
786.59 0.302 0.763 0.432 0.792 0.306 0.698 0.426 0.776 0.325 0.691 0.442 0.791
427.31 0.623 0.837 0.714 0.945 0.721 0.766 0.743 0.940 0.708 0.784 0.744 0.945
414.01 0.484 0.899 0.629 0.948 0.693 0.664 0.678 0.943 0.678 0.691 0.685 0.945
V71.7 0.199 0.628 0.302 0.721 0.251 0.442 0.320 0.714 0.235 0.521 0.324 0.724
428.0 0.436 0.783 0.560 0.910 0.633 0.609 0.621 0.907 0.616 0.640 0.628 0.912
429.2 0.345 0.807 0.483 0.902 0.504 0.551 0.527 0.889 0.543 0.534 0.539 0.903
794.39 0.326 0.825 0.468 0.901 0.424 0.644 0.511 0.890 0.477 0.560 0.515 0.897
429.3 0.212 0.714 0.326 0.807 0.279 0.515 0.362 0.801 0.285 0.539 0.373 0.813
424.0 0.249 0.740 0.372 0.857 0.370 0.552 0.443 0.846 0.425 0.493 0.456 0.861
425.4 0.539 0.840 0.657 0.947 0.797 0.644 0.712 0.945 0.746 0.703 0.724 0.951
413.9 0.269 0.765 0.398 0.867 0.484 0.502 0.493 0.868 0.481 0.535 0.507 0.871
780.2 0.272 0.702 0.392 0.848 0.523 0.490 0.506 0.849 0.575 0.452 0.506 0.853
414.9 0.283 0.823 0.421 0.906 0.430 0.597 0.500 0.893 0.493 0.561 0.525 0.907
785.1 0.340 0.764 0.470 0.896 0.498 0.583 0.537 0.891 0.499 0.583 0.537 0.895
786.05 0.151 0.657 0.246 0.763 0.252 0.332 0.287 0.765 0.223 0.441 0.296 0.771
424.1 0.249 0.742 0.373 0.880 0.538 0.514 0.526 0.869 0.569 0.508 0.537 0.885
411.1 0.228 0.815 0.357 0.883 0.429 0.445 0.437 0.880 0.417 0.476 0.444 0.890
785.9 0.207 0.730 0.323 0.857 0.385 0.433 0.408 0.842 0.404 0.432 0.418 0.850
427.89 0.267 0.760 0.395 0.889 0.471 0.541 0.504 0.890 0.479 0.542 0.509 0.895
272.0 0.225 0.775 0.349 0.887 0.542 0.392 0.455 0.872 0.451 0.499 0.474 0.890
396.3 0.229 0.635 0.336 0.849 0.325 0.362 0.343 0.836 0.314 0.475 0.378 0.850
427.9 0.142 0.662 0.234 0.800 0.174 0.514 0.260 0.785 0.203 0.453 0.281 0.801
V45.01 0.640 0.926 0.757 0.981 0.816 0.842 0.829 0.973 0.816 0.849 0.832 0.973
729.5 0.155 0.619 0.248 0.799 0.393 0.388 0.391 0.790 0.383 0.398 0.391 0.802
397.0 0.144 0.642 0.235 0.797 0.216 0.278 0.243 0.786 0.220 0.346 0.269 0.798
250.00 0.315 0.849 0.459 0.932 0.413 0.668 0.511 0.934 0.435 0.647 0.520 0.934
V45.81 0.345 0.887 0.497 0.959 0.545 0.684 0.607 0.952 0.557 0.706 0.623 0.960
433.10 0.246 0.804 0.376 0.914 0.602 0.584 0.593 0.908 0.615 0.615 0.615 0.916
V53.31 0.527 0.927 0.672 0.977 0.716 0.774 0.744 0.968 0.700 0.807 0.750 0.970
780.4 0.099 0.654 0.173 0.786 0.209 0.366 0.266 0.789 0.221 0.356 0.272 0.797
443.9 0.212 0.804 0.335 0.918 0.686 0.428 0.527 0.922 0.671 0.444 0.534 0.927
780.79 0.081 0.613 0.143 0.768 0.199 0.189 0.194 0.767 0.144 0.341 0.203 0.780
785.0 0.111 0.696 0.191 0.831 0.231 0.296 0.260 0.813 0.266 0.289 0.277 0.834
427.1 0.210 0.758 0.329 0.920 0.632 0.519 0.570 0.914 0.632 0.519 0.570 0.927
794.31 0.080 0.585 0.141 0.772 0.160 0.273 0.201 0.765 0.176 0.268 0.212 0.775
416.0 0.088 0.658 0.155 0.820 0.217 0.285 0.246 0.821 0.259 0.235 0.246 0.836
412 0.116 0.746 0.201 0.870 0.225 0.403 0.289 0.878 0.234 0.427 0.302 0.887
428.22 0.264 0.862 0.404 0.978 0.582 0.594 0.588 0.978 0.579 0.641 0.608 0.982
496 0.137 0.742 0.231 0.900 0.274 0.544 0.364 0.903 0.291 0.588 0.389 0.913
785.2 0.082 0.540 0.142 0.793 0.166 0.339 0.223 0.790 0.180 0.304 0.226 0.803
410.9 0.127 0.703 0.215 0.891 0.261 0.419 0.321 0.897 0.290 0.434 0.348 0.905
427.32 0.132 0.734 0.224 0.913 0.424 0.582 0.491 0.911 0.434 0.566 0.491 0.918
410.71 0.085 0.574 0.148 0.881 0.167 0.384 0.233 0.877 0.175 0.374 0.239 0.878
423.9 0.089 0.603 0.155 0.860 0.328 0.364 0.345 0.856 0.349 0.364 0.356 0.865
410.41 0.146 0.529 0.229 0.910 0.141 0.286 0.188 0.899 0.266 0.286 0.275 0.908
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