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Abstract

The problem of learning a proper distance or similarity
metric arises in many applications such as content-based
image retrieval. In this work, we propose a boosting algo-
rithm, MetricBoost, to learn the distance metric that pre-
serves the proximity relationships among object triplets:
object i is more similar to object j than to object k. Metric-
Boost constructs a positive semi-definite (PSD) matrix that
parameterizes the distance metric by combining rank-one
PSD matrices. Different options of weak models and com-
bination coefficients are derived. Unlike existing proxim-
ity preserving metric learning which is generally not scal-
able, MetricBoost employs a bipartite strategy to dramat-
ically reduce computation cost by decomposing proximity
relationships over triplets into pair-wise constraints. Met-
ricBoost outperforms the state-of-the-art on two real-world
medical problems: 1. identifying and quantifying diffuse
lung diseases; 2. colorectal polyp matching between differ-
ent views, as well as on other benchmark datasets.

1. Introduction

The choice of a distance or similarity metric over the in-
put space is critical to the performance of many learning al-
gorithms such as the simplest k-Nearest-Neighbor (k-NN)
classifier and K-means clustering. Clearly, a good metric is
task dependent and previous work [8, 11, 9] has shown k-
NN classification accuracy significantly benefits from prop-
erly designed distance metric as opposed to the standard
Euclidean distance. Metric learning algorithms are often
derived from weak labeling of training data. Unlike in tra-
ditional classification problems where each training exam-
ple is associated with a class label, equivalence constraints
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are provided in metric learning as pairs (xi,xj) to indicate
if the two examples xi and xj are “similar” or “dissimilar”
[20, 3, 2, 4]. An even weaker representation often used in
information retrieval [13, 17] is the proximity relationships
over triplets (i, j, k): xi is closer to xj than to xk. The
goal of metric learning is then to learn a distance metric d
so that d(xi,xj) < d(xi,xk). Proximity relationships are
the most natural input for learning a metric, and are of the
weakest representation because proximity relation triplets
can be derived from equivalence constraints or from tradi-
tional format of classification training data (xi, yi) where y
is the class label, but not vice versa. The proposed algo-
rithm is a type of proximity preserving approach.

Mahalanobis distance metric which is parameterized by
a positive semidefinite (PSD) matrix M [4, 18, 1] is well-
studied and has shown advantages over some other metrics
such as multidimensional scaling and locally linear embed-
ding. We design an efficient AdaBoost algorithm which we
call, MetricBoost, to learn a Mahalanobis distance that pre-
serves proximity relationships. MetricBoost constructs the
matrix M by additively combining rank-one PSD matrices.
Different options of weak models and combination coef-
ficients α are investigated for MetricBoost. As proximity
relationship is weak “side information” [4], a large amount
of proximity triplets (i, j, k) are often needed in order to
learn a proper distance. Existing metric learning algorithms
require a computation cost in the order of the number of
triplet conditions [17, 16], and thus are vulnerable to scal-
ability issues. In contrast, MetricBoost is computationally
efficient due to the decomposition from triplet conditions
into pair-wise constraints via a bipartite strategy.

2. Preliminaries

The Mahalanobis metric can be written in terms of
d(x,y) =

√
(x− y)>M(x− y) where M is a PSD ma-

trix and is often set to the covariance matrix of the training
data if no pre-training. The PSD matrix M is usually nor-
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malized to prevent the distance to be arbitrarily large by re-
quiring tr(M) ≤ 1. To learn a Mahalanobis metric in terms
of this representation, it often needs to solve a positive semi-
definite program to determine an appropriate PSD matrix
M. Current PSD solvers using interior point methods do not
scale well to large problems with computation complexity
roughly O(n3.5) where n is the number of variables. Re-
cently, an effective PSD solver [17] has been proposed for
metric learning by column generation techniques. At each
iteration, a linear program over all weak models needs to be
solved. A later version [16] of this method [17] becomes
faster by an iterative process which calculates closed-form
updates at each iteration. However, it still requires space
and time in an order of the total number of proximity triplets
per iteration.

A PSD matrix M can be eigen-decomposed into∑
i λiuiu

>
i where λi’s are eigenvalues and ui’s are or-

thonormal eigenvectors. Since M � 0, all λi ≥ 0, and
M =

∑
i λiUi where matrices Ui = uiu

>
i are rank-one

matrices. Given that ui is a vector whose norm equals to
1, tr(Ui) = 1. We give the following definitions. Let
Ω = {M|M � 0, tr(M) = 1} be the space of d × d
PSD matrices with trace equal to 1. Let Ω1 = {U|U �
0, tr(U) = 1, rank(U) = 1} be the space of d × d rank-
one PSD matrices with trace equal to 1. It has been proved
[17] that Ω is the convex hull of Ω1 and matrices in Ω1 form
the set of extreme points of Ω.

In the MetricBoost setting, the metric d(·, ·) is as-
sumed to take the form of

√
H(·, ·) where H is con-

structed as a linear combination of multiple weak mod-
els H(·, ·) =

∑
t αtht(·, ·), and ht is a weak hypothesis

and αt is the combination coefficient. The weak model
ht(x,y) is parameterized by a rank-one PSD matrix Ut as
(x− y)>Ut(x− y). The training data X which comprises
training vectors x as rows is given together with triplet in-
dex set Itr containing triplets of example indices such as
(i, j, k). Each triplet (i, j, k) imposes a triplet condition:
d(xi,xj) < d(xi,xk). The performance of a distance met-
ric can be evaluated in different ways depending on the spe-
cific target. In this paper, for a given triplet (i, j, k) ∈ Itr,
the error is 1 if d(xi,xj) ≥ d(xi,xk) or 0 otherwise.
Therefore the overall error rate ε can be characterized as

ε =
∑

(i,j,k)∈Itr

D((i, j, k))1(H(xi,xj)≥H(xi,xk)) (1)

where D is a given distribution of triplets over Itr and
1(a≥b) equals to +1 if a ≥ b and 0 otherwise.

3. MetricBoost Algorithm

Boosting is a machine learning approach to generation
of highly accurate predictive models by combining many
“weak” models which may be only moderately accurate.

Algorithm 1 Algorithm MetricBoost(X, Itr, T )
Input: X = [x1 x2 · · · xn]>,

Itr = {(i, j, k) | xi is closer to xj than to xk}.
InitializeD1((i, j, k)) (usually set to 1/mwherem is the
total number of triplets).
for t = 1 to T do

Train a weak learner using distribution Dt.
Get weak hypothesis ht(x,y) : X× X→ R

Choose αt ∈ R.
Update

Dt+1((i, j, k)) =

Dt((i, j, k)) exp(αt(ht(xi,xj)− ht(xi,xk)))

Zt
(2)

where Zt is a normalization factor (chosen so that
Dt+1 is a distribution).

end for
Output the final model H(·, ·) =

∑
t αtht(·, ·).

In the MetricBoost setting, each weak hypothesis ht is the
square of a distance metric, is solely determined by a rank-
one matrix Ut. The goal is to learn ht which satisfies a
moderate amount of triplet conditions as defined in Itr, and
combine ht in an effective way.

We outline the procedure of MetricBoost in Algorithm 1
which largely follows the existing AdaBoost.

In the algorithm, the weak model is ht(x,y) = (x −
y)>Ut(x−y) where Ut = utu

>
t , and the final hypothesis

is H(x,y) = (x − y)>M(x − y) where M =
∑
t αtUt.

If αt ≥ 0 ∀t ∈ [1, · · · , T ], M is a PSD matrix, and we
define the distance function d(·, ·) =

√
H(·, ·). A PSD

matrix M does not guarantee the resulting d to satisfy the
identity of indiscernibles, i.e. d(x,y) = 0 iff x = y for
a metric, but with a bit misuse of the notation, we still call
d a metric. Notice that rescaling the matrix M preserves
the satisfaction of triplet constraints. In other words, if M
forms a metric that satisfies the triplet conditions, so does its
multiplier. Meanwhile, αt and ut may not be the eigenvalue
and eigenvector of the final matrix M as orthonormality is
not required for weak models ut.

The training error of the final hypothesis H as defined in
Eq.(1) is upper bounded by

∏T
t=1 Zt as shown below.

Theorem 1 Using the notation in Algorithm 1, the follow-
ing bound holds on the training error of H with respect to
the initial distribution D:∑

D((i, j, k))1(H(xi,xj)≥H(xi,xk)) ≤
∏T

t=1
Zt.
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Proof. Unraveling the update rule (2), we obtain

DT+1((i, j, k)) =
D((i, j, k)) exp(H(xi,xj)−H(xi,xk))∏T

t=1 Zt

According to the fact that sgn(x) ≤ ex for all real x, the
training error of H with respect to the initial distribution D
satisfies ∑

D((i, j, k))1(H(xi,xj)≥H(xi,xk))

≤
∑

D((i, j, k)) exp(H(xi,xj)−H(xi,xk))

=
∑

DT+1((i, j, k))
∏T

t=1
Zt =

∏T

t=1
Zt.

This proves the upper bound.

Now what remains important is how to choose combina-
tion coefficients αt and construct the weak hypothesis ht.
Multiple choices exist depending on the output range of
weak hypothesis, similar to those in the derivation of Ad-
aBoost. For any given weak model ht, αt can be chosen by
minimizing Zt at each iteration t.

3.1. Choosing αt
According to Theorem 1, low training error can be ob-

tained if Zt is minimized at each round to achieve Zt ≤ 1.
Relying on the output range of the weak model ht, three
options are typically discussed.

1. Generally, we expect a distance function to output
any proper nonnegative real number, which means that the
weak model ht ranges in [0,∞]. However, for this general
range of ht, there has not been any analytical formula for
calculation of αt. In stead, Zt can be viewed as a function
of αt and a binary search procedure can be introduced to
numerically search for a proper value of αt [15].

2. An analytical solution of αt can be calculated to min-
imize Zt in the special case that ht has only binary outputs
{0, 1}. For example, if we construct the weak model as fol-
lows:

ht(x,y) =

{
1 if (x− y)>Ut(x− y) ≥ βt,
0 otherwise (3)

where βt is the threshold so that the resulting weak dis-
tance metric only differentiates each pair of objects as sim-
ilar or dissimilar without further quantitative information
about how similar or dissimilar they are. This choice of
ht may not be appropriate if there are no equivalence con-
straints, and only triplet conditions are available and re-
quired.

For such a ht, the difference between any two distance
measures reported by ht, i.e., ht(xi,xj)−ht(xi,xk), takes
three possible values {−1, 0, 1}. Let I+, I0 and I− de-
note, respectively, the sets of triplets satisfying ht(xi,xj)−

ht(xi,xk) equal to +1, 0, and −1. Then

Zt =
∑

Dt((i, j, k)) exp(αt(ht(xi,xj)− ht(xi,xk)))

=
∑

I+
Dt((i, j, k))eαt +

∑
I0
Dt((i, j, k)) +∑

I−
Dt((i, j, k))e−αt

= ε+e
αt + ε0 + ε−e

−αt

where ε+, ε0 and ε− correspond to the specific splits of the
summation over Dt((i, j, k)) according to I+, I0 and I−,
respectively. Hence ε++ε0+ε− = 1. The function Zt with
respect to αt has a unique minimizer αt = ln(ε−/ε+)/2
which yields the value of Zt = ε0 + 2

√
ε+ε−. Since

2
√
ε+ε− ≤ ε+ + ε−, Zt ≤ 1. If the weak model ht at least

outperforms a random guess, then ε− > ε+, and therefore
αt > 0.

3. Analogous to the derivation of the original AdaBoost
[6], we can also derive an analytical solution for αt when
the weak model ht outputs values in [0, 1], for instance, a
probability output. In terms of learning a metric using PSD
matrices, it may require a calibration or normalization of ht
to confine its range within [0, 1]. For such a ht, the differ-
ence of the distance values, ht(xi,xj)−ht(xi,xk) between
any two pairs of objects ranges in [−1,+1].

Due to the convexity of the function eαx in terms of x for
any constant α ∈ R, the inequality eαx ≤ eα(1 + x)/2 +
e−α(1 − x)/2 holds when x ∈ [−1, 1]. For any real value
of αt, we can approximate Zt by the upper bound

Zt ≤ eαt
1− r

2
+ e−αt

1 + r

2
(4)

where

r =
∑

(i,j,k)∈Itr

Dt((i, j, k)) (ht(xi,xk)− ht(xi,xj)) .

(5)
The formula in Eq.(4) can be minimized when αt =

ln((1+r)/(1−r))/2 which corresponds to Zt ≤
√

1− r2.
Obviously, Zt ≤ 1 and if r > 0, αt > 0. Furthermore, the
inequality implies that we can achieve smaller Zt by min-
imizing its upper bound

√
1− r2. Hence, a weak learner

can be designed to maximize |r| for a sensible model ht.

3.2. Weak Learners

The ultimate goal of metric learning is to construct a met-
ric that preserves the overall proximity relations among the
objects. For example, a metric d is desired if d(xi,xk) >
d(xi,xj) for any triplet (i, j, k) where the xi is more
similar to xj than to xk, or if xi and xj are “similar”
while xi and xk are “dissimilar”. The variable r de-
fined in Eq.(5) provides a quantitative measure, in the
same spirit to margin, about the difference between mag-
nitude distance of pairs from different classes and that
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of pairs from same classes. The traditional error mea-
sure

∑
Dt((i, j, k))1(ht(xi,xk)>ht(xi,xj)) determines a rel-

atively qualitative measure about how many of the required
triplet conditions are satisfied by ht. Both measures shed a
light on how to optimize a weak model ht.

We focus on the maximization of the quantitative mea-
sure |r| for ht, which can be equivalently formulated as the
following optimization problem at each iteration:

max
Ut = utu

>
t

||ut|| = 1

|
∑

(i,j,k)∈ItrDt((i, j, k))(ht(xi,xk)−

ht(xi,xj))|
subject to ht(x,y) = (x− y)>Ut(x− y) (6)

Using simple matrix algebraic operations, the objective
function of problem (6) can be rewritten as

|u>t [
∑

(i,j,k)∈ItrDt((i, j, k))((xi − xk)(xi − xk)>−

(xi − xj)(xi − xj)
>)]ut| (7)

The problem of maximizing the objective (7) subject to a
normalization constraint ||ut|| = 1 has a closed-form solu-
tion: the optimal ut is the eigenvector corresponding to the
eigenvalue λ, which has the largest absolute value, of the
matrix∑

(i,j,k)∈ItrDt((i, j, k))((xi − xk)(xi − xk)>−

(xi − xj)(xi − xj)
>) (8)

and r corresponds to λ. Notice that if r < 0, the re-
sulting weak model ht serves better as a similarity mea-
sure rather than a distance measure and a negative αt is ob-
tained. In this case, the combined matrix M =

∑
t αtutu

>
t

is not necessarily PSD and thus the function H(x, y) =
(x−y)>M(x−y) will be a non-metric distance function. If
the task is to compare the relative distance between object
pairs instead of forming a metric, it is reasonable to com-
bines all distance measures with positive αt and similarity
measures with negative αt for the final hypothesis.

The weak model ht(x,y) = (x − y)>utu
>
t (x − y)

can output any real value. To restrict the weak model
ht to predict only binary outputs {0, 1} so that we can
use analytical αt as discussed in Option 2 of Section 4,
we determine a threshold βt to cut the real value (x −
y)>Ut(x − y) into two sets. Here, we assume ht fol-
lows univariate Gaussian distributions over the set of all
pairs of objects that are “similar”, and the set of pairs of
objects that are “dissimilar”. Then the variable βt can be
analytically evaluated through the means and standard de-
viations of the two sets. Similar techniques used in pre-
vious works such as [19] can be adapted to our setting in
determining βt. The final hypothesis H can be evaluated as

∑
t αtsgn

(
(x− y)>Ut(x− y) ≥ βt

)
for any pair of ex-

amples (x,y).
To confine the range of ht within [0, 1], we can normal-

ize or calibrate the predictions of ht on the pair-wise data.
There exist general ways to calibrate the range of ht. In our
implementation, we used a simple normalization scheme by
assuming that the training examples X cover the span of the
sample population space. It is different from the assump-
tion that training data represent the entire population and
just assumes that the maximum distance ||x − y|| among
all possible pairs of training examples (x,y) is a reason-
able factor to be used in normalizing the ht outputs. Let
C = max{||x−y|| | x 6= y,x,y ∈ X} which is a constant
for a given set of data.

ht(x,y) =
(x− y)>utu

>
t (x− y)

C2

≤ ||x− y||2||ut||2

C2
≤ 1 (9)

Notice that the proximity relations are invariant to rescaling.
Hence, the final hypothesis H can still be represented as
(x− y)> (

∑
αtUt) (x− y).

4. Speed-up MetricBoost
In general, MetricBoost requiresO(|Itr|) space and time

per iteration, which might be computationally prohibitive or
intractable in large scale applications. We employ the bi-
partite strategy similarly used in RankBoost [5] to develop
a more efficient implementation of MetricBoost for prox-
imity preserving over triplets. Especially when underlying
problem is a classification problem, and triplets are derived
based on the class labels, our bipartite MetricBoost can be
of an immediate benefit to reduce computational cost.

Without loss of generality, let us assume that there are
two underlying classes of objects, sample data X1 and X2

are collected for each of the classes. Denote |X| the car-
dinality of the set X (without notational ambiguity, X also
denotes the data matrix collected for the set.) Each triplet
(i, j, k) can be decomposed into two pairs (i, j) and (i, k).
Then only two types of pairs of examples exist: S1, the set
of (i, j) pairs, and S2, the set of (i, k) pairs.

For the set X1, totally |X1|(|X1| − 1)|X2| triplets can
be formed. Overall, the number of the triplets over the two
classes is |Itr| = |X1|(|X1|−1)|X2|+|X2|(|X2|−1)|X1|.
However, there are only C2

|X1| + C2
|X2| pairs of examples

that are in the same class, and totally |X1||X2| possible
pairs of examples that have different class labels. Naive
implementation of MetricBoost requires, at each iteration,
space and time costs in the order of |X1|2|X2|+ |X2|2|X1|.
The bipartite MetricBoost requires only O(C2

|X1|+C2
|X2|+

|X1||X2|) space and time per iteration. When |X| ≥ 3, the
bipartite implementation saves costs dramatically.
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Instead of maintaining a distribution Dt((i, j, k))over
the triplets at each round, we assume that the distribution
at round t can be decomposed into two separate parts.

Dt((i, j, k)) = µt((i, j))µt((i, k)) (10)

This assumption is easily met for the first round by setting
µ1((i, j)) = µ1((i, k)) = 1/

√
m so that D1((i, j, k)) =

1/m over all triplets. Based on distribution update rule (2),
the decomposition also holds for round t+ 1:

Dt+1((i, j, k))

= Dt((i, j, k)) exp(αt(ht(xi,xj)− ht(xi,xk)))/Zt

= (µt((i, j)) exp(αtht(xi,xj))/
√
Zt) ·

(µt((i, k)) exp(−αtht(xi,xk))/
√
Zt)

= µt+1((i, j))µt+1((i, k))

Hence the update rule in (2) can be revised accord-
ingly. First, we calculate the non-normalized µ̃t+1((i, j))
and µ̃t+1((i, k)):

µ̃t+1((i, j)) = µt((i, j)) exp(αtht(xi,xj))

(i, j) ∈ S1

µ̃t+1((i, k)) = µt((i, k)) exp(−αtht(xi,xk))

(i, k) ∈ S2

Then we calculate the normalization factor Zt =∑
(i,j,k)∈Itr µt+1(xi,xj)µt+1(xi,xk) and obtain the nor-

malized µt+1 = µ̃t+1/
√
Zt. As described above, by de-

composing the triplet distribution Dt((i, j, k)) into pairs
µt((i, j)) and µt((i, k)), the computational and memory
cost can be significantly reduced from O(|X1|2|X2| +
|X2|2|X1|) to O(C2

|X1| + C2
|X2| + |X1||X2|).

In order to construct weak models, the matrix (8) needs
to be evaluated, and as it can be decomposed into the fol-
lowing four components, the computational cost is only
O(C2

|X1| + C2
|X2| + |X1||X2|):∑

(i,j,k)∈Itr µt((i, j))µt((i, k))((xi − xk)

(xi − xk)> − (xi − xj)(xi − xj)
>)

=
∑
i∈X1,(i,k)∈S2

µt((i, k))s1(i)(xi − xk)(xi − xk)>

−
∑
i,j∈X1

µt((i, j))w1(i)(xi − xj)(xi − xj)
>

+
∑
i∈X2,(i,k)∈S2

µt((i, k))s2(i)(xi − xk)(xi − xk)>

−
∑
i,j∈X2

µt((i, j))w2(i)(xi − xj)(xi − xj)
>

where the parameters s1(i) =
∑
j∈X1,j 6=i µt((i, j)),

s2(i) =
∑
j∈X2,j 6=i µt((i, j)), w1(i) =

∑
k∈X2

µt((i, k)),
and w2(i) =

∑
k∈X1

µt((i, k)).

5. Experiments
We validate MetricBoost on publicly available bench-

mark data sets together with two real-world computer-
aided-diagnosis (CAD) problems of detecting abnormal

structures from medical images. Effectively solving CAD
problems has been the driving force for developing the
proposed method. We compare MetricBoost with other
state-of-the-art metric learning methods: including infor-
mation theoretic metric learning (ITML) [3], BoostMetric
method [17, 16], convex optimization (COP) metric learn-
ing method [4]. Standard distance metrics, such as Maha-
lanobis, `1 and `2 norm distances are also used as baseline
in some experiments. Two measures have been used to eval-
uate the performance in the test phase: the classification ac-
curacy of k-Nearest Neighbor (k = 1), and percentage of
triplets that preserves the class-implied proximity relation-
ship, that is, whether two points in the same class are closer
than any one of them to a third point from a different class.

5.1. Benchmark data

The first set of experiments was conducted on six bench-
mark data sets from the Machine Learning Repository at
University of California, Irvine (UCI)1. In this experiment,
the metric learning methods were evaluated via five-fold
cross validation and results were averaged over 40 runs.
For MetricBoost, both binary and normalized weak mod-
els ht were implemented and compared. The number of
iterations T was set to 20 which was the same in PSDBoost
for fair comparison. The slack variable γ in ITML and the
weight parameter C in PSDBoost were tuned over the val-
ues {0.01, 0.1, 1, 10} using a separate cross validation. To
test the accuracy of these algorithms on training triplets or
pairs, we used all triplets or pairs formed from the training
data, and a small subset of them (5% pairs and 0.5% triplets)
randomly sampled from the full set to train distance metrics.

Testing results on triplet relationships and k-NN clas-
sification for various data sets are summarized in Tables
1 and 2. MetricBoost is the only algorithm that achieves
the top accuracy across all datasets in both measurements.
In general, the performance improves for all metric learn-
ing methods with more triplet or pair constraints in training
available. However, both MetricBoost and ITML are less
sensitive to changes in the number of triplet or pair con-
straints than COP. For MetricBoost, the binary weak model
seems to provide better performance than the normalized
weak model, especially in k-NN (k = 3) classification as
shown in Table 2. It suggests that binary models are prob-
ably more appropriate on qualitative labels of data because
MetricBoost is based on proximity comparison which does
not demand quantitative measure on distance of pairs.

5.2. Diffuse lung disease

MetricBoost has been deployed to a computer-aided-
diagnosis (CAD) system which detects diffuse parenchymal
lung diseases from CT images. In the related experiment,
we have 22, 923 samples in the lung dataset annotated by

1http : //www.ics.uci.edu/ mlearn/MLRepository.html.
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Table 1. Percentage of correctly identified triplet distance relationship via different learned metrics. ‘A’ stands for training with all triplets
or pairs if ITML and ‘S’ for subset triplets or pairs. Both the average and stand deviation of the testing results are listed.

WINE SPECT SONAR IONOSPHERE BRST CANCER DIABETES
EUCLIDEAN (`2) 71.0 (3.7) 58.7 (4.0) 51.5 (1.5) 62.4 (1.4) 82.2 (1.7) 53.5 (1.0)
MAHALANOBIS 60.2 (2.6) 35.2 (2.8) 51.9 (3.0) 65.2 (1.1) 58.9 (1.9) 54.0 (1.2)

BINARY METRICBOOST (A) 91.4 (2.6) 67.0 (6.8) 58.9 (4.1) 74.3 (5.1) 87.7 (1.7) 55.8 (1.9)
BINARY METRICBOOST (S) 90.5 (3.0) 65.4 (6.2) 59.7 (4.7) 73.7 (5.2) 87.6 (2.4) 55.4 (2.1)

NORMALIZED METRICBOOST (A) 82.7 (3.6) 71.9 (3.9) 58.9 (4.3) 71.2 (4.2) 85.9 (2.2) 53.7 (2.2)
NORMALIZED METRICBOOST (S) 85.0 (4.0) 69.5 (6.5) 60.3 (4.0) 72.8 (5.5) 85.7 (2.6) 54.8 (2.0)

ITML (A) 80.0 (4.5) 49.0 (6.0) 54.4 (2.9) 72.5 (3.5) 82.6 (2.1) 56.6 (1.4)
ITML (S) 71.1 (3.4) 54.1 (8.1) 54.9 (3.3) 72.1 (3.5) 82.5 (1.7) 55.9 (1.5)
COP (A) 88.6 (2.8) 48.7 (6.0) 59.1 (3.6) 67.9 (1.5) 80.6 (2.8) 54.1 (1.5)
COP (S) 70.3 (7.1) 44.9 (3.7) 53.7 (2.9) 57.0 (3.6) 67.9 (4.8) 51.5 (1.1)

BOOSTMETRIC (S) 91.4 (3.1) 70.8 (3.9) 58.0 (3.3) 73.2 (5.6) 85.7 (2.8) 54.2 (2.4)

Table 2. k-NN (k = 1) classification accuracy rate via different learned metrics.

WINE SPECT SONAR IONOSPHERE BRST CANCER DIABETES
EUCLIDEAN (`2) 72.0 (3.7) 72.0 (3.3) 70.3 (3.6) 82.4 (2.3) 90.8 (1.3) 66.4 (2.0)
MAHALANOBIS 89.0 (3.3) 62.4 (5.0) 62.4 (4.4) 73.4 (2.7) 81.2 (2.4) 67.4 (1.6)

BINARY METRICBOOST (A) 96.8 (1.7) 75.6 (3.2) 74.4 (3.3) 85.1 (7.5) 95.1 (1.2) 68.6 (1.8)
BINARY METRICBOOST (S) 96.6 (2.2) 74.8 (2.9) 71.2 (4.2) 83.4 (6.4) 94.9 (1.4) 67.1 (2.4)

NORMALIZED METRICBOOST (A) 89.7 (5.6) 75.3 (3.1) 72.1 (4.2) 83.0 (3.2) 92.4 (1.9) 67.4 (2.5)
NORMALIZED METRICBOOST (S) 92.0 (5.3) 75.3 (3.6) 69.2 (4.7) 82.6 (3.0) 93.0 (1.9) 66.3 (2.7)

ITML (A) 92.0 (3.0) 70.6 (3.4) 73.4 (4.8) 83.3 (2.4) 92.9 (1.3) 68.8 (2.0)
ITML (S) 76.0 (6.0) 71.9 (3.7) 72.9 (4.2) 83.5 (2.8) 92.4 (1.3) 68.3 (1.7)

COP (ALL) 94.7 (1.8) 71.0 (3.5) 72.3 (4.2) 80.5 (3.8) 91.7 (1.7) 66.6 (2.2)
COP (SUBSET) 78.4 (7.0) 69.2 (3.8) 70.6 (4.8) 80.8 (2.6) 84.0 (4.2) 63.1 (2.0)
BOOSTMETRIC 96.4 (1.9) 75.9 (3.2) 68.7 (7.3) 83.0 (5.9) 91.5 (1.9) 63.9 (3.1)

two expert radiologists as one of the three classes: healthy,
emphysema and fibrosis. The dataset is divided into train-
ing dataset and test dataset. The training dataset contains
15, 155 samples, of which 8, 067 healthy samples, 4, 988
emphysema samples and 2, 100 fibrosis samples. The test-
ing dataset contains 7, 768 samples, of which 3, 504, 2, 710
and 1, 554 samples belong to class healthy, emphysema and
fibrosis, respectively. Each sample is described by 43 fea-
tures and thus lies in R43. For all metric learning methods
and Mahalnobis distance, we train a metric using a subset
of the training samples, and test on the entire test dataset.
In the test phase, the label of a test sample is determined by
majority voting of the k nearest neighbors in the training set
according to the respective metric. The comparison results
are shown in Fig. 1 and our methods outperform other ones.

We compare the computational efficiency of Met-
ricBoost and Mathematical Programming based method
BoostMetric which both use triplet constraints to learn the
distance metric. Table 3 shows the training time of both
methods using the same subset of triplet constraints. The
tests were run on a dual 2.0GHz Intel pentium processor

running Windows XP and averaged over 40 runs. The pro-
posed MetricBoost was implemented following Algorithm
1 and BoostMetric was obtained from its original author2.
Based on Table 3, MetricBoost constructs metrics faster
than BoostMetric because MetricBoost decomposes triplet
constraints into pairs and directly work on the pairs. It has
no tuning parameter to specify via cross validation.

5.3. Colorectal polyp matching between prone and
supine views

When using CT images to diagnose colorectal cancer,
each patient is normally imaged twice with different poses
(prone or supine), to maximize the chance that a polyp can
be found by radiologists or computers. Due to the grav-
ity and deformability of tissues together with some imag-
ing conditions (e.g., liquid/solid tagging), a polyp can ap-
pear visually distinct between the prone and supine views
(analogical to wide-baseline stereo matching in computer
vision). Due to the practical difficulty, most colon cancer
CAD systems are not capable of matching the polyps de-

2BoostMetric code available at http://code.google.com/p/boosting/.
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Table 3. Training time (in seconds) of the proposed method and BoostMetric.

METHODS BREAST DIABETES IONOSPHERE SPECT WINE SONAR LUNG

BOOSTMETRIC 16.2 50.9 22.7 6.4 20.0 8.04 201.82
PROPOSED 9.6 13.3 4.1 2.5 4.9 3.1 22.1

1

Figure 1. classification accuracy versus different choices of Ks
in KNN using `2, `1, Mahalanobis [1], ITML [3], BoostMetric
[16], COP [4], and our proposed method. Results are evaluated
based on testing datsset.

tected from either of the views. We design a system based
on MetricBoost to retrieve corresponding polyps from the
other view for each polyp detected in one of the views.

When building a computer system to detect polyps, a
classifier will be constructed based on a set of numerical
image features and used to generate a receiver operating
characteristic (ROC) curve, and the regular operating point
is around 2 false positive rate per volume. We move the op-
erating point to a larger false positive rate (7.6/volume) to
retain high sensitivity (95%) of polyp detection. In train-
ing, our computer aided polyp detection algorithm operates
at a sensitivity of 94.63% and false positive (FP) rate of
7.586 per volume on average as opposed to normal operat-
ing point at FP rate≈ 2.0. The augmented set of candidates
is used to form the triplets for metric learning in the follow-
ing way. For each positive polyp instance Ci in the prone
view of a patient, we find the positive instances3 {Cj}nj=1

of the same polyp and all other candidates (including pos-
itives corresponding to other polyps and negatives, or FPs)
{Ck}mk=1 in the supine view, and (i, j, k) is a triplet, re-
quiring d(Ci, Cj) < d(Ci, Ck). Then we repeat the same
process on each positive instance in the supine view to build
more triplets. Finally, the PSD distance metric matrix M is
learned subject to the constraint of the built triplets.

Totally, 96 appearance features, including local geomet-

3A polyp can be fragmented into several candidates in detection, which
is known as multiple instance learning problem [7].

ric features, morphological, shape/intensity and context fea-
tures, are extracted for each candidate to distinguish be-
tween polyps and FPs. A feature selection method is used
to choose the most relevant features for the purpose of
polyp matching between views. We apply the minimum re-
dundancy maximum relevance (MRMR) feature selection
framework [12] and make use of the t-statistic to measure
feature relevance and Pearson’s correlation to measure fea-
ture redundancy, and finally select 20 features.

We treat the matching problem as a polyp retrieval pro-
cess: for each polyp x detected in one view, find the polyp
y in the other view that matches x according to the distance
metric H(x,y) = (x − y)>M(x − y). For quantitative
performance evaluation, we list the top k match points y
with shortest distance to x and evaluate if any true match is
within the k points; if the true match is among them, then
a “hit” will occur; otherwise, there is no hit. We record the
retrieval rate, which is defined as the percentage of polyps
being hit within the k match points (closest in feature dis-
tances). The results are shown in Fig. 2(a), which demon-
strates substantial performance improvement over geodesic
distance indexing method. The geodesic distance index-
ing ([0, 1] from rectum to cecum of colon) is the current
main approach [21] for polyp matching, but does not esti-
mate accurately when colon is collapsed. Our method uses
purely local discriminative features from polyp classifica-
tion which is more robust. Adding geodesic distance fea-
tures into MetricBoost does not further improve the per-
formance. The metric-learning-based polyp matching ap-
proach is also much more computationally efficient than
the state-of-the-art global/local surface registration methods
[10, 14], with comparable or better matching accuracy. We
also compared the proposed technique against other met-
ric learning methods [1, 17, 3, 16, 4] on this problem. From
Fig. 2(b)(c), our method consistently shows superior match-
ing/retrieval accuracies in both training and test, and gener-
alizes better to unseen test cases. The proposed technique
may be applicable to wide-baseline stereo matching or ob-
ject view matching problems.

6. Conclusion

We have sketched a formal framework and an efficient
algorithm for the problem of constructing a proper distance
metric by combining many weak models each characterized
by a rank-one PSD matrix. The proposed boosting algo-
rithm can have several variants depending on the specific
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(a) (b) (c)

Figure 2. Performance on polyp matching as retrieval one polyp from candidates in the other view. (Left) geodesic distance comparison;
(middle) other ML methods comparison in training; (right) other ML methods comparison in test.

criterion for choosing weak metrics ht and αt. Our al-
gorithm can be regarded as an effective solver to specific
positive semi-definite programs related to metric learning.
The proposed metric learning method can effectively solve
two real-world medical problems. Computational results
demonstrate the effectiveness of MetricBoost in the k-NN
classification and triplet proximity preservation on multi-
ple benchmark datasets and the medical problems of dis-
tinguishing several diffuse lung diseases as well as polyp
matching between views. We plan to extend the work by
further examining the generalization error bounds and se-
lecting the most representative subset of triplets.
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