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Abstract—Multiple-instance problems arise from the situations where training class labels are attached to sets of samples (named

bags), instead of individual samples within each bag (called instances). Most previous multiple-instance learning (MIL) algorithms are

developed based on the assumption that a bag is positive if and only if at least one of its instances is positive. Although the assumption

works well in a drug activity prediction problem, it is rather restrictive for other applications, especially those in the computer vision area.

We propose a learning method, MILES (Multiple-Instance Learning via Embedded instance Selection), which converts the multiple-

instance learning problem to a standard supervised learning problem that does not impose the assumption relating instance labels to bag

labels. MILES maps each bag into a feature space defined by the instances in the training bags via an instance similarity measure. This

feature mapping often provides a large number of redundant or irrelevant features. Hence, 1-norm SVM is applied to select important

features as well as construct classifiers simultaneously. We have performed extensive experiments. In comparison with other methods,

MILES demonstrates competitive classification accuracy, high computation efficiency, and robustness to labeling uncertainty.

Index Terms—Multiple-instance learning, feature subset selection, 1-norm support vector machine, image categorization, object

recognition, drug activity prediction.

Ç

1 INTRODUCTION

MULTIPLE-INSTANCE learning (MIL) was introduced by
Dietterich et al. [19] in the context of drug activity

prediction. It provides a framework to handle the scenarios
where training class labels are naturally associated with sets
of samples, instead of individual samples. In recent years, a
variety of learning problems (e.g., drug activity prediction
[19], [35], stock market prediction [36], data mining applica-
tions [46], image retrieval [56], [60], natural scene classifica-
tion [37], text categorization [2], and image categorization
[16]) have been tackled as multiple-instance problems.

1.1 Multiple-Instance Problems

A multiple-instance problem involves ambiguous training
examples: A single example is represented by several feature
vectors (instances), some of which may be responsible for the
observed classification of the example; yet, the training label
is only attached to the example instead of the instances. The
multiple-instance problem was formally introduced in the
context of drug activity prediction [19], while a similar type of
learning scenario was first proposed in [13].

The goal of drug activity prediction is to foretell the
potency of candidate drug molecules by analyzing a collec-
tion of previously synthesized molecules whose potencies are
already known. The potency of a drug molecule is determined

by the degree to which it binds to a site of medical interest on
the target protein. The three-dimensional structure of a drug
molecule decides principally the binding strength: A drug
molecule binds to the target protein if the shape of the
molecule conforms closely to the structure of the binding site.
Unfortunately, a molecule can adopt a wide range of shapes
by rotating some of its internal bonds. Therefore, without the
knowledge of the three-dimensional structure of the target
protein, which is in general not available, knowing that a
previously-synthesized molecule binds to the target protein
does not directly provide the binding information on the
shapes of the molecule. For the multiple-instance problem in
[19], training examples are molecules (named bags [35]). A
bag contains several shapes, called instances, of the molecule.
A label of binding or not binding is attached to each training bag
instead of its instances. The goal is to learn the concept of
binding, hence, to predict whether a new bag, i.e., a new drug
molecule, binds to the target protein. Note that a bag is a
multiset in that the order of the instances is ignored; yet, the
multiplicity is explicitly significant, i.e., a bag may contain
identical instances.

Far beyond the drug activity prediction problem, the
multiple-instance problem emerges naturally in a variety of
challenging learning problems in computer vision, including
natural scene classification [37], content-based image retrie-
val [34], [56], [60], [15], image categorization [6], [32], [16],
and object detection and recognition [40], [1], [21], [20], [45],
[40], [42], [5]. Generally speaking, the goal of all these
problems is to learn visual concepts from labeled images.
The multiple-instance situation arises in these learning
problems because of the choice of image representation. A
single image in [37], [56], [60] is represented by a collection of
fixed-size blocks. In [16], an image is characterized by
regions obtained from image segmentation. In [1], [21], [20],
[45], [17], [42], [5], an image is described by a set of patches
invariant to certain geometric transformations. These image
patches are typically generated by salient region detectors
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[27], interest point detectors [38], and edge-based detectors
[52]. In all of the previously mentioned learning problems,
training labels are attached to images instead of the blocks,
regions, or patches contained in the images. These learning
problems match squarely with the bag-of-instances model:
An image is a bag that contains instances corresponding to
blocks, regions, or patches; instance labels are only indirectly
accessible through the labels attached to bags.

1.2 Previous Work Related to Multiple-Instance
Learning

One of the earliest algorithms for learning from multiple-
instance examples was developed by Dietterich et al. [19] for
drug activity prediction. The key assumption of their MIL
formulation is that: A bag is positive if at least one of its
instances is a positive example; otherwise, the bag is negative.
Their algorithm, named the axis-parallel rectangle (APR)
method [19], attempts to find an APR by expanding or
shrinking a hyperrectangle in the instance feature space to
maximize the number of instances from different positive
bags enclosed by the rectangle while minimizing the number
of instances from negative bags within the rectangle. A bag is
classified as positive if at least one of its instances falls within
the APR;otherwise, the bagisclassifiedasnegative.Anumber
of theoretical results have been obtained following the APR
framework [4], [10], [33]. De Raedt showed the connection
between MIL and inductive logic programming [18].

The basic idea of APR was extended in different ways that
led to several MIL algorithms. Maron and Lozano-Pérez [35]
proposed a general framework, named diverse density (DD),
which has been tested on applications including stock market
prediction [36], natural scene classification [37], and content-
based image retrieval [56], [60]. Diverse density measures a
co-occurrence of similar instances from different positive
bags. The desired concept is learned by maximizing the
DD function. Zhang and Goldman [61] combined the idea of
expectation-maximization (EM) with DD and developed an
algorithm, EM-DD, to search for the most likely concept.
Andrews et al. [2] formulated MIL as a mixed integer
quadratic program. Integer variables are selector variables
that select a positive instance from each positive bag. Their
algorithm, which is called MI-SVM, has an outer loop and an
inner loop. The outer loop sets the values of the selector
variables. The inner loop then trains a standard support
vector machine, SVM, in which the selected positive instances
replace the positive bags. Later, Andrews and Hofmann [3]
developed an algorithm based on a generalization of linear
programming boosting. Ramon and De Raedt presented a
neural networks framework for MIL [43]. A similar method
has been derived in [59]. Wang and Zucker [53] presented two
variants of the k-nearest neighbor algorithm (Bayesian-kNN
and Citation-kNN) using Hausdorff distance. Zhou and
Zhang [63] proposed ensembles of multi-instance learners,
which achieved competitive test results on the benchmark
data sets of drug activity prediction.

All the above MIL formulations explicitly or implicitly
encode the assumption that a bag is positive if and only if at
least one of its instances is positive. The assumption is valid in
drug activity prediction. Typically, there is a single shape that
allows binding; hence, it is natural to relate the instance labels
to the bag label through a disjunction (or a soft disjunction)
function. However, for applications such as object recogni-
tion, a negative bag (e.g., a background image without the

object of interest) may also contain instances that look similar
to parts of the object. In other words, if a positive instance label
indicates that the instance appears to be part of the object, a
negative bag may contain positive instances as well. Several
algorithms have been proposed to tackle this type of situation.
Scott et al. [47] developed a method in which a bag is positive
if and only if it contains a collection of instances, each near one
of a set of target points. In [60], Zhang et al. observed that the
average prediction of a collection of classifiers, constructed
from the EM-DD algorithm with different starting points, is
usually more accurate than the prediction given by any
individual classifier in a content-based image retrieval
experiment. Chen and Wang [16] proposed a MIL framework,
DD-SVM, which, instead of taking the average prediction of
classifiers built from the EM-DD, trains an SVM in a feature
space constructed from a mapping defined by the local
maximizers and minimizers of the DD function. Through the
feature mapping, DD-SVM essentially converts MIL to a
standard supervised learning problem.

There is an abundance of prior work that uses standard
supervised learning techniques to solve multiple-instance
problems. Zucker and Chevaleyre [65] applied decision trees
and decision rules to a generalized multiple-instance pro-
blem. Gärtner et al. [22] designed a kernel for multiple-
instance data. Hence, SVMs can be learned directly from the
training bags. Xu and Frank [58] proposed logistic regression
and boosting approaches for MIL with the assumption that all
instances contribute equally and independently to a bag’s
label. Weidmann et al. [55] introduced a two-level learning
framework in which a bag is transformed into a meta-instance
that can be learned by a propositional method. In a recent
work [44], Ray and Craven compared several MIL methods
with their supervised counterparts. They observed that
although some MIL methods consistently outperformed their
supervised counterparts, in several domains, a supervised
algorithm gave the best performance among all the MIL
algorithms they tested.

In the area of computer vision, several standard super-
vised learning techniques have been adapted for object
detection and recognition where the underlying learning
problems are essentially the multiple-instance problem [1],
[21], [17], [42], [5]. Fergus et al. [21] presented a generative
approach to learning and recognizing an object class from
images. Each image (bag) is represented as a collection of
image patches (instances) produced by a scale invariant
detector [26]. An object is modeled as a group of patches,
which are assumed to be generated by a probabilistic model.
The model is estimated by maximizing the likelihood
function using the EM technique. Agarwal and Roth [1]
described a discriminative approach for object detection. A
vocabulary of object parts is constructed from a set of sample
images. The multiple-instance representation of each image is
then transformed to a binary feature vector based on the
vocabulary. Each binary feature indicates whether or not a
part or relation occurs in the image. The classifier is learned
using the Sparse Network of Winnows (SNoW) framework.
Csurka et al. [17] proposed an object categorization method
using the bag-of-keypoints model, which is identical to the
bag-of-instances model. An image is represented by a
collection of affine invariant patches. Vector quantization is
applied to the descriptors of all image patches to generate a
predetermined number of clusters. Each image is then
transformed to an integer-valued feature vector indicating
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the number of patches assigned to each cluster. Classifiers are
implemented as Naive Bayes and SVM. Opelt et al. [42]
described a boosting approach to object detection where, at
each iteration, the weak hypothesis finder selects one local
image patch and one type of local descriptor. Bar-Hillel et al.
[5] proposed a boosting technique that learns a generative
object model in a discriminative manner.

1.3 An Overview of Our Approach

The approach we take to tackle the multiple-instance problem
further extends ideas from the diverse density framework
[35], [16] and the wrapper model in feature selection [29]. Our
approach identifies instances that are relevant to the observed
classification by embedding bags into an instance-based
feature space and selecting the most important features. We
define a similarity measure between a bag and an instance.
The coordinates of a given bag in the feature space represent
the bag’s similarities to various instances in the training set.
The embedding produces a possibly high-dimensional space
when the number of instances in the training set is large. In
addition, many features may be redundant or irrelevant
because some of the instances might not be responsible for the
observed classification of the bags, or might be similar to each
other. It is essential and indispensable to select a subset of
mapped features that is most relevant to the classification
problem of interest. Although any feature selection
approaches could be applied for this purpose, we choose a
joint approach that constructs classifiers and selects impor-
tant features simultaneously. Specifically, we use the 1-norm
SVM method because of its excellent performance in many
applications [8], [64]. Since each feature is defined by an
instance, feature selection is essentially instance selection.
Therefore, we name our approach MILES, Multiple-Instance
Learning via Embedded instance Selection.

The proposed approach has the following characteristics:

. Broad adaptability: It provides a learning framework
that converts a multiple-instance problem to a
supervised learning problem. It demonstrates highly
competitive classification accuracy in our empirical
studies using benchmark data sets from different
application areas. Moreover, in comparison with the
DD-SVM algorithm [16], the proposed approach is
less sensitive to the class label uncertainties.

. Low complexity: It is efficient in computational
complexity, therefore, can potentially be tailored to
tasks that have stringent time or resource limits.
According to our empirical studies, the learning
process of the proposed approach is on average one
order of magnitude faster than that of the algorithms
described in [21] and [16].

. Prediction capability: In some multiple-instance
problems, classification of instances is at least as
important as the classification of bags. The proposed
approach supports instance naming, i.e., predicting
instance labels. This is in contrast to the methods
described in [53], [16], [17], [42].

1.4 Outline of the Paper

The remainder of the paper is organized as follows:
Section 2 describes an instance-based embedding of bags
that transforms every bag to a uniform representation.
Section 3 is dedicated to the description of a joint feature
selection and classification method using a 1-norm SVM. A

concrete 1-norm SVM formulation is presented. Section 4

provides an algorithmic view of the approach. In Section 5,

we explain the extensive experimental studies conducted

and demonstrate the results. We conclude and discuss

possible future work in Section 6.

2 INSTANCE-BASED EMBEDDING OF BAGS

We introduce the instance-based embedding in this section.

Before discussing the mathematical definition of the

mapping, we first give a brief review of the diverse density

framework based on [36], [35] which forms the conceptual

basis of the instance-based feature mapping. We denote

positive bags as Bþi and the jth instance in that bag as xþij.

The bag Bþi consists of nþi instances xþij, j ¼ 1; � � � ; nþi .

Similarly, B�i , x�ij, and n�i represent a negative bag, the jth

instance in the bag, and the number of instances in the bag,

respectively. When the label on the bag does not matter, it

will be referred to as Bi with instances as xij. All instances

belong to the feature space XX. The number of positive

(negative) bags is denoted as ‘þ ð‘�Þ. For the sake of

convenience, when we line up all instances in all bags

together, we reindex these instances as xk, k ¼ 1; � � � ; n,

where n ¼
P‘þ

i¼1 n
þ
i þ

P‘�

i¼1 n
�
i .

2.1 Review of Diverse Density

The diverse density framework was derived in [36], [35]

based on the assumption that there exists a single target

concept, which can be used to label individual instances

correctly. If we denote a given concept class as C, the diverse

density of a concept t 2 C is defined as the probability1 that the

concept t is the target concept given the training bags [36]:

DDðtÞ ¼ PrðtjBþ1 ; � � � ;Bþ‘þ ;B�1 ; � � � ;B�‘�Þ: ð1Þ

The target concept that is most likely to agree with the data

is then determined by maximizing this probability. Apply-

ing Bayes’ rule to (1) and further assuming that all bags are

conditionally independent given the true target concept, we

can write (1) as

DDðtÞ ¼ PrðtÞ
Q‘þ

i¼1 PrðBþi jtÞ
Q‘�

i¼1 PrðB�i jtÞ
PrðBþ1 ; � � � ;Bþ‘þ ;B�1 ; � � � ;B�‘�Þ

¼
Q‘þ

i¼1 PrðBþi Þ
Q‘�

i¼1 PrðB�i Þ
PrðBþ1 ; � � � ;Bþ‘þ ;B�1 ; � � � ;B�‘�ÞPrðtÞ‘þþ‘��1

" #

Y‘þ
i¼1

PrðtjBþi Þ
Y‘�
i¼1

PrðtjB�i Þ
" #

:

ð2Þ

If we assume a uniform prior on t, for given training

bags, maximizing DDðtÞ is equivalent to maximizing the

second factor in (2), i.e.,
Q‘þ

i¼1 PrðtjBþi Þ
Q‘�

i¼1 PrðtjB�i Þ. Maron

[36] proposes several ways to estimate PrðtjBiÞ for various

concept classes. For example, if C is a single point concept

class, where every concept corresponds to a single point in

XX, the most-likely-cause estimator [36] is then defined as:
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1. Here, C is assumed to be a countable set. Otherwise, the diverse
density should be interpreted as probability density instead of probability.
To simplify the notations, we use PrðÞ to represent either probability or
probability density.



PrðtjBþi Þ / max
j

exp �
k xþij � t k2

�2

 !
ð3Þ

PrðtjB�i Þ / 1�max
j

exp �
k x�ij � t k2

�2

 !
; ð4Þ

where � is a predefined scaling factor.
An optimization algorithm, such as a gradient descent

approach [35] or EM-DD [61], is used to search for a target
concept that achieves maximal DD. Neither the gradient
descent algorithm nor EM-DD can guarantee the global
optimality and, hence, they may get stuck at local solutions.
Typically, multiple runs with different starting search points
are necessary. Therefore, the process of maximization is often
very time-consuming.

2.2 Instance-Based Feature Mapping

The DD framework can be interpreted from a feature selection
point of view as follows: For a given concept class C, each
concept t 2 C is viewed as an attribute or a feature (which is
denoted as ht) for the bags; and the value of the feature for
bag Bi is defined as

htðBiÞ ¼ PrðtjBiÞ: ð5Þ

If C is a countable set, i.e., C ¼ ft1; t2; � � � ; tj; � � � � � �g, then

½ht1ðBiÞ; ht2ðBiÞ; � � � ; htjðBiÞ; � � ��T ¼

Prðt1jBiÞ;Prðt2jBiÞ; � � � ;PrðtjBiÞ; � � �
� �T

determines the values of all the attributes (or features) for
bag Bi. We denote as IFC the space defined by ht1 ; ht2 ; � � � ;
htj ; � � � � � � . As a result, each bag can be viewed as a point in IFC,
and ½PrðtjjBþ1 Þ; � � � ;PrðtjjBþ‘þÞ; PrðtjjB�1 Þ; � � � ;PrðtjjB�‘�Þ�

T

realizes the feature htj for all the bags.
Under the uniform prior assumption on concepts, it is

not difficult to see that finding a concept to maximize the
DD function in (2) is equivalent to selecting one feature, htj ,
to maximize the following measure:

fðhtjÞ ¼
Y‘þ
i¼1

htjðBþi Þ
Y‘�
i¼1

htjðB�i Þ ¼
Y‘þ
i¼1

PrðtjjBþi Þ
Y‘�
i¼1

PrðtjjB�i Þ:

From the perspective of feature selection, the DD framework
appears to be rather restrictive because it always seeks for one
and only one feature. Can we improve the performance by
searching for multiple features? This is the basic motivation of
our approach. In particular, our approach further extends the
idea from the DD framework in constructing the features,
which is described below. It then applies 1-norm SVM to
build classifiers and select features simultaneously. The
details of the joint feature selection and classification
approach will be discussed in Section 3.

The new feature mapping is derived based on (5). First,
we need to specify a concept class. We choose to use the
single point concept class. In addition, we assume that there
may exist more than one target concept (the exact number
needs to be determined by the feature selection process)
and a target concept can be well approximated by an
instance in the training bags. In other words, each instance
in the training bags is a candidate for target concepts.
Therefore, each instance corresponds to a concept, i.e.,

C ¼ fxk : k ¼ 1; � � � ; ng; ð6Þ

where xk are those reindexed instances as defined at the
beginning of Section 2. Furthermore, we assume that a
target concept can be related to either positive bags or
negative bags, whereas, in the DD framework, the target
concept is defined for positive bags only. Under this
symmetric assumption and our choice of concept class in
(6), the most-likely-cause estimator in (3) and (4) can be
written, independent of the bag label, as

PrðxkjBiÞ / sðxk;BiÞ ¼ max
j

exp �k xij � xk k2

�2

� �
:

sðxk;BiÞ can also be interpreted as a measure of similarity
between the concept xk and the bag Bi: The similarity
between a concept and a bag is determined by the concept
and the closest instance in the bag. A bag Bi is then
embedded in IFC with coordinates mðBiÞ defined as

mðBiÞ ¼ ½sðx1;BiÞ; sðx2;BiÞ; � � � ; sðxn;BiÞ�T : ð7Þ

For a given training set of ‘þ positive bags and ‘�

negative bags, applying the mapping (7) yields the
following matrix representation of all training bags in IFC:

½mþ1 ; � � � ;mþ‘þ ;m�1 ; � � � ;m�‘� �
¼ ½mðBþ1 Þ; � � � ;mðBþ‘þÞ;mðBþ1 Þ; � � � ;mðB�‘�Þ�

¼

sðx1;Bþ1 Þ � � � ðx1;B�‘�Þ
sðx2;Bþ1 Þ � � � ðx2;B�‘�Þ

..

. . .
. ..

.

sðxn;Bþ1 Þ � � � sðxn;B�‘�Þ

2
666664

3
777775;

where each column represents a bag, and the kth feature in
IFC realizes the kth row of the matrix, i.e.,

sðxk; �Þ ¼ ½sðxk;Bþ1 Þ; � � � ; sðxk;Bþ‘þÞ; sðxk;B�1 Þ; � � � ; sðxk;B�‘�Þ�:

Intuitively, if xk achieves high similarity to some positive
bags and low similarity to some negative bags, the feature
induced by xk, sðxk; �Þ, provides some “useful” information
in separating the positive and negative bags. Next, we
present a simple example to illustrate the efficiency of the
mapping (7).

2.3 An Example

We formulate a multiple-instance problem where each

instance is generated by one of the following two-dimen-

sional probability distributions: N1�Nð½5; 5�T ; IÞ, N2 � N
ð½5;� 5�T ; IÞ, N3 � Nð½�5; 5�T ; IÞ, N4 � Nð½�5;�5�T ; IÞ, and

N5 � Nð½0; 0�T ; IÞ, where Nð½5; 5�T ; IÞ denotes the normal

distribution with mean ½5; 5�T and identity covariance matrix.

Each bag comprises at most eight instances. A bag is labeled

positive if it contains instances from at least two different

distributions among N1, N2, and N3. Otherwise, the bag is

negative.
Using this model, we generated 20 positive bags and

20 negative bags with a total of 219 instances. Fig. 1a depicts
all the instances on a two-dimensional plane. Note that
instances from negative bags mingle with those from positive
bags because a negative bag may include instances from
any one, but only one, of the distributions N1, N2, and N3.
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After applying mapping (7), each bag was embedded in

a 219-dimensional feature space (� was chosen to be

4.5). Intuitively, the mean vectors of N1, N2, and N3

might be helpful in bag classification. So, we manually

selected three instances, xi¼ ½4:3; 5:2�T , xj¼ ½5:4;�3:9�T , and

xk ¼ ½�6:0; 4:8�T , which were close to the mean vectors ofN1,

N2, and N3. Fig. 1b shows the embedding of all 40 bags in a

subspace defined by the three instances. It is not difficult to

observe that the bags can be separated by a plane in this three-

dimensional space, which corresponds to a simple bag

classifier. This suggests that the mapping (7) can indeed

induce useful features for bag classification, yet automatic

feature subset selection and the subsequent classifier design

are the remaining questions. These questions are addressed in

the next section.

3 JOINT FEATURE SELECTION AND CLASSIFICATION

FOR MULTIPLE-INSTANCE LEARNING

Feature subset selection is a well-studied research problem in

the areas of statistics, machine learning, and pattern recogni-

tion [41], [29], [25], [30], [39], [12], [23], [28], [31], [50], [57].

Existing feature selection approaches generally fall in two

categories: filter and wrapper [29], [57]. Some filter methods,

such as ranking through correlation coefficients or through

Fisher scores, tend to select intercorrelated features and do

not guarantee an acquisition of a good classifier. On the

contrary, wrappers include the desired classifier as part of

their performance evaluation. They tend to produce better

generalization but may require an expensive computational

cost. Our method is essentially a wrapper where the 1-norm

SVM is used to construct classifiers and select important

features simultaneously. The 1-norm SVM can be formulated

as a linear program, which, in general, can be solved

efficiently from an optimization point of view. The computa-

tional cost will not be an issue.

3.1 1-Norm Support Vector Machines

Denote the class label variable by y, which takes values of
þ1 and �1. We consider the classification problem of
finding a linear classifier

y ¼ signðwTmþ bÞ

in the feature space IFC to distinguish between positive bags
and negative bags, where w and b are model parameters
and m 2 IFC corresponds to a bag. The SVM approach
constructs classifiers based on hyperplanes by minimizing a
regularized training error, Etraining,

�P ½�� þ Etraining;

where P ½�� is a regularizer, � is called the regularization
parameter, and Etraining is commonly defined as a total of the
loss that each bag introduces through a hinge loss function

� ¼ maxf1� yðwTmþ bÞ; 0g:

When an optimal solution w is obtained, the magnitude of its
component wk indicates the significance of the effect of the
kth feature in IFC on the classifier. Those features correspond-
ing to a nonzero wk are selected and used in the classifier.

The regularizer in standard SVMs is the squared 2-norm
of the weight vector k w k , which formulates SVMs as
quadratic programs (QP). Solving QPs is typically compu-
tationally more expensive than solving linear programs
(LPs). There exist alternative LP formulations of SVMs [7],
[49], [64] which involve regularization with a norm favoring
sparsity, e.g., the 1-norm of w,

k w k1¼
X
k

jwkj:

The 1-norm penalty was adopted in other approaches
similarly, such as basis pursuit [14] and LASSO [51] for
driving more components of w to zero. Thus, 1-norm SVM
is also referred to as sparse SVM and has been applied to
other practical problems such as drug discovery [8].
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Another characteristic of the MIL problem is that training
sets in many MIL problems are very imbalanced between
classes, e.g., the number of negative bags can be much larger
than the number of positive bags. To tackle this imbalanced
issue and make classifiers biased toward the minor class, a
simple strategy we used is to penalize differently on errors
produced, respectively, by positive bags and by negative
bags. Hence, the 1-norm SVM is formulated as follows:

minw;b;�;� �
Xn
k¼1

jwkj þ C1

X‘þ
i¼1

�i þ C2

X‘�
j¼1

�j

s:t: ðwTmþi þ bÞ þ �i � 1; i ¼ 1; � � � ; ‘þ;
� ðwTm�j þ bÞ þ �j � 1; j ¼ 1; � � � ; ‘�;
�i; �j � 0; i ¼ 1; � � � ; ‘þ; j ¼ 1; � � � ; ‘�;

ð8Þ

where ����, ���� are hinge losses. Choosing unequal values for
parameters C1 and C2 will penalize differently on false
negatives and false positives. Usually, C1 and C2 are chosen
so that the training error is determined by a convex
combination of the training errors occurred on positive bags
and on negative bags. In other words, let C1 ¼ � and
C2 ¼ 1� �, where 0 < � < 1.

To form an LP for the 1-norm SVM, we rewrite
wk ¼ uk � vk, where uk; vk � 0. If either uk or vk has to equal
to 0, we have jwkj ¼ uk þ vk. The LP is then formulated in
variables u, v, b, ����, and ���� as

minu;v;b;�;��;��;��;� �
Xn
k¼1

ðuk þ vkÞ þ �
X‘þ
i¼1

�i þ ð1� �Þ
X‘�
j¼1

�j

s:t: ½ðu� vÞTmþi þ b� þ �i � 1; i ¼ 1; � � � ; ‘þ;
� ½ðu� vÞTm�j þ b� þ �j � 1; j ¼ 1; � � � ; ‘�;
uk; vk � 0; k ¼ 1; � � � ; n;
�i; �j � 0; i ¼ 1; � � � ; ‘þ; j ¼ 1; � � � ; ‘�:

ð9Þ

Solving LP (9) yields solutions equivalent to those obtained
by the 1-norm SVM (8) because any optimal solution to (9) has
at least one of the two variables uk and vk equal to 0 for all
k ¼ 1; � � � ; n. Otherwise, assume uk � vk > 0 without loss of
generality, and we can find a better solution by setting uk ¼
uk � vk and vk ¼ 0, which contradicts the optimality of ðu;vÞ.

Let w� ¼ u� � v� and b� be the optimal solution of (9). The
magnitude of w�k determines the influence of the kth feature
on the classifier. The set of selected features is given as
fsðxk; �Þ : k 2 Ig, where

I ¼ fk : jw�kj > 0g

is the index set for nonzero entries in w�. The classification
of bag Bi is computed as

y ¼ sign
X
k2I

w�ksðxk;BiÞ þ b�
 !

: ð10Þ

3.2 Instance Classification

In some multiple-instance problems, classification of in-
stances is at least as important as the classification of bags. For
one example, an object detection algorithm needs not only to
identify whether or not an image contains a certain object, but
also to locate the object (or part of the object) from the image if

it contains the object. Under the multiple-instance formula-
tion, this requires the classification of the bags (containing an
object versus not containing any such object) as well as the
instances in a bag that correspond to the object. The classifier
(10) predicts a label for a bag. Next, we introduce a way to
classify instances based on a bag classifier.

The basic idea is to classify instances according to their
contributions to the classification of the bag. Instances in a bag
can be grouped into three classes: positive class, negative class,
and void class. An instance in bag Bi is assigned to the positive
class (negative class) if its contribution to

P
k2I w

�
ksðxk;BiÞ

is greater than or equal to (or less than) a threshold. An
instance is assigned to the void class if it makes no
contribution to the classification of the bag.

Given a bag Bi with instances xij, j ¼ 1; � � � ; ni, we define
an index set U as

U ¼ j� : j� ¼ arg max
j

exp �k xij � xk k2

�2

� �
; k 2 I

� �
:

It is not difficult to verify that the evaluation of (10) only needs
the knowledge of the instances xij� , j

� 2 U. In this sense, U
defines a minimal set of instances responsible for the
classification of Bi. Hence, removing an instance xij� , j

� =2U
from the bag will not affect the value of

P
k2I w

�
ksðxk;BiÞ in

(10), and f1; � � � ; nigminus the set U specifies the instances in
the void class. Since there can be more than one instance in
the bagBi that maximizes expð� kxij�xkk2

�2 Þ for a given xk; k 2 I ,
we denote the number of maximizers for xk by mk. Also, an
instance xij� , j

� 2 U can be a maximizer for different xks,
k 2 I . Hence, for each j� 2 U, we define

I j� ¼ k : k 2 I ; j� ¼ arg max
j

exp �k xij � xk k2

�2

� �� �
:

All the features sðxk;BiÞ; k 2 I j� can be computed from xij� ,
i.e., sðxk;BiÞ ¼ sðxk; fxij�gÞ for k 2 I j� .

It is straightforward to show that I ¼
S
j�2U I j� and, in

general, I j�1
T
I j�2 6¼ ; for arbitrary j�1 6¼ j�2 2 U. In fact, the

number of appearances of k in I j�
1
; � � � ; I j�jUj is mk. We then

rewrite the bag classifier (10) in terms of the instances
indexed by U:

y ¼ sign
X
j�2U

gðxij� Þ þ b�
 !

;

where

gðxij� Þ ¼
X
k2I j�

w�ksðxk;xij� Þ
mk

ð11Þ

determines the contribution of xij� to the classification of the
bag Bi. The instances can be classified according to (11): If
gðxij� Þ > � , xij� belongs to the positive class; otherwise, xij�
belongs to the negative class. The choice of � is application
specific and is an interesting research problem for its own
sake. In our experiments, the parameter � is chosen to be
bag dependent as � b�

jUj .
Next, we present one simple example to illustrate the

major steps in the above instance classification process.

Example. We assume that five features are selected by 1-norm
SVM and denote these features as sðx1; �Þ; � � � ; sðx5; �Þ.
Therefore, I ¼ f1; 2; 3; 4; 5g. A bag Bi, containing four
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instances (xi1, xi2, xi3, and xi4), is classified as positive. The
key information needed in computing sðxk;BiÞ is the
nearest neighbors of xk in the instances of Bi. Suppose that

xi2;xi3 are the nearest neighbors of x1;

xi1 is the nearest neighbor of x2;

xi3 is the nearest neighbor of x3;

xi1 is the nearest neighbor of x4;

xi3 is the nearest neighbor of x5:

ð12Þ

Instances xi1, xi2, and xi3 are the nearest neighbors of at least
one of xks, so U ¼ f1; 2; 3g. Since xi4 is not the nearest
neighbor for any of xks, xi4 is assigned to the void class.
Because x1 has two nearest neighbors, it yields m1 ¼ 2.
Similarly, we have m2 ¼ m3 ¼ m4 ¼ m5 ¼ 1. From (12), we
find that xi1 is the nearest neighbor of x2 and x4. So, xi1
determines the values of features sðx2; �Þ and sðx4; �Þ.
Therefore, I1 ¼ f2; 4g. Similarly, we derive I 2 ¼ f1g and
I 3 ¼ f1; 3; 5g. In other words, the instance xi1 contributes to
the classification of Bi via features sðx2; �Þ and sðx4Þ, the
instance xi2 contributes to the classification via sðx1; �Þ, and
the instance xi3 contributes to the classification via sðx1; �Þ,
sðx3; �Þ, and sðx5; �Þ. The labels of instances xi1, xi2, and xi3
can be predicted using (11).

4 AN ALGORITHMIC VIEW

We summarize the above discussion in pseudo code. The
input is a set of labeled bags D, parameters �2, �, and �. The
collection of instances from all the bags is denoted as
C ¼ fxk : k ¼ 1; � � � ; ng. The following pseudo code learns a
bag classifier defined by w� and b�Þ.
Algorithm 4.1: Learning Bag Classifier
1 FOR (every bag Bi ¼ fxij : j ¼ 1; � � � ; nig in D)
2 FOR (every instance xk in C)
3 d ¼ minj k xij � xk k
4 the kth element of mðBiÞ is sðxk;BiÞ ¼ e�

d2

�2

5 END

6 END

7 solve the LP in (9)

8 OUTPUT (w� and b�)

The pseudocode for instance classification is given below.
The input is a bag Bi ¼ fxij : j ¼ 1; � � � ; nig, which is
classified as positive by a bag classifier ðw�; b�Þ. The output
is a list of positive instances along with their contributions
to the classification of the bag.

Algorithm 4.2: Instance Classification of Bag Bi

1 let I ¼ fk : jw�kj > 0g
2 let U ¼ fj� : j� ¼ arg minj k xij � xk k; k 2 Ig
3 initialize mk ¼ 0 for every k in I
4 FOR (every j� in U)
5 I j� ¼ fk : k 2 I ; j� ¼ arg minj k xij � xk kg
6 mk  mk þ 1 for every k in I j�
7 END

8 FOR (every xij� with j
� in U)

9 compute gðxij� Þ using (11)

10 END

11 OUTPUT (all xij� satisfying gðxij� Þ > � b�

jUj)

These outputs xij� correspond to positive instances.

5 EXPERIMENTAL RESULTS

We present systematic evaluations of the proposed MIL
framework, MILES, based on three publicly available
benchmark data sets. In Section 5.1, we compare MILES
with other MIL methods using the benchmark data sets in
MIL, MUSK data sets [19]. In Section 5.2, we test the
performance of MILES on a region-based image categoriza-
tion problem using the same data set as in [16], and
compare MILES with other techniques. In Section 5.3, We
apply MILES to an object class recognition problem [21].
MILES is compared to several techniques specifically
designed for the recognition task in terms of its perfor-
mance. Computational issues are discussed in Section 5.4. A
Matlab implementation of MILES is available at http://
www.cs.olemiss.edu/~ychen/MILES.html/.

5.1 Drug Activity Prediction

5.1.1 Experimental Setup

The MUSK data sets, MUSK1 and MUSK2, are benchmark
data sets for MIL. Both data sets are publicly available from
the UCI Machine Learning Repository [9]. The data sets
consist of descriptions of molecules. Specifically, a bag
represents a molecule. Instances in a bag represent low-
energy shapes of the molecule. To capture the shape of
molecules, a molecule is placed in a standard position and
orientation and then a set of 162 rays emitting from the origin
is constructed to sample the molecular surface approximately
uniformly [19]. There are also four features that describe the
position of an oxygen atom on the molecular surface.
Therefore, each instance in the bags is represented by
166 features. The data were preprocessed by dividing each
feature value by 100 (this is identical to the data preprocessing
step in [36]). MUSK1 has 92 molecules (bags), of which 47 are
labeled positive, with an average of 5.17 shapes (instances)
per molecule. MUSK2 has 102 molecules, of which 39 are
positive, with an average of 64.69 shapes per molecule.

Three parameters �2 (in the most-likely-cause estimator),
�, and � (in the LP) need to be specified for MILES. We fixed
� ¼ 0:5 to penalize equally on errors in the positive class and
the negative class. The parameters � and �2 were selected
according to a twofold cross-validation on the training set.
We chose � from 0.1 to 0.6 with step size 0.01, and �2 from
105 to 9� 105 with step size 5� 104. We found that � ¼ 0:45
and �2 ¼ 5� 105 gave the minimum twofold cross-valida-
tion error on MUSK1, and � ¼ 0:37 and �2 ¼ 8� 105 gave the
best twofold cross-validation performance on MUSK2.
These values were fixed for the subsequent experiments.
The linear program of 1-norm SVM was solved using CPLEX
version 9.0 [24].

5.1.2 Classification Results

Table 1 shows the prediction accuracy. We observed
variations on the average accuracy of tenfold cross-
validation for different random runs. The prediction
accuracy in 15 runs varied from 84.1-90.2 percent for
MUSK1, and from 84.5-91.5 percent for MUSK2. Therefore,
we reported the mean and 95 percent confidence interval
of the results of 15 runs of tenfold cross-validation for
MILES. We also included the results using the leave-one-
out test for comparison with certain algorithms.

Table 1 summarizes the performance of twelve MIL
algorithms in the literature: APR [19], DD [35], DD-SVM
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[16], EM-DD [61],2 MI-SVM and mi-SVM [2], MI-NN [43],
Multinst [4], Citation-kNN and Bayesian-kNN [53], RELIC
[46], and Bagging-APR [63].3 The prediction accuracies for
Bayesian-kNN and Citation-kNN were based on the leave-
one-out test, while the performance of other methods was
evaluated using tenfold cross-validation.

Table 1 shows that Bagging-APR achieves the best
performance on both MUSK1 and MUSK2 data sets. Bag-
ging-APR applied an ensemble algorithm, bagging [11], to a
base learner that used the APR method. Therefore, its
excellent performance should be credited to the ensemble
scheme as well as the base learner. Since the bagging
technique can potentially be applied to all algorithms listed
in Table 1 to improve the prediction accuracy, it might be
more meaningful to compare only the base learners. Among
all 12 base multiple-instance learners, the APR method gave
the best overall prediction accuracy on MUSK1 and MUSK2
data sets (the average accuracy on two data sets is
90.8 percent). It is observed that the proposed framework,
MILES, is the second best in terms of the average prediction
accuracy (90.1 percent, leave-one-out test) over the two data
sets. The tenfold cross-validation results of MILES are also
comparable with those of other techniques. Even though
MILES is not designed specially for the drug activity
prediction problem, its performance is comparable with that
of the APR method. In fact, MILES generated the best
performance on MUSK2 (93.1 percent, leave-one-out test).

We tested the sensitivity of MILES with respect to the
parameters � and �2. Our algorithm is rather stable with
choices of parameter values as long as they are chosen from a

reasonable range. Fig. 2 shows the gray-level encoded leave-
one-out test accuracy under different values of � and �2. For
MUSK1, � varies from 0.2 to 0.5 with step size 0.01; �2 varies
from 3� 105 to 7� 105 with step size 5� 104. The maximal
and minimal leave-one-out test accuracies are, respectively,
89.1 percent and 81.5 percent (recall that the accuracy based
on the parameters chosen from twofold cross-validation is
87.0 percent). For MUSK2, � varies from 0.1 to 0.6 with
step size 0.02; �2 varies from 5� 105 to 9� 105 with step
size 5� 104. The maximal and minimal leave-one-out test
accuracies are, respectively, 94.1 percent and 83.3 percent
(recall that the accuracy based on the parameters chosen from
twofold cross-validation is 93.1 percent).

5.2 Region-Based Image Categorization

Image categorization refers to the labeling of images into
predefined categories. Depending on the imagery features
used in the classification, image categorization algorithms
can be divided into two groups: global approaches and
component-based approaches. The global image classification
approaches use features that characterize the global informa-
tion of an image. Although the global features can usually be
computed with little cost and are effective for certain
classification tasks, some visual contents of images could
only be locally defined. A number of component-based
approaches have been proposed to exploit local and spatial
properties of an image. Component-based image categoriza-
tion has been formulated and tackled as a multiple-instance
learning problem in the past works [37], [56], [60], [2], [16].

5.2.1 Experimental Setup

The image data set consists of 2,000 images taken from 20 CD-
ROMs published by the COREL Corporation. Each COREL
CD-ROM contains 100 images representing a distinct
concept.4 Therefore, the data set has 20 thematically diverse

8 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 12, DECEMBER 2006

2. The EM-DD results reported in [61] were obtained by selecting the
optimal solution using the test data. The EM-DD result cited in this paper
was provide by [2] using the correct algorithm.

3. The best performance reported in [63] was achieved by combining EM-
DD learners (prediction accuracy: 96.9 percent for MUSK1 and 97.0 percent
for MUSK2). However, it seems that the EM-DD learner implemented in [63]
used the test data to select the optimal solution. Therefore, the results were
not included in Table 1.

4. The image data sets are available at http://www.cs.uno.edu/~yixin/
ddsvm.html/.

TABLE 1
Comparing the Prediction Accuracy (in Percent) Obtained Using MILES with Those of Other Methods on the MUSK Data Sets

The 95 percent confidence interval of the average accuracy of tenfold cross-validation for different random runs is Included only for MILES and
MULTINST.



image categories, each containing 100 images. Images are in
JPEG format of size 384� 256 or 256� 384. The category
names are listed in Table 2 along with the identifiers (IDs) for
20 categories. Since the classification problem is multiclass,
we apply the simple one-against-the-rest heuristics.

This data set has been used in [16] to demonstrate much
improved performance of a MIL algorithm, DD-SVM, in
comparison with several other techniques. Since we will
compare MILES with the DD-SVM approach, we adopt the
same image segmentation algorithm as described in [16], [54].
A brief summary about the imagery features is given as

follows: To segment an image, the system first partitions the
image into nonoverlapping blocks of size 4� 4 pixels. A
feature vector is then extracted for each block. Each feature
vector consists of six features. Three of them are the average
color components in a block. The LUV color space is used,
where L encodes luminance, and U and V encode color
information (chrominance). The other three represent the
square root of energy in the high-frequency bands of the
wavelet transforms, i.e., the square root of the second order
moment of wavelet coefficients in high frequency bands. The
coefficients in different frequency bands show variations in
different directions, hence capture the texture properties. To
calculate these moments, a Daubechies-4 wavelet transform is
applied to the L component of the image. After one-level
wavelet transform, a 4� 4 block is decomposed into four
frequency bands: the LL (low low), LH (low high), HL, and
HH bands, each containing 2� 2 coefficients. If the coeffi-
cients in the HL band are given as ci;j, where i; j ¼ 1; 2, then a
feature is defined as ð14

P2
i¼1

P2
j¼1 c

2
i;jÞ

1
2. The other two features

are computed similarly from the LH and HH bands.
A modified k-means algorithm is applied to group the

feature vectors into clusters each corresponding to a region in
the segmented image. The algorithm does not require the
number of clusters be specified. Instead, the number of
clusters gradually increases until a stop criterion is met. The
number of regions in an image can vary depending on the
complexity of the image content. The average number of
regions per image changes in accordance with the adjustment
of the stop criteria. Table 2 lists the average number of regions
per image in each category. Fig. 3 shows some images
randomly sampled from the 20 categories and the corre-
sponding segmentation results. After segmentation, three
extra features are computed for each region to describe shape
properties. They are normalized inertia of order 1, 2, and 3. As
a result, each region in any image is characterized by a nine-
dimensional feature vector characterizing the color, texture,
and shape properties of the region.

In our experiments, images within each category were
randomly partitioned in half to form a training set and a test
set. We repeated each experiment for five random splits,
and reported the average of the results obtained over five
different test sets. The parameter � was set to be 0.5.
Parameters �2 and � were selected according to a twofold
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Fig. 2. Sensitivity analysis: classification accuracy of leave-one-out test under different values of parameters. The correspondence between the

accuracies and gray-scale levels are indicated by the scale bar images.

TABLE 2
Twenty Image Categories and the Average Number

of Regions per Image for Each Category



cross-validation on the training set. We chose � from 0.1 to

0.6 with step size 0.05 and �2 from 5 to 15 with step size 1.

We found that � ¼ 0:5 and �2 ¼ 11 gave the minimum

twofold cross-validation error. We then fixed � ¼ 0:5 and

�2 ¼ 11 in all subsequent experiments.

5.2.2 Categorization Results

We first report the confusion matrix of the proposed

method in Table 3 based on images in Category 0 to

Category 9, i.e., 1,000 images. Each row lists the average

percentages of images in a specific category classified to

each of the 10 categories. The numbers on the diagonal

show the classification accuracy for each category and off-

diagonal entries indicate classification errors. A detailed

examination of the confusion matrix shows that two of the

largest errors (the underlined numbers in Table 3) are errors

between Category 1 (Beach) and Category 8 (Mountains and

glaciers): 13.7 percent of Mountains and glaciers are mis-

classified as Beach and 15.7 percent of Beach images are

misclassified as Mountains and glaciers. This observation is in

line with that presented in [16]. As stated in [16], the high

classification errors are due to the fact that many images

from these two categories have regions that are semantically
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Fig. 3. Images randomly sampled from 20 categories and the corresponding segmentation results. Segmented regions are shown in their
representative colors.

TABLE 3
The Confusion Matrix of Image Categorization Experiments (Over Five Randomly Generated Test Sets) Using MILES

Each row lists the average percentage of images (test images) in one category classified to each of the 10 categories. Numbers on the diagonal
show the classification accuracies (in percent).



related and visually similar, such as regions corresponding
to mountain, river, lake, and ocean.

We compared the overall prediction accuracy of MILES
with that of DD-SVM [16], MI-SVM [2], and a method
proposed in [17] (we call it k-means-SVM to simplify the
discussions). k-means-SVM constructed a region vocabu-
lary by clustering regions using the k-means algorithm.
Each image was then transformed to an integer-valued
feature vector indicating the number of regions assigned to
each cluster. SVMs were constructed using these integer-
valued features. The size of the vocabulary and the
parameters of k-means-SVM were chosen according to a
twofold cross-validation using all 2,000 images. The average
classification accuracies over five random test sets and the
corresponding 95 percent confidence intervals are provided
in Table 4. On both data sets, the performance of MILES is
significantly better than that of MI-SVM and k-means-SVM.
MILES outperforms DD-SVM, though the difference is not
statistically significant as the 95 percent confidence intervals
for the two methods overlap.

5.2.3 Sensitivity to Labeling Noise

The results in Section 5.2.2 demonstrate that the perfor-
mance of MILES is highly comparable with that of DD-
SVM. Next, we compare MILES with DD-SVM in terms of
the sensitivity to the noise in labels. Sensitivity to labeling
noise is an important performance measure for classifiers
because in many practical applications, it is usually
impossible to get a “clean” data set and the labeling
processes are often subjective. In terms of binary classifica-
tion, we define the labeling noise as the probability that an
image is mislabeled. In this experiment, training sets with
different levels of labeling noise were generated as follows.
We first randomly picked d% of positive images and d% of
negative images from a training set. Then, we modified the
labels of the selected images by negating their labels, i.e.,
positive (negative) images were labeled as negative (posi-
tive) images. Finally, we put these images with new labels
back to the training set. The new training set has d% of
images with negated labels (or “noisy” labels).

We compared the classification accuracy of MILES with
that of DD-SVM for d ¼ 0 to 30 (with step size 2) based on
200 images from Category 2 (Historical buildings) and
Category 7 (Horses). The reason of selecting these two
categories is that both DD-SVM and MILES produce almost
perfect classification accuracies at d ¼ 0, which makes them
a good data set for comparing sensitivities at different levels

of labeling noise. The training and test sets have equal size.
The average classification accuracy (over five randomly
generated test sets) and the corresponding 95 percent
confidence interval are presented in Fig. 4. The average
accuracy of DD-SVM drops quickly below 75 percent when
d > 20; therefore, only the data associated with d 	 20 are
included in Fig. 4.

Fig. 4 shows that MILES and DD-SVM have similar
classification accuracy when there is no labeling noise. As
the noise level increases, the average classification accuracy of
DD-SVM decreases rapidly, whereas the performance of
MILES remains almost the same when d varies from 0 to 18.
The lower bound of the 95 percent confidence interval for
MILES is well above 90 percent even when 24 percent of
training images have their labels negated. But for DD-SVM,
the lower bound of the 95 percent confidence interval stays
above 90 percent when the mislabeled images is less than
10 percent. This demonstrates the robustness of MILES
against labeling noise. In contrast, the diverse density
function in DD-SVM is very sensitive to instances in negative
bags [16]. The diverse density value at a point is exponentially
reduced if there is a single instance from a negative bag close
to the point. Consequently, the local maximizers of the
DD function are sensitive to labeling noise. MILES abandons
the process of maximizing the DD function. The labeling
noise can, in essence, be viewed as some “defective features”
defined by the instances in the mislabeled bags. Because of the
appropriate regularization in 1-norm SVM, the feature
selection process tends to exclude those defective features.
As a result, MILES is less sensitive to labeling noise.

5.3 Object Class Recognition

We carried out experiments on the Caltech data set used by
Fergus et al. [21] and others [42], [5]. The goal is to learn and
recognize object class models from unsegmented images.
Each image is represented as a collection of “salient regions.”
Objects are modeled as flexible constellations of the regions.
The labels of the training images are given, i.e., it is known
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TABLE 4
Comparing the Image Categorization Accuracy Obtained

Using MILES with Those of Other Methods

The numbers listed are the average classification accuracies (in
percent) over five random test sets and the corresponding 95 percent
confidence intervals. The 1,000-image data set contains images from
Category 0 to Category 9. The 2,000-image data set contains images
from all 20 categories. Training and test sets are of equal size.

Fig. 4. Comparing MILES with DD-SVM on the robustness to labeling
noise. The experiment is performed on 200 image in Category 2 and
Category 7 (training and test sets are of equal size) with different levels
of labeling noise on training images. The average classification accuracy
and the corresponding 95 percent confidence intervals are computed
over five randomly generated test sets.



whether or not a training image contains a certain object from
a particular class. However, the labels of the salient regions in
each training image are unknown, so it is not clear which
salient regions correspond to the object, and which are not.
This learning situation can be viewed as a multiple-instance
problem. We compared MILES with the Fergus method [21]
as well as the approaches described in [5], [42].

5.3.1 Experimental Setup

The image data set was downloaded from the Website of
Robotics Research Group at the University of Oxford.5 It
contains the following four object classes and background
images: Airplanes (800 images), Cars (800 images), Faces
(435 images), Motorbikes (800 images), and Background
(900 general background and 1,370 road background).

We followed the descriptions in [21] for feature extraction.
A brief summary of the process is given below. All images are
converted to gray-scale. Salient regions are found using the
method introduced by Kadir and Brady [26] , which detects
regions that are salient over both location and scale.6 In our
experiments, the scale varies between 5 and 50. Fig. 5 shows
some images randomly selected from five classes along with
the detected salient regions. Each salient region is cropped
from the image and rescaled to an image patch of size
11� 11 pixels so it corresponds to a 121-dimensional feature
vector. Principal component analysis (PCA) is applied to all
image patches for dimensionality reduction. Each patch is
then represented by a vector of the coordinates within the first
15 principal components. The scale (radius of the salient

region) and location of the salient region are also included.
This leads to a total of 18 features for each image patch.

Images within each object class were partitioned in half
to form a training set and a test set of equal size. Our
partition is identical to that used in [21]. The background
images were also divided equally into training and test sets.
The parameter � was chosen to be 0.5. The other two
parameters �2 and � were selected according to a twofold
cross-validation on the training set. We found that � ¼ 0:5
and �2 ¼ 105 gave the minimum twofold cross-validation
error for airplanes, faces, and motorbikes, while � ¼ 0:5 and
�2¼ 2� 105 worked best for cars.

5.3.2 Recognition Results

The recognition decision is binary, i.e., object present versus
object absent. To be consistent with the experimental setting in
[21], [42], [5], images in the three object categories (Airplanes,
Faces, and Motorbikes) were tested against the general
background images, while the Cars images were tested
against the road background. The performance is measured
by the equal-error-rates point on the receiver-operating
characteristic (ROC) curve, i.e., the point where the true
positive rate is equal to the true negative rate. For example, a
true positive rate of 90 percent at an equal-error-rates point
means that 90 percent of the positive images (object present)
are correctly classified, and 90 percent of the negative images
(background images) are also correctly classified. The error
rate is therefore 10 percent. The ROC curve of MILES is
obtained by varying the b� parameter in (10).

The comparison results are summarized in Table 5. The
boosting technique proposed by Bar-Hillel et al. [5] can take
two different methods of selecting weak learners, hence, we
included in Table 5 the best results for each category.
MILES gives the best performance on three object classes:
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5. These data sets are available at http://www.robots.ox.ac.uk/~vgg/
data.html/.

6. We used the salient region detector implemented by Timor Kadir. We
used Version 1.5 in the experiments. The software is available at http://
www.robots.ox.ac.uk/~timork/salscale.html/.

Fig. 5. Images randomly selected from five classes: Airplanes (first column), Cars (second column), Faces (third column), Motorbikes (fourth

column), and Background images (fifth column). Each circle in an image represents a salient region.



The error rates of MILES over airplanes, faces, and
motorbikes are around 20.4, 13.9, and 48 percent, respec-
tively, of those of the second best (the Fergus method on
Airplanes and Faces, the Bar-Hillel method on Motorbikes).
The method proposed by Bar-Hillel et al. [5] gave the best
results on Cars category. The overall recognition perfor-
mance of MILES appears to be very competitive.

5.3.3 Selected Features and Instance Classification

Since the MILES classifier is determined entirely by the select
features, these features describe the properties that are
common to objects in the same class and separate objects

from background clutters. According to (7), each selected
feature is defined by a unique instance in the training bags.
Next, we show some instances (or image patches) associated
with the selected features. We divided the selected features
into positive features and negative features according to the
sign of their weights (w�ks). In the experiments for all four
object classes, it is observed that every positive feature is
defined by an image patch from a positive image (i.e.,
containing a certain object) and every negative feature is
defined by an image patch from a background image. It is
interesting that MILES succeeded in doing this without
explicit constraint. On the other hand, this also suggests that
these data sets may contain much more information than is
typically assumed in the context of MIL [48]. Unless this issue
can be fully investigated, the above object class recognition
results should be interpreted cautiously.

Fig. 6 shows 32 image patches related to positive features
for each object class. Within each class, the image patches are
arranged (from left to right, top to bottom) in descending
order of the magnitude of the weight coefficients, which
indicates the degree of importance for the selected features.
Even though all image patches related to positive features
were selected from positive images, some patches were not
taken from a region corresponding to the object. We call these
features false positive features. An image patch for a false
positive feature is displayed with a bounding box in Fig. 6. We
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TABLE 5
Comparing the Object Class Recognition Performance

Obtained Using MILES with that of Other Methods

The numbers listed are the true positive rates (in percent) at the
equal-error-rates point on the ROC curve
(i.e., true positive rate ¼ true negative rate).

Fig. 6. Image patches corresponding to the selected positive features (i.e., features with positive weights). Each image patch defines a positive
feature. The features defined by the patches enclosed by a bounding box are false positive features because these patches are not taken from the
region associated with the targeted object. Only 32 patches are shown for each class. The four numbers below each block of image patches are the
number of features before feature selection, the number of negative features, the number of positive features, and the number of false positive
features. (a) Patches automatically selected from the images of airplanes (6,821, 97, 96, 16). (b) Patches automatically selected from the images of
cars (10,041, 98, 97, 90. (c) Patches automatically selected from the images of faces (6,997, 27, 42, 14). (d) Patches automatically selected from the
images of motorbikes (9995, 90, 101, 3).



also included in the figure the number of features before
feature selection (i.e., the number of instances in all training
bags), the number of negative features, the number of positive
features, and the number of false positive features. As
indicated by these numbers, the solution of MILES is very
sparse. On average, more than 98 percent of the weights are
zero. The results also seem to suggest that the feature
selection process of MILES can, to some extent, capture the
characteristics of an object class.

Next, we tested the instance classification algorithm
proposed in Section 3.2. Specifically, if an image is classified
as containing a certain object, the contribution of each salient

region within the image is evaluated using (11). A salient

region is viewed as part of the object if its contribution is

greater than � ¼ � b�

jUj . Such salient regions are named positive

regions. Fig. 7 shows some randomly selected test images

from the four object classes. For each block of images, images

in the first row show all the detected salient regions, and the

corresponding images in the second row show only the

regions that are identified by MILES as parts of the object. The

results suggest that MILES performs well on instance

classification. The selected positive regions may provide

generative clues in identifying the location of the object.
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Fig. 7. Sample test images that are classified as containing a targeted object. For each block of images, images in the first row show all the detected
salient regions enclosed by circles, and the corresponding images in the second row show only the regions that are identified by MILES as parts of
the object. (a) Airplanes, (b) cars, (c) faces, and (d) motorbikes.



5.4 Computation Time

Compared with the methods based on the diverse density
framework (DD-SVM [16]) and the Fergus method, MILES is
significantly more efficient in terms of computational
complexity. We summarized in Table 6 the training time
needed by MILES, DD-SVM, and the Fergus method on
different data sets. The training of MILES, DD-SVM, and the
Fergus method are performed on a 2.2 GHz PC, a 700 MHz
PC, and a 2 GHz PC [21], respectively. The time on MUSK1
and MUSK2 data sets is based on the total training time of
tenfold cross-validation (the parameters were selected from
twofold cross-validation with 51 values for � and 17 values
for �2). The training time on the COREL data set is measured
on a training set of 500 images (the parameters were selected
from twofold cross-validation with 11 values for � and
11 values for �2). The longest training time among the four
object classes of the Caltech data set is shown in Table 6 (the
parameters were chosen from twofold cross-validation with
six values for � and five values for �2). Overall, the learning
process of MILES is more than one order of magnitude faster
than that of the other two methods.

6 CONCLUSIONS AND FUTURE WORK

We have proposed a learning algorithm, MILES, which
transforms a MIL problem to a supervised learning problem.
A bag is embedded in a feature space defined by the instances
in all the training bags where the coordinates of a bag
represent its similarities to various instances. A feature
selection technique using 1-norm SVM is applied to identify
discriminative features (or instances) and construct bag
classifiers at the same time. We tested MILES over the
benchmark data sets taken from applications of drug activity
prediction, image categorization, and object class recognition.
In comparison with other methods, MILES demonstrates
competitive classification accuracy on all three data sets. In
addition, it is on average more than one order of magnitude
faster in terms of learning speed than the Fergus method and
a method based on the diverse density framework [16].
Moreover, it demonstrates good performance in instance
classification and high robustness to the labeling noise.

MILES has several limitations:

. The performance of MILES depends on whether there
are “useful” features among those defined by the
instances in the training bags. Constraining the
features to only those derived from the training bags
reduces the search space, but may also hamper the
performance on small data sets where it is possible
that none of the instances is close to a “target point.”

This may explain the observation that MILES per-
forms better on theleave-one-out test than on tenfold
cross-validation for the MUSK1 and MUSK2 data sets.

. In some applications, for example 3D object recogni-
tion [45], geometric constraints on the image patches
are extremely useful in reducing the search space
and improving the recognition accuracy. However,
MILES is not designed to take advantage of this type
of prior knowledge. The instance-based feature
mapping cannot easily model the spatial relation-
ships among the instances.

. The feature vectors generated by the mapping (7) are
not sparse. Therefore, the LP requires the storage of a
data matrix of size ð‘þ þ ‘�Þ � n, where ‘þ þ ‘� is the
number of training bags, and n is the number of
instances in all the training bags. For some applica-
tions, n can be several orders of magnitude greater
than ‘þ þ ‘�. Therefore, the storage requirement can
be prohibitive. The needed storage space could be
significantly reduced by an instance similarity mea-
sure that generates sparse features.

Continuations of this work could take several directions.

. The instance classification method can be improved.
The current decision rule, which is based on a
threshold � b�

jUj , may identify many false positive
instances, especially when the number of instances
in a bag is large. The false positive rate may be
reduced by optimizing the threshold.

. The mapping used in MILES can be viewed as
feature aggregation for bags, i.e., take the maximum
of each feature across instance in a bag. In this sense,
MILES is closely related to the work by Gärtner et al.
[22], in which several different aggregation operators
were proposed to build a bag-level representation
and, subsequently, a bag kernel. Therefore, it will be
interesting to test different aggregation operators
within the MILES framework.

. In some applications, the training data are given in
a one-class setting. For example, the domain-based
protein interaction inference problem typically only
has positive training samples, namely, pairs of
proteins that interact [62]. The interaction of two
proteins is determined by the interaction of their
domains. Therefore, if we view a pair of proteins as
a bag and the domain-domain pairs as the instances
in the bag, we have a multiple-instance representa-
tion. Multiple-instance learning with one-class train-
ing data is an interesting direction that we would
like to pursue.
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TABLE 6
Comparing the Training Time (in Minutes) of MILES with that of the Fergus Method and DD-SVM

The numbers shown are the training time when the parameters are selected þ the time needed in selecting the parameters.



MILES can be integrated into a target tracking system for
object detection. Evaluation of different feature selection
techniques and investigation of the connection between the
current approach and generative probabilistic methods are
also interesting.
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