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Abstract—Identifying genetic variations that underlie human
disease is very important to advance our understanding of
the disease’s pathophysiology and promote its personalized
treatment. However, many disease phenotypes have complex
clinical manifestations and a complicated etiology. Gene finding
efforts for complex diseases have had limited success to date.
Research results suggest that one way to enhance these efforts
is to differentiate subtypes of a complex multifactorial disease
phenotype. Existing subtyping methods rely on cluster analysis
using only clinical features of a disorder without guidance from
genetic data, resulting in subtypes for which genotype associa-
tion may be limited. In this work, we seek to derive a novel com-
putational method based on multi-objective programming that
is capable of clinically categorizing a disease phenotype so as to
discover genetically different subtypes. Our approach optimizes
two objectives: (1) the cluster-derived subtypes should differ
significantly on clinical features; (2) these subtypes can be well
separated using candidate genes. This work has been motivated
by clinical studies of opioid dependence, a serious, prevalent
disorder that is heterogeneous phenotypically. Analyses on a
sample of 1,470 European American subjects aggregated from
multiple genetic studies of opioid dependence show that the
proposed algorithm is superior to existing subtyping methods.

Keywords-Subtyping; Cluster analysis; Multi-objective opti-
mization; Gene finding; Opioid dependence

I. INTRODUCTION

Many disease traits are a collection of subtypes demon-
strating heterogeneity at the molecular and clinical syndrome
levels [1]. Categorizing a disease phenotype clinically has
been hindered by the inconsistency of subtyping methods
and a lack of validation with objective metrics [2]. There
is currently no empirically derived statistically rigorous
method to identify and select optimal subtypes of a disease
[3]. We propose an approach aimed at finding homogeneous
subtypes that can be of use in clinical diagnosis and at the
same time be of value in gene finding efforts.

The proposed method has been applied to a subtyping
study of opioid dependence (OD). OD leads to serious
medical, legal, social and psychiatric problems. Although the
risk of OD is genetically influenced [4], the effort to identify
genes and variants that contribute to the risk of OD has

limited success because OD is complex in its manifestations,
including cognitive, behavioral and physiologic features. The
OD phenotype defined by the Diagnostic and Statistical
Manual of Mental Disorders, Fourth Edition (DSM-IV) [5]
is heterogeneous and may not lend itself readily to gene
finding. Decomposition of a complex set of opioid users
into homogeneous subgroups can refine the phenotype and
enhance genetic analysis [6]. Cluster analysis has been the
main method used in subtyping and encouraging results have
been obtained [7], [8].

Cluster analysis, however, has been performed only on
clinical features without taking into account the rich genetic
data that may be available in genetic studies. Three main
steps have been used in prior subtyping studies: (1) collect-
ing both clinical and genetic data for a group of subjects, (2)
identifying subgroups by the application of cluster analysis
with either k-means, k-medoids, or hierarchical clustering
or their combination to clinical features, and (3) conducting
linkage or association analysis for the subtypes derived from
the sample. Because the creation of subgroups in the second
step is independent of the genetic analysis in the third step,
the resultant subtypes may be suboptimal and the association
analysis may fail.

Cluster analysis can create different partitions of the
subjects by varying its process parameters. An objective
function is often used to measure the validity of partitions
or groupings. In a subtyping study, an objective function
may be used to evaluate how strongly the subtypes derived
from the grouping are associated with a given set of genetic
markers, or how well the subtypes can be separated by the
genetic markers. Mathematically, given two sets of variables,
clinical features Z and genetic markers X from the same
sample, the goal is to partition the sample into subgroups
based on pairwise similarities between subjects in Z so that
the resulting subgroups y can be classified by X .

The following four sections describe such an approach.
Section II describes the proposed subtyping methodology.
A multi-objective program is derived in Section III together
with an algorithm to solve it. Computational results on the
OD subtyping problem are presented in Section IV and

2012 IEEE International Conference on Bioinformatics and Biomedicine 

 978-1-4673-2560-8/12/$31.00 ©2012 IEEE 256



conclusions are presented in Section V.

II. METHODOLOGY

We propose a multi-objective optimization framework to
solve the subtyping problem. In this framework, for a set
of labels y, each assigned to one subject, we construct
a model as a function of a subject’s genetic markers X
to approximate the subject’s label. The model M is built
by minimizing a loss function `(y,X|Mθ) where Mθ is a
specific inference model, such as the model of support vector
machine (SVM), or logistic regression, and θ denotes the set
of its parameters. Since the labels y of subjects are not given
beforehand, the labels themselves need to be optimized. In
other words, we optimize the objective in (1).

min
y,θ

`(y,X|Mθ) + λR(Mθ) (1)

where R(Mθ) defines the regularization term that controls
the complexity of the model M , and λ is a tuning factor
to balance between ` and R. Notice that not every possible
labeling y of subjects is a feasible solution of Problem (1).
The search space of y is confined by the similarity measure
defined on the features Z.

Suppose that the classification of subjects y is obtained
by partitioning subjects based on a similarity measure that is
pre-specified on Z. The parameters in the similarity measure
often need to be tuned, such as the parameter σ if a Gaussian
similarity exp(−||Zi − Zj ||2/σ2) is used where Zi and Zj
are the two vectors of clinical features for Subjects i and j.
Choosing different values for σ or other relevant parameters
will produce different clusters of the subjects. In general, we
expect that the resultant clusters will be well differentiated
from each other and that subjects in the same cluster will be
closer than those from other clusters in the Z space. Many
metrics have been derived in the literature to measure the
quality of clusters, such as the Dunn’s Validity Index [9] and
Davies-Bouldin Validity Index [10]. If a metric ε(y|σ, Z)
is employed to measure the quality of clusters when using
a specific value of σ, the metric corresponds to another
objective of the subtyping problem. We hence optimize the
following optimization problem (2).

min
y,θ,σ

{
Obj1 : ε(y|σ, Z)
Obj2 : `(y,X|Mθ) + λR(Mθ)

(2)

We assume that ε(y|σ, Z) is a metric to minimize, or
otherwise it can be inverted or negated. The two objectives
of Problem (2) may not be optimized simultaneously. Thus,
it formulates a multi-objective optimization problem.

Multi-objective programming (MOP) is a technique that
was developed to solve optimization problems with multiple
conflicting objectives. Solving a multi-objective program
requires the search for Pareto-optimal solutions [11]. A
feasible point is a Pareto-optimal solution if the point is not
dominated by any other point in the feasible set. A solution
p1 is said to dominate another solution p2 if the solution p1

is no worse than p2 in all objectives and the solution p1 is
strictly better than p2 in at least one objective. Traditional
methods convert multiple objectives into a single objective
using certain schemes and user-specified parameters. Many
studies compare different methods of such conversions, and
provide reasons in favor of one conversion over another. Two
simple and widely used methods for such conversions are
the weighted sum method and the constraint method [11].

The weighted sum method transforms two objectives into
a single objective by multiplying each objective with a pre-
defined weight and adding them together. If the MOP is
not convex, the non-convex parts of the Pareto-optimal set
cannot be obtained by the weighted sum method. Hence, the
constraint method reformulates the MOP by keeping one
of the objectives and restricting the rest of the objectives
within user-specified limits. In the next section, we will
derive an instantiation of this methodology by utilizing a
spectral clustering method [12], the one-norm SVM [13]
and the constraint method in MOP.

III. A MULTI-OBJECTIVE FORMULATION

To derive a concrete form of our framework, we choose
to use a spectral clustering method [14] to search for the
cluster assignments of subjects by varying the parameter σ
used in its Gaussian similarity measure. The Davies-Bouldin
Validity Index [10] is used to measure how significantly the
resultant clusters differ from each other, serving as Obj1. We
choose to use the one-norm SVM [13] to fit a classifier, as a
function of the genetic variables X , that separates subjects
in different clusters. The loss function used in the one-norm
SVM serves as Obj2. Notice that the framework (2) can
be realized in conjunction with other choices of clustering
methods and model fitting methods.
A. First Objective. Spectral clustering requires an adjacency
matrix A that encodes the pairwise similarities between
subjects, and the desired number of clusters k as its inputs
and outputs the clusters Ci of subjects, i = 1, · · · , k. Given
k, the resultant clusters are determined by the adjacency
matrix which is further determined by a pre-chosen simi-
larity measure. Spectral clustering is sensitive to changes
in the similarity measure [12]. In our approach, we search
for the most suitable similarity measure, more specifically,
the best value of σ in the Gaussian similarity, to optimize
Obj1 and Obj2. We use the Davies-Bouldin Validity Index
(DBVI) [10] to measure the quality of the clusters. DBVI is
a measure related to the ratio of within-cluster distance to
between-cluster distance, which can be calculated as follows:

DBV I =
1

k

k∑
i=1

max
i6=j

Dist(Ci) +Dist(Cj)

Dist(Ci, Cj)
(3)

where Dist(Ci) is the average distance of data points in Ci
to its cluster center, Dist(Ci, Cj) is the distance between
the center of Ci and the center of Cj . These distances
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are calculated in the Z dimension. The smaller the DBVI,
the better the quality of the clusters. Hence, we minimize
the DVBI as in (4) using symmetric normalized spectral
clustering [14] for the best σ.

min
σ

1

k

k∑
i=1

max
i6=j

Dist(Ci) +Dist(Cj)

Dist(Ci, Cj)
(4)

B. Second Objective. Without loss of generality, for each
cluster Ci, we construct a classifier in the linear form of
f(X) = WTX + b to separate the subjects in Ci from the
rest subjects. The model WT

i X + bi specific for Cluster Ci
is obtained by minimizing the regularized empirical error
`(yi, X,Wi) + λR(Wi) where we use a binary vector yi
to indicate the cluster membership: yji = 1 if subject Xj

is in Ci, or otherwise yji = −1, j = 1, · · · , n, for all
n subjects. We employ the hinge loss commonly used in

SVMs, e.g., `(yi, X,Wi) =
n∑
j=1

[
1− yji

(
WT
i Xj + bi

)]
+

where a+ = 0 if a < 0, otherwise a+ = a, and R(Wi)
takes a sparse-favoring form for the purpose of variable
selection, such as `1-norm ||Wi||1 =

∑
d |Wid|. The `1-

norm shrinks the coefficients W of irrelevant variables to
zero [13]. Constructing all of the k classifiers together
corresponds to minimizing the overall regularized error as
follows:

min
Wi,bi,i=1,··· ,k

k∑
i=1

[`(yi, X,Wi) + λR(Wi)] (5)

C. Constrained Conversion. Clearly, the first objective is
not convex, which leads to a non-convex multi-objective
program. The constraint conversion method is more suitable
to find the Pareto-optimal solutions to this problem. As the
subtyping problem seeks to obtain clusters that are inter-
pretable in the X dimension (genetic markers), we model
the first objective as a constraint. In other words, we search
for solutions that minimize the second objective subject to
an acceptable quality of clusters in the Z dimension (clinical
features). The following problem (6) is the problem we will
solve.

min
σ,Wi, bi

i = 1, · · · , k

k∑
i=1

(
n∑
j=1

[
1− yji

(
WT
i Xj + bi

)]
+
+ λ||Wi||1

)

subject to 1
k

k∑
i=1

max
i6=j

Dist(Ci) +Dist(Cj)

Dist(Ci, Cj)
≤ δ

lσ ≤ σ ≤ uσ
(6)

where δ, lσ and uσ are tuning parameters.
Proposed Algorithm Traditional methods for finding the op-
timal solution to a constrained optimization problem include
deterministic approaches, such as gradient-based method,
Newton’s method, and non-deterministic approaches such
as simulated annealing [15]. To avoid the difficulty of

calculating derivatives of the objective function, we design
an efficient algorithm based on simulated annealing to solve
Problem (6). Algorithm 1 depicts the procedure used to solve
the converted MOP (6).

Algorithm 1 Simulated Annealing for MOP (6)
Input: Z, X , k, δ, MI

Initialize: σ, T , o = 0;
for t = 0 to MI do

Calculate Temperature T ;
Find a neighborhood of σ, i.e., σnew based on T ;
Construct adjacency matrix A using Z and the Gaussian
similarity with σnew;
Obtain clusters Ci, i = 1, · · · , k, by running Spectral
Clustering with A and k;
Calculate Obj1 in (4) and assign its value to q;
if q ≤ δ then

Learn Wi, bi for each Ci separately by the one-norm
SVM;
Calculate Obj2 in (5) and assign its value to onew;

else
Continue;

end if
if p(o, onew, T ) > random(0, 1) then
o = onew, σ = σnew;

end if
end for
Output: clusters Ci:1,...,k, the values of Obj1 and Obj2.

In Algorithm 1, the temperature T starts from a high
value, and decreases gradually at each iteration. A probabil-
ity density function defined according to T is used to search
for σnew. The first objective is evaluated after the clusters
are obtained. If this objective is within the pre-specified limit
δ, an SVM model is constructed for each cluster, and the
second objective is evaluated. The probability of accepting
σnew is calculated via the acceptance probability density
function [16] defined with the objective values o, onew and
the temperature T . If this probability is larger than a number
randomly drawn from [0, 1], we accept σnew; or otherwise
retain the old one. Readers can consult with [16] for more
discussions on simulated annealing.

IV. COMPUTATIONAL RESULT

We provide computational results for a sample of subjects
recruited for a study of the genetics of OD. We first describe
the data and the preprocessing steps used in our experiments.
Then we discuss the background of OD subtyping and its
challenges, together with our experimental design. Last, we
report the clinical characteristics of the clusters that result
from our approach, the genetic risk factors identified, and
results of comparing the new method against a regular
subtyping method.
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A. Data & Preprocessing

A total of 1,470 European American subjects were ag-
gregated from multi-site genetic studies of OD and cocaine
dependence. All subjects gave written, informed consent to
participate, using procedures approved by the institutional
review board at each participating site. Subjects were as-
sessed with the Semi-Structured Assessment for Drug De-
pendence and Alcoholism (SSADDA), a computer-assisted
interview instrument [17]. Of the 1,470 subjects, 827 were
identified as opioid users and 643 as non-opioid users based
on whether they reported having used opioids more than 11
times in their lifetime.

The OD diagnosis section of the SSADDA contains 23
questions, which resulted in 220 variables. These variables
provided information about opioid use and related behaviors
such as the age of onset of opioid use, frequency of
opioid use, and the occurrence of psychosocial and medical
consequences of opioid use. Among the 220 variables, 69
were identified previously as key features for the purpose
of OD subtyping [8], and were used in the current analysis.
The key features included 55 categorical and 14 continuous
variables. The 14 continuous variables were discretized into
several levels. Multiple Correspondence Analysis (MCA)
[18], a dimension reduction method, was used to reduce the
69 variables into 13 principal dimensions. We retained all of
the MCA dimensions, which accounted for more than 10%
of the data variance.

A total of 1,212 single-nucleotide polymorphism (SNP)s
from 130 candidate genes were genotyped for all of the sub-
jects. The 130 candidate genes were selected as candidates
for risk of addiction and the related phenotypes of anxiety
and depression. Of the 1,212 SNPs, 25 were removed from
the analysis because their call rates were less than 95%.
Thus 1,185 SNPs were used in our analysis. The remaining
missing entries (0.08% of all data entries) in the SNP data
were imputed randomly.

B. Settings & Design

We utilized the CPLEX optimization package to solve
the one-norm SVM, and implemented spectral clustering in
MATLAB. Adaptive simulated annealing, an open source
variant of simulated annealing, together with its MATLAB
gateway (ASAMIN v1.39) were used to search for the value
of σ that optimizes the multi-objective program (6). Non-
opioid users had all negative values for the OD variables.
Thus, only opioid users were used in our cluster analysis
based on the 69 key variables. Non-opioid users, however,
were used in the construction of classifiers with SNPs. We
set the desired number of clusters to 2 so that the resultant
clusters were sufficiently large and possessed adequate sta-
tistical power. The parameters δ, λ were set to 0.7 and 0.08
respectively, the upper bound of σ, uσ was set to a value
that led to a similarity matrix in which entries were at least
0.99, and the lower bound of σ, lσ was set to the value

producing a similarity matrix in which the median was less
than 0.0001. These tuning steps were based on 3-fold cross
validation.

We built an SVM model to separate each of the resultant
clusters. Multiple designs exist to train the classifiers. In one
design, each model is trained using all subjects and a label
of 1 is assigned to subjects in the cluster and −1 to those
outside the cluster. Another design includes subjects in a
specific cluster and those who did not use opioids and labels
them 1 and −1 respectively. The selection of the design
depends on the practical needs of a study. In the present
study, because we used a set of control subjects, the set
of non-opioid users, we built an SVM classifier to separate
subjects in each opioid user cluster from non-opioid users.

SVM is sensitive to unbalanced data, i.e., where the size
of a sample with one label is significantly larger than that
with another label. To address this problem, we duplicate
subjects in the smaller cluster to make the sample size of the
two clusters comparable. Let a and b be the dominating and
minor clusters, respectively, na and nb be their sample sizes,
and t = bna/nbc. We first duplicate each subject labeled by
b t times, and then randomly select na−t∗nb subjects from
the sample pool composed by all subjects with label b. The
optimal value of σ found by our approach was 5.8.

C. Cluster Clinical Characteristics

We characterized the two clusters obtained with σ = 5.8
based on 11 important opioid use and consequence variables.
A generalized estimating equation (GEE) Wald Type 3 χ2-
test was employed to test the significance of the difference
between the resultant clusters on these variables with Bon-
ferroni correction for multiple comparisons (p < 0.05/11 =
0.0045). The results are included in table IV-C which shows
that the two clusters differ significantly on almost all of
the important clinical features, except the mean age of
first opioid use. Subjects in Cluster 1 have used opioids
more heavily than those in Cluster 2. For example, they
had heavier daily use and more intravenous injections. The
negative consequences of opioid use, such as “interfering
with work” and “been arrested” among subjects in Cluster
1 are much more severe than those for subjects in Cluster
2. Thus, Cluster 1 consisted of heavy opioid users, while
Cluster 2 was composed of moderate opioid users.

D. Associated Genetic Markers

In total, 333 and 316 SNPs received non-zero coefficients
in the one-norm SVM models trained based on subjects in
Cluster 1 and Cluster 2 respectively. Larger coefficients in
the SVM model do not necessarily lead to a more significant
association (smaller p-value) between predictors (SNP) and
respondences (phenotype). Thus, we tested each of the
selected SNPs with logistic regression and checked their
corresponding p-values to determine how significantly they
were associated with the identified subtypes. Similar to the
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Table I
CLINICAL CHARACTERISTICS OF RESULTANT CLUSTERS [N(%)]

Behaviors Cluster1 Cluster2 chi-square p-value657(79.44) 170(20.56)
Mean age of first use in year 21.15(6.59) 21.67(7.71) 0.58 0.45
Used opioids daily or almost daily 653(99.39) 107(62.94) 65.48 5.55× 10−16

Injected opioids intravenously 526(80.06) 50(29.41) 134.40 < 1× 10−16

Stayed high from opioids for a whole day or more 599(91.17) 103(60.59) 78.05 < 1× 10−16

Strong desire for opioids made it hard to think of anything else 617(93.91) 50(29.41) 245.63 < 1× 10−16

Opioid use interfered with work, school, or home life 574(87.37) 39(22.94) 201.13 < 1× 10−16

Family members, friends, doctor, clergy, boss, or people at work 611(93.00) 52(30.59) 187.13 < 1× 10−16
or school objected to opioid use
Been arrested or had trouble with the police because of opioid use 444(67.58) 23(13.53) 114.34 < 1× 10−16

Give up or greatly reduced important activities due to opioid use 600(91.32) 48(28.24) 212.67 < 1× 10−16

Ever treated for an opioid-related problem 610(92.85) 37(21.76) 260.89 < 1× 10−16

Ever attended self-help group for opioid use 505(76.86) 23(13.53) 141.76 < 1× 10−16

Table II
RISK FACTORS (SNPS) ASSOCIATED WITH CLUSTER1

SNP p-value Odds Ratio Gene
rs915906 5.32× 10−5 0.6595 CYP2E1
rs10896065 3.32× 10−4 2.0537 FOSL1
rs7940700 4.15× 10−4 2.2496 FOSL1
rs755203 5.18× 10−4 0.7617 CHRNA4
rs2581206 5.56× 10−4 0.7594 SLC6A11
rs698 5.59× 10−4 0.7615 ADH1C
rs4077851 7.69× 10−4 1.5542 GABRB2
rs2515642 8.02× 10−4 0.7294 CYP2E1

Table III
RISK FACTORS (SNPS) ASSOCIATED WITH CLUSTER2

SNP p-value Odds Ratio Gene
rs6957496 1.09× 10−5 2.25 CHRM2

SVM models, we trained logistic regression models using
subjects in the opioid user cluster versus non-opioid users.
Prior to analysis, we removed 32 and 35 SNPs for Cluster
1 and Cluster 2, respectively, because they had a minor
allele frequency (MAF) less than 0.5%. We also deleted
one SNP for Cluster 1 because it was not in Hardy-Weinberg
Equilibrium (i.e., p < 1×10−7). Eight SNPs were associated
with Cluster 1 at p < 1 × 10−3 as shown in Table II. One
SNP, rs915906, was very close to the empirical threshold
(p < 0.05/1154 = 4.34× 10−5) after Bonferroni correction
was applied to address the inflation of type I error due to
multiple tests. For Cluster 2, one SNP shown in Table III
was significant with a p-value close to 10−5, and it remained
significant after Bonferroni correction (empirical threshold:
p < 0.05/1154 = 4.34 × 10−5). Odds ratios and the genes
where the corresponding SNPs are located are also shown
in Table II and table III.

E. Comparison

We compared the proposed method against a subtyp-
ing method that first employed cluster analysis, such as
spectral clustering, followed by genetic analysis (only after
the clusters were generated). Specifically, we compared the

clusters resulting from σ = 5.8 with the result generated by
the typical parameter tuning process in spectral clustering
[12]. A typical way to choose a value for σ is to use
the median value of all entries in the pair-wise distance
matrix. Then for each cluster created by the regular method,
same as the scheme in our method, an SVM model was
built with subjects in the opioid user cluster labeled as
1 and non-opioid users labeled as −1. To ensure a fair
comparison, we used the same technology introduced in
Section IV-B to deal with the unbalanced data when building
the model. The performance of the models resulting from our
approach and the comparison method was evaluated by 10-
fold cross validation and measured using Receiver Operating
Characteristic curves (ROC). We provide the area under the
ROC curve (AUC) in our results to compare the methods.

Following the standard approach to selecting σ for spec-
tral clustering [12], we used the median value of the dis-
tance matrix computed on our data, which was 1.07. With
σ = 1.07, a very unbalanced partition was created: 826 in
one cluster and 1 in the other, which was not of practical
value. In order to find a σ value that gives clusters of similar
size, we increased 1.07 several times, and each time by
1 until a proper σ was found. The final value was 6.07.
The results were compared as shown in Table IV. Both
our method and the regular method created two clusters,
a large one and a small one. Models trained with the two
large clusters (Cluster 1 for both methods) had comparable
performance. However, the Cluster 1 obtained by our method
was significantly larger than that created by σ = 6.07.
Superiority of the new method is evident in that it had the
same predictive power of the regular method, but with a
larger supporting sample size. Models built for Cluster 2
in our method had better separation performance than those
trained with the regular method. The comparison implies
that the search result of σ = 5.8 by our algorithm is better
than σ = 6.07, demonstrating the superiority of the proposed
approach.
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Table IV
COMPARISON ON CLASSIFICATION PERFORMANCE

σ = 5.8 σ = 6.07
N(%) AUC N(%) AUC

Cluster1 657(79.4) 0.59 600(72.6) 0.59
Cluster2 170(20.6) 0.85 227(27.4) 0.80

V. CONCLUSION AND DISCUSSION

It has been difficult to identify genes contributing to
risk of complex diseases, especially psychiatric disorders,
including substance dependence. This failure is due to
two major issues: (1) diverse clinical manifestations and
complex etiology with both genetic and environmental risk
factors; (2) disease phenotypes that are heterogeneous and
homogeneous subtypes have not been optimized empirically.
To address these issues, researchers have sought to leverage
the technology of cluster analysis to identify homogeneous
subtypes that are expected to correlate to homogeneous risk
factors. Although encouraging results have been obtained,
the success remains limited because existing methods mis-
match the clinical cluster analysis to the goal of genetic
association. In this paper, we seek to define clinical subtypes
with guidance from genetic data by developing a novel
multi-objective programming approach that optimizes two
objectives: (1) the cluster-derived subtypes should differ
significantly on clinical features; (2) the subtypes can be
classified using genetic markers.

A case study of subtyping of opioid use and related behav-
iors in an aggregated sample of 1,470 European Americans
was performed and is discussed here. A comparison between
our proposed approach and a typical subtyping method
demonstrated the superiority of our approach. Two opioid
user clusters were obtained from our analysis with sample
size of 657 and 170. The two clusters differ significantly on
important clinical features as shown in Table I. Moreover,
we found significant association of a SNP with the moderate
opioid user cluster (Cluster 2) after correction for multiple
testing. This finding is consistent with genetic variation that
protects against opioid use. For the heavy opioid user cluster
(Cluster 2), one SNP approached significance and seven
SNPs were nominally significant.

There are limitations to our approach. First, our approach
is currently not speed efficient as both simulated annealing
and the optimization solver for the one-norm SVM are time
consuming, especially when the number of variables is in
thousands. Second, although the one-norm SVM eliminated
approximately two thirds of irrelevant variables, over 300
variables were retained. Thus, much sparser techniques
are required to ensure practicability. Finally, σ is not the
only parameter that should be tuned in the process. Other
parameters, such as the clinical features used in cluster
analysis, can also be optimized by our framework to enrich
the search space of potential grouping. This approach has

the potential of being applied to diseases other than OD,
including substance use disorders (e.g. cocaine dependence)
and psychiatric disorders (e.g., major depression).
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