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Abstract. This study evaluates a robust parametric modeling approach for 
computer-aided detection (CAD) of vertebrae column metastases in 
whole-body MRI. Our method involves constructing a model based on 
geometric primitives from purely anatomical knowledge of organ shapes and 
rough variability limits. The basic intensity range of primary 'simple' objects in 
our models is derived from expert knowledge of image formation and 
appearance for certain tissue types. We formulated the classification problem as 
a multiple instance learning problem for which a novel algorithm is designed 
based on Fisher’s linear discriminant analysis. Evaluation of metastases 
detection algorithm is done on a separate test set as well as on the training set 
via leave-one-patient-out approach. 
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1   Introduction 

Whole-body MRI has high sensitivity and specificity for detection of bone-marrow 
metastases [1],[2]. Spine metastases detection is one of the most important and time-
consuming tasks. In recent years, computer aided detection (CAD) has proven to be 
efficient help for radiologists if used as a second reader in various applications of 
computed tomography (CT) and X-rays, such as colonic polyp, lung nodule, breast 
mass calcification detection, etc. Although lately MRI is becoming a popular 
screening modality, development of MRI CAD applications is more complicated than 
that of CT because of intensity in-homogeneity problem and higher noise level. This 
study evaluates a robust parametric modeling approach based on image formation and 
anatomical knowledge for computer-aided detection (CAD) of vertebrae column 
metastases in whole-body MRI.  

Radiologists usually use T2 STIR pulse sequence for primary vertebrae metastases 
detection [1],[2]. Although a standard non-contrast protocol of the bone marrow 
usually implies T1-weighted SE-sequences to discriminate between benign 
(hemangiomas, osteochondrosis, etc.) and malignant lesions, it is not always acquired 
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in all hospitals. Therefore our CAD scheme was developed for T2 STIR as primary 
pulse sequence, while resulting CAD marks are shown on T2 STIR and, if available, 
on T1 images for radiologist review and final diagnosis.  

Our goal was to develop an algorithm suited to work with alterations in scanning 
protocols and pulse sequences, such as changes in the level of fat suppression, image 
resolution, acquisition plane (sagittal or coronal) and tolerant to severe pathological 
changes in organ appearance. The few methods for vertebrae column segmentation in 
MR images available in recent literature, such as normalized cuts approach in [3], are 
not suitable in the case of severe metastases where dissimilarity between healthy and 
affected vertebrae could be much greater than between vertebrae and other tissue. Our 
approach involves constructing a model based on geometric primitives from purely 
anatomical knowledge of organ shape and rough variability limits. The basic intensity 
range of primary 'simple' objects is derived from expert knowledge of image 
formation for certain tissue types. Our assumptions include the following: 1) spinal 
cord, tumors and blood vessels are among the brightest structures in the image for 
number of MRI pulse sequences (par ex. T2, T2 STIR, HASTE) and, 2) bones are 
surrounded by cortical bone that does not generate signal in MR images, and therefore 
it is appears black (it looks like black contour around each bone). The spinal cord 
detection algorithm presented in section 2 relies only on these basic assumptions. The 
vertebrae segmentation algorithm described in section 3 also takes into account 
natural periodicity within vertebral column and requires minimal amount of training 
data to construct vertebrae column active shape model. The candidate lesion detection 
and feature extraction scheme are fairly simple and therefore only briefly outlined in 
section 4, while the main focus is made on a novel classification scheme. The reason 
for development of  specialized classification algorithm is the following: bone 
metastases detection problem is characterized by multiple manifestation of  multifocal 
or diffuse metastatic disease, while only one CAD detection per vertebrae column 
segment (cervical, thoracic and lumbar) is enough to bring the structure with 
multifocal or diffuse pathology into radiologist attention. In case of the focal 
metastatic disease, each focal lesion should be indicated to the radiologist by a 
separate mark. We designed a novel classification algorithm for detecting at least one 
hit from multiple hits associating with a lesion based on Fisher’s linear discriminant 
(FLD) analysis. Aggregation of multiple classifiers was conducted to reduce the 
variability of the detection system. Evaluation of metastases detection algorithm on a 
separate unseen test set is described in section 5. The conclusion is given in Section 6. 

2   Robust algorithm for Spinal cord detection 

Spinal cord is one of the most reliable reference objects in the MR images and it 
appears consistently bright in common MRI pulse sequences (scanning protocols), for 
example, HASTE, T2, and T2 STIR. Other tissue intensities however vary 
significantly with minor changes in the scanning protocols and levels of fat 
suppression. The number and shape of hyperintense objects in the image other than 
spinal cord is not known a priory, it varies from patient to patient depending on the 
primary tumor location, severity of the metastatic process, amount of body fat, 



condition of inter-vertebrae disks, pathological changes in the organ appearance, etc. 
The method presented below allows robust fitting and segmentation of spinal cord 
without extraction of full collection of other objects present in the image. The 
preprocessing steps include image intensity in-homogeneity correction, scaling and 
intensity thresholding. 

Naturally, the spinal cord follows three curves presented in human spine: cervical 
curve - convex forward, thoracic – concave forward and lumbar - convex forward.  It 
is convinient to model it with a curve having 3 extrema points. We modeled the spinal 
cord as a global 4 th-order 3D-polynomial: 
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where x(t) represents the variation in the spinal curve from patient side to side 
(coronal orientation), z(t) represents the variation in the  spinal curve from patient’s 
back to front (saggittal orientation). 

In this parametric representation, polynomial could be easily constrained to have 
sacrum (end of the vertebrae column) always pointing back:  
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Polynomial extrema points in saggittal orientation correspond to cervical, thoracic 
and lumbar curves. If the patient’ s spine also has a lateral curvature (pathology called 
scoliosis), it will be reflected in x(t) variations. Polynomial extrema points are 
computed from: 
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where ),( cjcj yx are extrema points in coronal orientation, ),( sjsj yz saggittal 

orientation, j=1,2,3.  
Next, we constrain the distances between polynomial extrema points in saggittal 

orientaion to be within natural limits of longitudinal ],[ max1,min1, ++ jjjj DD  and the 

poterior-anterior (lordotic and kyphotic) 1, +jjLK  distances between cervical, 

thoracic and lumbar curves: 
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The ],[ max1,min1, ++ jjjj DD and 
1, +jjLK limits were set by expert radiologist. 

We also constrain the lateral distances between coronal extrema points to be within 
the scoliosis pathology limit Sc, observed from our training set. 

 ;1 Scxx sjsj <− +  (5) 

Scanned patient section does not necessarily contain all three curves described 
above, but this modeling approach allows to extrapolate and guess their approximate 
location. The 4th short curve, pelvic, extends from sacrovertebral articulation to 
coccyx and, most often, is not visible in thoracic section of the whole body scan. It 
could be segmented together with pelvic bones using the spinal cord points as 
reference points. Pelvic bone segmentation is a subject of our future work and it is not 
addressed in this paper.  

The model parameters are estimated using random sample consensus (RANSAC) 
algorithm [4] with subsequent least squares based fitting refinement. The RANSAC 
method was adapted for parametric shape fitting with a priori knowledge of the 
approximate object scale in the presence of highly correlated outliers that often 
constitute more than 50% of the image.  

n+1 sample points are needed to define nth order polynomial. To speed up fitting of 
a polynomial of an approximately known scale (defined by the limits on the distances 
between the extrema points, see eq. (4)), we split the image into M*(n+1) sampling 
bins. Bins are longitudinally evenly spaced throughout the image; each bin b contains 
all axial (horizontal) slices in the region ))]1(/()max(,[ ++ nMyyy bb .  Factor M 

constraints scaling/warping degree of freedom for polynomial. The model fitting is an 
iterative process: 
1. For each iteration (n+1) bins are randomly selected.  
2. Then one sample point is randomly selected from each bin.  
3. za  and xa coefficient vectors are computer by solving equations 1.  
4. If condition in equations 2 is satisfied, the polynomial extrema points are 

computed from equations 3. 
5. If all extrema constraints are satisfied, then the fitting function is evaluated 

within the local vicinity of the parametric model as volume V of bright voxels 
within curved cylinder built around the polynomial. The size of the vicinity is the 
average human spinal cord radius R + delta. 

6. If V>minimal_cord_volume  the least-squares method is used to refine the fitting, 
taking into account  only the voxels within R + delta vicinity of the spinal cord 
model (this shifts model more towards the actual spinal cord center-line).  

7. The fitness function is estimated again and compared to the current best model 
fitness.  

8. The iterations 1-7 are repeated until V/V_total_bright_voxels>Threshold or 
number_of_iterations>k. 

The convergence speed of the algorithm depends on the percentage of outliers in the 
image: hyperintense points in the image not belonging to the spinal cord (which, in 
turn, depends on the exact pulse sequence, quality of fat suppression and degree of 
metastatic process). Maximum number of iterations k is estimated as: 
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where m=n+1, oP is the probability of seeing only bad samples (in our experiments it 
was up to 80% for some data sets), w – probability of good (inlier) samples. 

The detection results were visually evaluated in 77 T2 STIR and 5 HASTE images 
from different hospitals. Results appeared satisfactory in all images. Segmentation 
accuracy was numerically evaluated using manually segmented ground truth (GT) in 
35 T2 STIR images with average voxel size of 1.25x1.25x6mm. The average 
segmentation accuracy, estimated as ratio of overlapping of automatically detected 
(AD) and GT spinal cord volumes to the GT volume, was 91% with standard 
deviation (STD) of 14%. The accuracy of centerline position evaluated as average 
distance from all GT spinal cord voxels to the AD centerline was 4.4mm with STD of 
1.9mm. The presence of collapsed vertebrae and edema in 1 patient (see Fig. 1) and 
multiple vertebrae metastasis in 12 patients did not affect the segmentation accuracy 
in all cases but one, where all vertebrae had severe metastatic changes of similar 
image intensity as spinal cord with no visible boundary. As a result spinal cord 
centerline was shifted toward the center of the vertebral body.  
  

                         
 a) b) 
Fig. 1. a). Spinal cord detection result shown in a maximum intensity projection image of a 
patient with collapsed vertebrae and edema.  b) Curved MPR view of vertebrae column of 
another patient with several metastatic lesions. Curved MPR view was computed based on 
detected spinal cord. 

3   Parametric model based vertebrae segmentation 

Our vertebrae model is aimed to fit only the vertebrae body, excluding the processes 
and pedicles. It can be represented by a section of a curved cylinder adjacent to the 
spinal cord. The main motivations for this model are as follows. First, metastases that 
are present only in the pedicles but not vertebrae body are very rare and, second, 
processes and pedicles are not distinctly visible at the resolutions with slice thickness 
of ~6mm that are common for metastases screening protocols. On the other hand, 
when higher resolution screening images are available, vertebrae segmentation 
algorithm described in this paper can be used for rough vertebrae location at reduced 
resolution (sub-sampled images) and then other methods can be applied for refined 
vertebrae segmentation.  



We assume that imaginary planes that separate vertebrae from each other and from 
inter-vertebrae disks are orthogonal to the spinal cord (see Fig. 2).  

 

   Fig. 2. Plot of projected median intensity along spinal cord and filtered signal. 

Vertebrae separating planes are detected by analyzing the one-dimensional signal 
representing the spinal column. The signal is extracted by projecting the median 
intensity values along the spinal cord inside the small sample circles adjacent to the 
front edge of the spinal cord within the planes orthogonal to it.  

Normal vertebra is composed of spongy bone, containing bone marrow, which is 
surrounded by compact (cortical) bone. The most interesting property of cortical bone 
from MRI point of view is that it does not generate signal in MRI and therefore 
appears consistently hypointense in any pulse sequence, while vertebra and disks may 
change their appearance depending on the presences of metastases or other diseases 
(sometimes inter-vertebrae disks are not visible in the whole vertebral column). To 
extract reliable information from the projected signal and skip inconsistent high 
intensity peaks like disks and lesions, we apply minimum rank filter with the width 
between the largest inter-vertebra space and shortest vertebrae that we want to detect. 
Next, band-pass filtering with frequency band derived from the height range of 
normal vertebrae body is applied to determine vertical vertebrae boundaries.  
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While different band of frequencies (or height thresholds) could be used in cervical, 
thoracic and lumbar areas for higher precision, in the current implementation we used 
the same band for the whole vertebrae column. Discrete Fourier transform (DFT) of 
the input signal is computed with a fast Fourier transform algorithm. Next, we set all 
the elements of the resulting vector Y to zero, which correspond to the frequencies 
outside of desired range. Finally, inverse Fourier transform f(y) is obtained from the 
vector Y. The advantage of the filtered signal is that it is smooth, therefore 
differentiable. It is easy to find local minimums and maximums in this signal; 
minimums correspond to inter-vertebrae spaces and maximums to vertebrae body. 
Local maximums f(mi) and minimums f(ni)of filtered signal are computed from: 
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where y is the distance along spinal cord.  
Then the precise locations of lower and upper boundary of each vertebra are found 

from the original signal, as two local minima f(ui) and f(di) around the middle of each 
vertebra mi, which represent the upper and lower boundary of each vertebra. The local 
minima that are caused by noise are removed by setting the adaptive amplitude 
threshold ti for each vertebra: iiii tdftuf << )(;)( ;      

where ))(),...,(())(),...,(( 111111 +−+− −= iii nfnfstdnfnfmeant .  

Constraints are applied to maintain minimum height of the vertebrae vT  and inter-

vertebrae space sT :     ;vii Tdu >−     sii Tud >−+1 . 

The next step is aimed at creating a parametric model [5] for estimating the 
horizontal extent of the vertebrae through fitting ellipse to the middle section of each 
vertebra (see Fig. 3). First, we align all training samples x based on the second 
extrema (thoracic curve) of the polynomial models of each spinal cord, that 
approximately corresponds to 8th thorasic vertebrae. We manually acquire 
measurements of minor b and major axis a for each vertebra though out the training 
set. Then, PCA is applied for all aligned and completed samples xj.  

[ ]Tjnjjnjj bbaax ,...,,,..., 11= ; 

where ai – major axes (mm), bi – minor axes (mm), i=1,…,n, n is number of 
vertebrae, j is the sample number.  

Next, mean shape x  is computed: 
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where m is the number of training samples, kλ  is kth eigenvalue, kp  is kth 

eigenvector, k=1,..,2n and  t is the number of modes. 
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where confidence_level was set to 95%.  



Pdxx += .  P=(p1,…,pt) is a matrix of t eigenvectors, T
tddd ),...,( 1=  is the 

model parameter vector.  jjj wdw λλ ≤≤− , where  j=1,…,t. w was set to 

1. Generate new Pdxx +=  .  

 
Fig. 3. a). The picture of thoracic vertebra from Henry Gray’s Anatomy of the Human Body 
(1918).  b). Schematic representation of vertebra and spinal cord. c) Axial slice through a 
vertebra with fitted ellipse. Locations of manually acquired reference points at the ends of 
major and minor axis are shown as +. 
 
The vertebra body extent in axial planes is estimated through an ellipse-fitting 

algorithm [6]. Resulting vector: [ ]Tnn bbaax ',...,',',...,'' 11= .                                      

Project x′ to model space: Pxxd /)(' −′=  . If x’  is reasonable, 'd  will satisfy 

the model constraints iii wdw λλ ≤≤− ' .(i=1,…,t). Otherwise bring d’  to the 

range iii wdw λλ ≤≤− ' . Next, compute 'Pdxx += .  

 ;;/)( kkknew bPxxb λλ ≤≤−−=  (10) 

The vertebrae segmentation algorithm was visually evaluated on 77 T2 STIR 
images with different levels of fat suppression and on 5 HASTE images (HASTE 
pulse sequence is mainly used for abdominal organs like liver). In all cases 
segmentation results appeared satisfactory (see Fig. 4). Although intensity 
distributions for majority of organs are very different for T2 STIR and HASTE 
images, it had no effect on the segmentation results. No changes were made to the 
algorithm developed originally for T2 STIR images to adapt it for the HASTE pulse 
sequence.  
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  a) b) c) 
Fig. 4. Vertebrae segmentation results for: a) Coronal T2 STIR image b). Original (left) and 
segmented (right) T2 STIR image with metastases. c) HASTE image.   

4 Computer-aided detection of vertebrae metastases  

 The fully automatic metastases detection algorithm (research prototype) involved 
primary lesion detection and false positive reduction steps.  Osteoblastic metastases, 
unlike osteolytic, appear hypointense in STIR images, and require similar detection 
approach, but with inverse thresholds. Our data set does not contain enough samples 
of osteoblastic metastases (4 patients only) for reliable training and testing, therefore 
all the results and conclusions below are targeted towards osteolytic metastatic 
lesions. 

Primary lesion candidate detection inside segmented vertebrae was performed 
using adaptive intensity thresholds to search for any suspicious regions. Multiple 
features characterizing intensity, texture (moments of intensity), volume, shape (euler 
number, eccentricity, orientation, solidity, diameter of a circle with the same area as 
the region in coronal slice, orientation  - the angle between the x-axis and the major 
axis of the ellipse that has the same second-moments as the region), and location of 
candidate lesions were extracted from 3D image data. Finally, a classifier constructed 
using the training set was applied to the candidate detections to reduce the number of 
false positives (FP). The classifier was constructed by taking into account the fact that 
a lesion may associate with several detections and if any of them is correctly 
classified, the lesion is considered  being identified. 

Let m be the number of total candidates that are identified in the lesion candidate 
detection step, d be the number of features that are evaluated for each of the 
candidates. With a little abuse of notation, we use xi to denote a feature vector 
representation of the ith candidate.  We then label the detected candidates (hits) by 
consulting the markers provided by expert radiologists.  A candidate receives +1 label 
if it overlays with a lesion, or otherwise, it receives -1 label.  We use C+, C- to denote 
the index sets that contain all candidates that are labeled +1, and -1, respectively. 

In the classification task, a classifier needs to be constructed based on the training 
sample to predict the label for any candidate detected from unseen patient data.  
Standard machine learning algorithms such as support vector machines (SVM), and 
Fisher’s linear discriminant (FLD), are often used for CAD, but our detection task 
has specific characteristics that cannot be employed in the standard algorithm. In 
particular, there can be many hits or candidate regions that refer to unique underlying 
malignant structure, and even if one of the hits is correctly highlighted to the 



radiologist, the entire structure can be easily traced out by the radiologist.  Hence 
correct classification of every candidate instance is not as important as the ability to 
detect at least one candidate that points to a malignant region.  We thus formulate our 
problem as a problem of learning with multiple hits.  

We design a novel classification algorithm based on Fisher’s linear discriminant 
(FLD) analysis that aims to detect at least one hit for each lesion.   FLD [7] has been 
successfully applied to many medical applications, and it fits the separation boundary 

between true hits and negative detections with a linear function bxwT + . Recently, 
FLD has been recast into an equivalent optimization problem [8] as follows:   

minimize 
2
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iξ where iy  denotes the label, iξ  is a residual error of the 

model fitting, 
2

2
w  is the so-called regularization term that controls the classifier 

complexity, and γ  plays the trade-off between the residual error and the complexity 
regularization. 

Assume in total in  hits, each represented as a feature vector ijx , are segmented for 

the ith lesion. Let iS  be the index set of all candidates pointing to the i th lesion.  For 

each lesion, we form a convex hull using these vectors ijx  in the feature space. Any 

point in the convex hull can be represented as a convex combination of ijx , that is, 

,ij
Sj

ij x
i

�
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λ  where ,0≥ijλ  1=� ijλ .  The goal of our learning algorithm is to 

determine a decision boundary that can separate, with high accuracy, any possible 
part of each of the convex hulls on one side and as many as possible negative 
detections on the other side. It implies that we do not require the entire convex hull to 
correctly classified, but only any possible part of it.   In other words, our algorithm 
solves the following optimization problem based on the FLD formulation:  
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The classifier obtained by solving the formulation (11) can dramatically reduce 
false detections in comparison with standard classification algorithms, such as FLD.  

Aggregation of multiple classifiers is used to get an average aggregated prediction 
for an unseen sample. It has been shown that the aggregation is effective on ``unstable 
learning algorithms where small changes in the training set result in large changes in 
predictions [9].  Particularly, in our case, even though FLD itself may not be so 



unstable, reasonably small changes on the training sample set often cause undesirable 
changes on the classifier constructed due to an extremely limited size of patient data 
available.  Hence, aggregation is necessary in order to reduce the variance of the 
learned classifier over various sample patient sets, thus enhancing accuracy. 

We carry out T trials, and in each trial, 70% of the training cases are randomly 

sampled, and used in the training. A linear function t
T

tt bxwxf +=)(  is then 
constructed in the trial t.  The final classifier is based on the averaged model 
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f(x) with an appropriate cut-off value a provides the final findings where a is tuned 
according to the desired false positive rate. If a candidate x gets axf ≥)( , then it 

is classified as a true hit, or otherwise it is removed from the final findings. 

5 Evaluation of metastases detection algorithm 

The patient population included 42 patients with different histologically clarified 
primary tumors examined with MRI of the spine for staging and follow-up of known 
skeletal metastases. The gold standard was constituted by histology and/or clinical 
radiological follow up within at least 6 months. 

MRI was performed at 1.5 Tesla on a 32-channel scanner (Magnetom Avanto, 
Siemens). All patients underwent STIR-imaging of the complete spine in sagittal 
orientation. The data was split into training and test sets.  
Training set included 21 patients, in which 12 had osteolytic spine metastases (13 
focal, 6 diffuse and 10 multifocal lesions). The test set included 21 patients, of which 
9 had osteolytic spine metastases (12 focal, 6 diffuse and 8 multifocal lesions). Each 
spine section (cervical, thoracic and lumbar) with diffuse or multifocal infiltration 
was counted as one lesion. Training and test set sensitivity was 82.76% and 84.61%, 
respectively, with 5 false positive detections per patient. The CAD algorithm missed 3 
focal lesions in the training set and 3 focal lesions in the test set. One diffuse lesion 
(spine section) was missed in one patient from the test set and one multifocal and one 
diffuse lesion were missed in two patients from the training set. However, other 
lesions or infiltrated spine sections were successfully detected in the same patients, so 
that ‘per patient’  sensitivity was 100%. 

6  Conclusion 

Spine metastases CAD showed high standalone sensitivity at a relatively low FP rate. 
The run time was ~2 min on average in MATLAB implementation. While this study 
confirmed CAD feasibility, the next step is to incorporate additional features from T1-
weighted SE-sequences to further reduce the number of false positives. Furthermore, 
the additive benefits of CAD as a second reader should be investigated. 
 
 



  
 
 

   
 
 

  
  
a)  b) c)  d) 
 

Fig. 5.  a) and b). Examples of metastases detection results on the images from the development 
set (coronal STIR images with less fat suppression). The left image is from the same patient 
with collapsed vertebrae and edema as in figure 1a. c). Test set image example: sagittal STIR 
image of the spine. Focal lesions detected by CAD are highlighted in red. d) ROC curves for 
training and test sets. A. Sensitivity at 1.5 FPs per patient: training – 66.32%, test - 61.61%. B. 
Sensitivity at 5.0 FPs per patient: training – 82.89%, test - 84.61% 
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