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Abstract. Pulmonary embolism (PE) is a very serious condition causing sudden
death in about one-third of the cases. Treatment with anti-clotting medications is
highly effective but not without complications, while diagnosis has been missed
in about 70% of the cases. A major clinical challenge, particularly in an Emer-
gency Room, is to quickly and correctly diagnose patients with PE and then send
them on to therapy. Computed tomographic pulmonary angiography (CTPA) has
recently emerged as an accurate diagnostic tool for PE, but each CTPA study con-
tains hundreds of CT slices. The accuracy and efficiency of interpreting such a
large image data set is complicated by various PE look-alikes and also limited by
human factors, such as attention span and eye fatigue. In response to this chal-
lenge, in this paper, we present a fast yet effective approach for computer aided
detection of pulmonary embolism in CTPA. Our proposed approach is capable of
detecting both acute and chronic pulmonary emboli with a distinguished feature
of incrementally reporting any detection immediately once becoming available
during searching, offering real-time support and achieving 80% sensitivity at 4
false positives. This superior performance is contributed to our novel algorithms
(concentration oriented tobogganing and multiple instance classification) intro-
duced in this paper for candidate detection and false positive reduction.

1 Introduction

Pulmonary embolism (PE) is the third most common cause of death in the US with at
least 650,000 cases occurring annually. PE is a sudden blockage in a pulmonary artery,
and is caused by an embolus that is usually formed in the legs and travels in the blood-
stream through the heart before reaching the lungs. PE is a very serious condition that
can cause sudden death in about one-third of the cases. Most of those who die do so
within 30 to 60 minutes after symptoms start. Anti-clotting medications are highly ef-
fective in treating PEs, but sometimes can lead to subsequent hemorrhage and bleeding.
Therefore, they should be only given to those who really need. A major clinical chal-
lenge, particularly in an ER (Emergency Room) scenario, is to quickly and correctly
diagnose patients with PE and then send them on to treatment – a prompt and accurate
diagnosis is the key to survival.

However, PE is among the most difficult conditions to diagnose because its primary
symptoms are vague, non-specific, and may have a variety of other causes, making it
hard to separate out the critically ill patients suffering from PE. The diagnosis of PE
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Fig. 1. The emboli appears as dark regions residing in bright vessel lumen. Our toboggan-based
approach is capable to detect both acute (a, b) and chronic (c) pulmonary emboli, offering simulta-
neous detection and segmentation (d, e, f). The clot in (b) was actually missed by our radiologists,
but correctly detected by our system, and confirmed by the radiologists.

is missed more than 400,000 times in the US each year, and approximately 100,000
patients die who would have survived with the proper diagnosis and treatment.

Computed tomographic (CT) pulmonary angiography (CTPA) has become first-line
diagnosis technique for PE. Significant PEs are detectable given the high spatial reso-
lution of modern CT scanners. A CT image is a large 3D volumetric image, which
consists of hundreds of images, each representing one slice of the lung. Clinically,
manual reading of these slices is laborious, time consuming and complicated by var-
ious PE look-alikes (false positives) including respiratory motion artifacts, flow-related
artifacts, streak artifacts, partial volume artifacts, stair step artifacts, lymph nodes, and
vascular bifurcation, among many others. The accuracy and efficiency of interpreting
such a large image data set is also limited by human factors, such as attention span
and eye fatigue. Consequently, it is highly desirable to have a computer aided detection
(CAD) system to assist radiologists in detecting and characterizing emboli in an accu-
rate, efficient and reproducible way. Such a CAD system has to achieve an extremely
high detection sensitivity with as few as false positives to acquire clinical acceptance.
It also needs to satisfy stringent real-time requirement due to the emergency nature of
PE cases.

A number of computer aided diagnosis methods have been developed [1–4]. These
existing methods are all based on sophisticated vessel segmentation, namely, first seg-



menting the pulmonary vessel structure and then searching for PEs within the seg-
mented vessels, because PEs only exist in pulmonary arteries. However, vessel seg-
mentation is computationally time-consuming and has been problematic in small vas-
culature where subsegmental PEs often occur [1]. Furthermore, the normal regions of
pulmonary vessels are enhanced with contrast material. There is no need to search for
PE in the enhanced normal regions. Therefore, even if the pulmonary vascular struc-
ture is correctly segmented, large part of it would be excluded anyway. In this paper,
we present a fast yet effective toboggan-based approach for automated PE detection
in CTPA without vessel segmentation. Another distinguished feature of our approach
is its highly interactiveness and real-time response. For clinical use, all the detections
reported by a CAD systems must be reviewed and approved by radiologists. The exist-
ing PE CAD systems adopts a pipe-line architecture and only report the final detection
at the end of execution, implying that the radiologist has to wait until the end of the
system run in order to review and approve any detections. However, in an ER (Emer-
gency Room) scenario, radiologists only have a small time window (2-3 minutes) to
read a case and make the diagnosis. They cannot wait till the end of run to examine
all the CAD detection. To meet this requirement, our approach is capable to report any
PE detection once available in real time for radiologist to review and approve, while it
continues searching for additional PEs. These capabilities are founded on our two novel
algorithms introduced in this paper: concentration oriented tobogganing algorithm for
candidate detection and mutiple instance classification algorithm for false positive re-
duction.

2 Basic tobogganing

Pulmonary embolism may be acute or chronic. They are only existing in pulmonary
arteries and generally attached to the vessel wall (see Fig. 1). Due to the nature of
their formation, CTPA reveals emboli, whether acute or chronic, as dark regions with
Hounsfield Units (HU) between -50 HU and 100 HU, residing in contrast enhanced
bright vessel lumen. However, due to partial volume effects, the pixels around the vessel
boundaries are also in the same HU range. Therefore, a major challenge for automatic
PE detection is to effectively separate the emboli from the vessel wall and to quickly
remove partial volume effects around the vessel boundaries while correctly preserving
the PE pixels. In response to this challenge, we have come up with an idea: sliding all
the voxels with Hounsfield Units (HU) between -50 HU and 100 HU to its neighbor with
minimal HU value and collecting all voxels that don’t slide into regions with Hounsfield
Unit below -50 HU. This idea is illustrated in Fig. 2 and explained in the following.

This algorithm is called tobogganing [5], which takes its name from the processing
analogy of sliding down a steep hill and will be referred as “basic tobogganing” in
this paper to be differentiated from a new tobogganing algorithm, called concentration
oriented tobogganing, to be presented in Section 3. A basic operation in tobogganing is
“sliding”. A pixel v with intensity P (v) and neighbors N(v) slides down to pixel g:

g = arg min
t ∈ N(v) ∪ {v}

P (t). (1)
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Fig. 2. An illustration of our idea for PE detection with basic tobogganing algorithm. In this small
PE image, pixels with CT values below -50 HU are in white, pixels with CT value above 100 HU
in red and all other pixels in yellow. Naturally, all the PE pixels are in yellow. However, due to
partial volume effects, the pixels around the artery boundaries are also in yellow. Our idea can
effectively detect the PE (circled) and remove the partial volume effects.

In cases where a pixel is surrounded by more than one pixel with the same minimal
intensity value, the first pixel found with this value can be chosen or other more so-
phisticated strategies may be used in selecting a neighbor. A pixel that cannot slide to
any of its neighbors is called a concentration. All the pixels that slide down to the same
concentration form a toboggan cluster with a unique label.

The basic tobogganing algorithm operates as follows: Each unlabeled pixel slides
till reaching a labeled pixel or a unlabeled new concentration. If it reaches a labeled
pixel, the label is propagated back to all the pixels along the sliding path, otherwise, a
new label is generated and then propagated back along the path. All the sliding direc-
tions may be recorded during the process. Referring to the simple PE image in Fig. 2,
for detecting PE, we scan the image in row by row, but only selectively slide those pixels
with CT values between -50 HU and 100 HU. For illustration, we use 2D four-connected
neighborhood. The arrows indicate the sliding directions. During the tobogganing, the
first pixel with CT value between -50 HU and 100 HU is pixel (7,2), which slides to-
wards to pixel (7,1). Since the CT value of pixel (7,1) is -74 HU, and is pre-labeled as
“air”, label “air” is propagated back to pixel (7,2). During the tobogganing process, the
first pixel collected as PE pixel is pixel (4,5), because it slides down to pixel (4,6) and
then concentrates at pixel (5,6) with CT value above -50 HU. Consequently, a PE label
is generated and assigned to pixel (5,6) and propagated back to pixels (4,6) and (4,5).
When it is done for all the pixels in the image, the yellow pixels around the arteries have
all merged into darker regions with CT values below -50 HU and all the PE pixels stand
out (circled in red). In this example, two toboggan clusters are formed for the detected
PE pixels: The pixel (3,6) constitutes a single-pixel toboggan cluster, while all other
pixels forms one cluster with concentration at pixel (5,6). To achieve the goal of PE
detection, the adjacent toboggan clusters (with detected PE pixels) must be merged into
a connected component, called a PE candidate, so that a detection position (3D point)
can be derived by ultimate erosion to represent the candidate.



This basic tobogganing algorithm is intuitive and clearly useful in detecting PEs.
However, a problem is that it only labels the PE voxels, providing suspicious PE regions.
For PE detection, we must group the detected PE pixels into connected components,
forming PE candidates. This means that we have to scan the whole 3D volumetric
image data at least two times – one for tobogganing and one for connected component
analysis, before reporting any detected PEs. In other words, the user (radiologist) has to
wait the completion of two scans before reviewing and approving any PE detections. To
overcome this drawback, we introduce concentration oriented tobogganing in the next
section.

3 Concentration oriented tobogganing

3.1 The algorithm

During the PE search process, our goal is, once a PE pixel is encountered, to extract a
whole PE candidate from the pixel immediately and send it to the user (radiologist) for
review and approval. A PE candidate consists of multiple toboggan clusters. Naturally,
in order to achieve the goal, we must first have an algorithm which can extract a tobog-
gan cluster from any given pixel and provide the external boundary pixels of the cluster.
The process of extracting a toboggan cluster from a given pixel is referred as concen-
tration oriented tobogganning and formulated as an algorithm in Appendix which is
iteratively invoked for detecting PEs. The idea is illustrated in Fig. 3 and detailed as
follows.

Basically, the concentration oriented tobogganing algorithm has two steps. It first
searches for concentration c from the given pixel s and then expands from the found
concentration c to extract the whole toboggan cluster C. The expansion includes a base
step and an iterative step. In the base step, it includes the concentration c as the first pixel
in the cluster and pushes all its neighbors with CT values between -50 HU and 100 HU
into an active list A. In the iterative step, it selects pixel q with the minimal CT value
from the active list A, if the selected pixel toboggans to an already clustered pixel,
then conditionally pushes its neighbors to the active list A to ensure the uniqueness
of the pixels in the active list, otherwise, the selected pixel belongs to the cluster’s
external boundary B. The iterative step is repeated till the active list A is empty. This
concentration oriented tobogganing algorithm is repeatedly applied on all those external
boundary pixels, until a whole PE candidate has been extracted.

Referring to Fig. 3, when our example image is scanned in row by row, the first PE
pixel encountered is (4,5), because it does not merge into regions with CT value below
-50 HU. Therefore, we wish to extract the whole PE from the pixel at (4,5). Fig. 3.(a)
illustrates Step A of the algorithm: finding the concentration. It regards the starting
location as the current location, slides it to its neighbor with minimal CT value, then
selects the neighbor as the current location and slides it until reaching a concentration.
Once the concentration is found, if its CT value is between -50 HU and 100 HU, Step
B is initiated to expand from the concentration to cover a whole toboggan cluster and
provide all the external boundary pixels (circled in blue) as shown in Fig. 3.(b). In this
example, the concentration (5,6) is included into the cluster and then all its neighbors
with CT values in the PE HU range are pushed into an active list. A pixel with the
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Fig. 3. Using the concentration oriented toboggan algorithm for PE detection. (a) Step A of the
algorithm: Finding the concentration. (b) Step B: Expanding from the concentration to cover a
whole toboggan cluster and providing all the external boundary pixels (circled). (c) Repeatedly
apply the algorithm on all those external boundary pixels with CT value between -50 HU and 100
HU to form a PE candidate, leading to an identical result (d) as in Fig. 2.(b).

minimal CT value is selected from the active list. In this case, it is pixel (4,6). Since
it slides towards pixel (5,6), which has been included into the cluster, its neighbors are
conditionally pushed into the active list. The condition is that the neighbor must have
CT value in the PE HU range, is not included in the cluster and is not in the active list.
A new pixel with the minimal CT value is selected from the active list. For this time,
it is pixel (3,6), but it does not slides towards any pixels within the cluster, therefore, it
is a pixel on the external boundary of the cluster, and no processing is performed on its
neighbors. Repeatedly select a new pixel from the active lust and process it in the same
way till the active list is empty. Once done, we obtain all the pixels within the cluster,
namely, (4,5), (4,6), (5,5), (5,6) and (6,5), as well as the pixels along the external bound-
ary of the cluster (circled in blue in Fig. 3.(b)). The concentration oriented tobogganing
algorithm is then iteratively applied on each of the external boundary pixels with CT
value in the PE HU range. Any additional extracted toboggan cluster is merged into
the previously extracted toboggan clusters, and any additional external boundary pixels



are also merged. Once no external boundary pixel is left, all the toboggan clusters are
extracted and merged, automatically forming a connected component – a PE candidate.

Proposition 31 Concentration oriented tobogganing provides identical PE detections
as basic tobogganing, but it has an advantage of reporting any detection immediately
once becoming available during searching.

3.2 Detection performance

We have collected 177 cases with 872 clots marked by expert chest radiologists at four
different institutions (two North American sites and two European sites). They are di-
vided into two sets: training (45 cases with 156 clots) and testing (132 cases with 716
clots). The training cases were used in the development process for algorithm develop-
ing, improving and testing, while the testing cases were only used for algorithm testing
and were never used for development.

All the 177 cases were processed with our concentration oriented algorithm, which
generated a total of 8806 candidates: 2431 candidates appear in the training set and
6375 candidates in the test set. Each candidate is a connected component – a cluster of
voxels, and represented by a representative point with a 3-D coordinate derived from
the cluster of voxels.

Each candidate was then labeled as a PE or not based on 3-D landmark ground truth
provided by the experts. In order to automatically label each candidate, each PE pointed
out by an expert landmark is semi-automatically extracted and segmented. Therefore,
the ground truth for each PE is also a cluster of voxels (i.e., the segmented PE). Any
candidate that was found to be intersected with any of the segmented PEs in the ground
truth was labeled as a PE. Multiple candidates may intersect with the same segmented
PE, that is, multiple candidates may correspond to a single PE. Each PE is assigned
with a unique identifier, therefore, multiple candidates may be labeled with the same
PE identifier.

Our algorithms successfully detected 90.38% (141/156) of the PE in the training
cases and 90.1%(645/716) of the PE in the testing cases. On average, the total compu-
tation time for each case is about 2 minutes on a 2.4GHz P4 PC and the first detection
if any in a case is reported within 27 seconds. However, the concentration oriented al-
gorithm also produces candidates that do not intersect with any PEs. These candidates
are regarded as false positives. On average, 47.5 and 40.3 false positives for each case
are generated for the training set and the test set, respectively. However, a system that
“cries wolf” too often will be rejected out of hand by radiologists. Thus, the goal is to
detect as many true PEs as possible, subject to a constraint on false positives, usually
within 4 false positives per case. Therefore, we design a novel classification framework
based on mathematical programming to reduce false positives in the next section.

4 False Positive Reduction

For clinical acceptability, it is critical to control false positive rates and detect as many
true PEs as possible. A PE can be large, or have an elongated shape along the vessel, or



split at the vessel bifurcation. Multiple candidate clusters may exist to intersect with a
single PE. As long as one of the candidates is identified and visualized to physicians, the
entire PE can be easily traced out. Consequently, it is sufficient to detect one candidate
for each PE. Correct classification of every candidate instance is not as important as the
ability to detect at least one candidate that points to a specific PE. Based on this concept,
a novel multiple instance classification algorithm is devised to reduce false positives.

4.1 Feature Computation

A set of 116 descriptive properties, called features, are computed for each candidate.
These features were all image-based features and were normalized to a unit range. The
features can be categorized into several groups: those indicative of voxel intensity dis-
tributions within the candidate, those summarizing distributions in neighborhood of the
candidate, and those that describe the 3-D shape of the candidate and enclosing struc-
tures. These features, in conjunction with each other, capture candidate properties that
can disambiguate true emboli from typical false positives, such as dark areas that result
from poor mixing of bright contrast agents with blood in veins, and dark connective
tissues between vessels. These features are not necessarily independent, and may be
correlated with each other, especially within the same group.

4.2 Mutiple Instance Classification

Assume that totally � candidates are extracted, each represented by a feature vector x i

associated with a label yi. The label yi = 1 if the candidate overlays on a PE, or other-
wise yi = −1. Let I+ and I− be two index sets containing indices of candidates that
intersect with PEs and do not intersect with PEs, respectively. Let m be the total number
of PEs marked by expert radiologists for the n images. Denote I j as the index set of the
candidates that intersect with the j-th PE, j = 1, · · · , m. Notice that ∪j=1,··· ,mIj = I+

but any two index sets Ij’s are not necessarily disjoint since there may exist a candidate
cluster that intersects with more than one segmented PEs.

Support vector machine (SVM) [6–8] has been a successful methodology for classi-
fication and regression. It constructs linear classification functions of the form w Tx+ b
by minimizing the hinge error defined as ξ = max{0, 1 − y(wTx − b)} for all candi-
dates. We derive a more effective classification approach by exploring the key observa-
tion that once a candidate in Ij is classified as a positive, then the j-th PE is considered
being identified. This consideration suggests the classifier to focus on different PEs in-
stead of multiple candidates within a single PE. Especially it facilitates the reduction of
false positives by possibly ignoring extremely noisy candidates that intersect with some
PEs where, for the same PE, other associated candidates can be easily classified cor-
rectly. A geometric interpretation is illustrated in a 2-D feature space as in Fig.4 where
standard SVMs focus on separating all candidates to correct sides whereas our learning
algorithm classifies at least one true PE candidate into one side and others on the other
side, thus successfully removing all false detections.

Mathematically, distinguishing at least one candidate for each PE from the negative
class is equivalent to the statement that as long as the minimum of the errors (ξ) that
are occurred on the candidates associated with a PE is 0, then that PE is detected. For
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Fig. 4. Illustration of the classification. (Left) the linear separation boundary by standard SVM
where circles represent false detections, and the symbols (diamond, box and triangle) each rep-
resent one PE with multiple candidates. (Right) the linear separation boundary by our multiple
instance classification algorithm with more significant false positive reduction.

example, if a PE is associated with 3 candidates, and a classifier generates ξ1 = 0 for
the first candidate, ξ2 = 5, ξ3 = 100 for the other two candidates, the classifier detects
the PE. Correspondingly, this implies to construct the classifier by solving the following
optimization problem:

minw,ξ γ||w||1 +
∑m

j=1 min{ξi, i ∈ Ij} +
∑

i∈I− ξi

s.t. wT xi + b ≥ 1 − ξi, i ∈ I+,
wT xi + b ≤ −1 + ξi, i ∈ I−,
ξi ≥ 0, i = 1, · · · , �.

(2)

However, this optimization problem is computationally difficult to solve, because it
involves a minimization of the to-be-determined variables ξ in the evaluation of the
objective function, and it is neither differentiable nor convex. Hence, it is necessary
to devise a tractable optimization problem that is equivalent. To this end, we prove that
problem (2) is equivalent to the quadratic program (3), as characterized by the following
theorem:

minw,ξ,λ γ||w||1 +
∑m

j=1(
∑

i∈Ij
λiξi) +

∑
i∈I− ξi

s.t. wT xi + b ≥ 1 − ξi, i ∈ I+,
wT xi + b ≤ −1 + ξi, i ∈ I−,
ξi ≥ 0, i = 1, · · · , �,∑

i∈Ij
λi = 1, λi ≥ 0, i ∈ Ij , j = 1, · · · , m.

(3)

Theorem 41 An optimal solution ŵ of Problem (2) is also optimal to Problem (3) with
properly chosen λ, and vice versa.

Proof. First of all, we prove that an optimal solution of Problem (3) has nonzero λ’s
only on the candidates for which the classifier achieves min{ξ i, i ∈ Ij}, ∀ j.

Let (ŵ, ξ̂, λ̂) be the optimal solution of Problem (3). For notational convenience,
denote the objective of Problem (3) as J (w, ξ, λ) = γ||w||1 +

∑m
j=1(

∑
i∈Ij

λiξi) +
∑

i∈I− ξi. Then let Ĵ be the objective value attained at the optimal solution. Notice
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Fig. 5. The ROC plot of the final system.

that the hinge loss ξ̂ is uniquely determined by ŵ as ξ̂i = max{0, 1 − yi(wTxi + b)}
for each candidate xi.

If ∃ j ∈ {1, · · · , m}, and ∃i0 ∈ Ij , such that λi0 > 0 but ξ̂i0 �= min{ξi, i ∈ Ij}.
Then let ξIj = min{ξi, i ∈ Ij} < ξ̂i0 . Then J̃ = Ĵ − λi0ξi0 + λi0ξIj < Ĵ . This

contradicts to the optimality of (ŵ, ξ̂, λ̂).
By this contradiction, ∀i, j, such as λi > 0, the corresponding ξi has to be the min-

imum loss that the classifier achieves on the j-th PE. This implies that at the optimality
of Problem (3), J = γ||w||1 +

∑m
j=1 min{ξi, i ∈ Ij} +

∑
i∈I− ξi which is the same

as the objective of Problem (2).

4.3 System Performance

Our classification algorithm has dramatically reduced the false positive rate down to 4
false positives per patient while maintaining the high detection sensitivity. Fig.5 depicts
the Receiver Operating Characteristics (ROC) plot of our final system that combines
the candidate detection, feature computation, and classification. As shown in Fig.5, the
final system detects 80% of the PEs, respectively, for the training study set and the test
set at 4 false positive per patient.

5 Discussions and Conclusions

We view our method as toboggan-based because the idea is originally inspired by the
work of Fairfield [5] and of Mortensen and Barrett [9]. The basic tobogganing algorithm
presented in Section 2 is a modified version of the algorithm in [5, 10]. Nevertheless,
each of the research groups has different aims in mind. Fairfield aimed to enhance
the contrast of images by tobogganing, while Mortensen and Barrett used tobogganing
with the aim to group the pixels to reduce the underlying graph in livewire for efficient
interactive image segmentation. Clearly, our aim is to separate objects (PEs in this case)
from adjacent (connected) objects (vessel walls in this case) and remove partial volume
effects. Given the general nature of the idea, the algorithm has been successfully applied
to other applications, for instance, detecting colonic polyps in CT images.



We also would like to contrast our concentration oriented tobogganing algorithm
with a few of existing related algorithms in the literature including: watershed, hierar-
chical tobogganing, intelligent paint, and intelligent scissor” (i.e., “live-wire”). There is
a rich set of algorithms in the watershed literature. The most related ones are rainfalling
simulation [11] and the watershed technique based on hill climbing reported in [12]. The
basic toboggan algorithm first reported by Fairfield largely went unnoticed in the water-
shed community. Rainfalling simulation can be regarded as an extension of Fairfield’s
algorithm for handling “plateau”. The watershed technique based on hill climbing re-
ported in [12] requires that all the minima be found in advance and marked with distinct
labels followed by “hill climbing”. This implies that we would not be able to obtain a
watershed region till the whole image has been scanned and processed. “Hierarchical
tobogganing” is to repeatedly apply the basic toboggan algorithm, forming toboggan
hierarchy. “Intelligent paint” is built on top of hierarchical tobogganing to allow the
user to interactively “select” the pre-formed toboggan regions at a user pre-specified
toboggan hierarchical level, based on cost-ordered region collection. “Intelligent scis-
sor” or interactive “live-wire” aims to compute an optimal path from a selected seed
point to every other point in the image based on unrestricted graph search, so that the
user can move the mouse freely in the image plane and interactively “select” a desired
path among all the optimal paths based on the current cursor position. The underlying
algorithm is Dijkstra’s algorithm, which computed a shortest path from a given point to
every other point in the image. However, for large images, the underlying graph created
in live-wire for search become large, the interactiveness of livewire would be com-
prised due to the fundamental limitation of Dijkstra’s algorithm. Therefore, Mortensen
and Barrett [9] proposed toboggan-based livewire, in which the basic toboggan algo-
rithm is applied to reduce the underlying graph in livewire to achieve highly efficient
interaction in image segmentation. In short, all the discussed algorithms cannot meet
our requirement to extract a toboggan cluster from an initial site without processing any
pixels beyond its external boundary.

In conclusion, we have developed a novel approach for computer aided detection
of pulmonary embolism. Our approach has a set of distinguished features, requiring no
vessel segmentation, reporting any detection incrementally in real time, and detecting
both acute and chronic pulmonary emboli, achieving 80% sensitivity at 4 false positives.
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Appendix: A concentration oriented tobogganing algorithm
Input:

s {initial site}
p = P(v) {toboggan potential p of voxel v}
lt {the low threshold}
ht {the high threshold}

Output:
C {toboggan cluster containing initial site s; initially empty}
B {external boundary pixels of cluster C; initially empty}

Data Structures:
A {Active list of voxels; initially empty}

Functions:
E = N(v) {get neighbors E of voxel v}
g = tob(v) {g = arg mint ∈ N(v) ∪ {v} P(t) }
A = update(A,v) {∀ r ∈ N(v), A← r, if (r /∈ A) and (r /∈ C) and (P(r) ∈ [lt, ht]) }
q = pop(A) {q = arg mina∈A P(a) }

Steps:
{Step A: Find concentration c of initial site s}

c = s;
repeat

q = c; c = tob(q);
until (q = c)

{Step B: Expand from concentration c}
if (P(c) ∈ [lt, ht]) begin
{Step B.1: Base step}

C← c; A = update(A, c);
{Step B.2: Iterative step}

repeat
q = pop(A); r = tob(q);
if r ∈ C begin {include q into cluster C and update A}

C← q; A = update(A,q);
end else begin {include q into external boundary B}

B← q;
end

until A is empty
end


