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Abstract. We propose a family of multi-task learning algorithms for
collaborative computer aided diagnosis which aims to diagnose multiple
clinically-related abnormal structures from medical images. Our formula-
tions eliminate features irrelevant to all tasks, and identify discriminative
features for each of the tasks. A probabilistic model is derived to justify
the proposed learning formulations. By equivalence proof, some existing
regularization-based methods can also be interpreted by our probabilis-
tic model as imposing a Wishart hyperprior. Convergence analysis high-
lights the conditions under which the formulations achieve convexity and
global convergence. Two real-world medical problems: lung cancer prog-
nosis and heart wall motion analysis, are used to validate the proposed
algorithms.

1 Introduction

Physicians routinely use computer aided diagnosis (CAD) systems in clinical
practice [1]. It is well accepted that CAD systems decrease detection and recog-
nition errors when used as a second reader [2]. Typically, the goal of a CAD
system is to detect potentially abnormal structures in medical images. How-
ever, most CAD systems focus on the diagnosis of a single isolated abnormality
using images taken only for the specific disease, which neglects a fundamental
aspect of physicians diagnostic workflow where they examine not only primary
abnormalities but also symptoms of related diseases.

For instance, an automated lung cancer CAD system can be built to separately
identify solid nodules and ground glass opacities (GGOs). (Patients can have
both structures, or GGOs can later become calcified GGOs which become solid
or partly-solid nodules.) Radiologic classification of small adenocarcinoma of
lung by means of thoracic thin-section CT discriminates between solid nodules
and GGOs. Fig. 1 shows two CT slices with a nodule and a GGO respectively.
A solid nodule is defined as an area of increased opacification more than 5mm in
diameter, which completely obscures underlying vascular markings. A ground-
glass opacity (GGO) is defined as an area of a slight homogeneous increase
in density, which does not obscure underlying vascular markings [3]. Detecting
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Fig. 1. Lung CT images: left, solid nodule; right, ground glass opacity (GGO)

nodules and detecting GGOs are two dependent tasks with their own respective
characteristics, and is thus more sensible to be tackled jointly.

Another example is the wall motion analysis of the left ventricle which is used
to diagnose ischemia diseases. The left ventricle wall is medically segmented into
16 segments. Fig. 2 shows an ultrasound image of left ventricle in the apical four
chamber (A4C) view and the six segments seen from this view. The task is to
predict the wall motion abnormality of each segment by extracting features from
cardiac ultrasound images and classifying each segment as being normal versus
abnormal. Left ventricle segments are physically connected, and if any segment
has abnormalities, the neighboring segments are affected, which makes jointly
learning the classifiers both necessary and beneficial.

We introduce a concept – “collaborative” computer aided diagnosis (CCAD)
– that aims to improve the diagnosis of a single abnormality by fusing informa-
tion, knowledge or data from various related sources, such as detecting nodules
not only by itself but also by learning from multiple related abnormal structures
simultaneously. In the machine learning field, the collaborative learning problem
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Fig. 2. Ultrasound image of heart: left, ultrasound image of A4C view; right, segments
of left ventricle seen from A4C view
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has been cast as multi-task learning (MTL), collaborative filtering or collabo-
rative prediction. Multi-task learning is a learning methodology that estimates
models for several tasks in a joint manner. Although almost all existing multi-
task learning methods assume some relatedness among tasks, the definition of
relatedness varies [4,5,6]. From the hierarchical Bayesian viewpoint [7], multi-
task learning essentially seeks to learn a good prior over all tasks to capture task
dependencies.

We model the across-task relatedness as sharing a common feature or kernel
representation. Dimension reduction or sparse kernel representation is essential
for CAD applications. Previous work on selecting features for multiple related
tasks include the work in [8] that is based on maximum entropy discrimination,
and the regularization-based methods [9,10] by applying a joint regularization of
the model parameters. We derive a family of effective approaches, which gener-
alizes our early multi-task learning study [12], by directly maximizing the joint
a posterior distribution across tasks. By imposing a hyperprior that corresponds
to a trace norm constraint [11] on model parameter variance, we are able to
eliminate features irrelevant to all tasks as well as select discriminative features
for each individual task.

2 MTL Algorithms

Assume that we have T tasks in total, for each task t, we have sample set
(Xt ∈ R�t×d,yt ∈ R�t). The matrix Xt is the feature matrix or kernel matrix
where the i-th row corresponds to the i-th example xt

i of task t, and each column
represents a feature or a kernel basis, and yt denotes the label vector where the
i-th component is yt

i . We consider functions of the form x�α which is linear in
terms of the model parameter α. We focus on models where x is in the original
feature space but many discussions in this article can be extended to kernel
spaces.

To learn the parameter vector αt, single task learning methods minimize a
regularized risk L(αt,Xt,yt) + λP (αt) for an optimal αt where P is a regular-
ization operator, such as a 2-norm penalty on αt, i.e.,

∑d
j=1(αtj)2, or a 1-norm

penalty,
∑d

j=1 |αtj |, L defines the loss term, and λ balances between L and P .
For example, the logistic regression loss

L(αt,Xt,yt) =
�t∑

i=1

log(1 + exp(−
d∑

j=1

αtjx
t
ijy

t
i)) (1)

and the least squares loss

L(αt,Xt,yt) =
�t∑

i=1

(
d∑

j=1

αtjx
t
ij − yt

i)
2 (2)

are both strictly convex functions in terms of αt.
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A family of joint learning algorithms can be derived by rewriting αt = Cβt

where C is a diagonal matrix with diagonal vector equal to c ≥ 0, and we solve
the following problem over all tasks:

min
βt,t=1,··· ,T,c≥0

T∑

t=1
(L(Cβt,Xt,yt) + P1(βt))

subject to P2(c) ≤ γ,
(3)

where P1 and P2 are any suitable regularization operators. For each task t,
solving problem (3) constructs a function f(x) = x�αt = x�Cβt =

∑
j xjcjβtj

where βt is task-specific while the same c is used across different tasks. We call
c an indicator vector indicating if an according feature is used in the model.
Typically c comprises entries that are equal to 0 or 1, which leads to difficult
combinatorial optimization problems, and thus has been relaxed to non-negative
real values in Problem (3). If cj = 0, the j-th variable is not used in any model
for all tasks regardless of the value of a specific β. Otherwise if cj > 0, the j-th
variable appears in all models but an appropriate β vector can rule out this
feature for a particular task. In other words, c is used to eliminate any irrelevant
features, and βt selects the best suitable features for each individual task.

Many regularization terms can be considered for the choices of P1 and P2.
For example, if the 2-norm regularization is employed for both P1 and P2, the
problem (3) becomes

min
βt,t=1,··· ,T,c≥0

T∑

t=1

(
L(Cβt,Xt,yt) +

∑d
j=1 β2

tj

)

subject to
∑d

j=1 c2
j ≤ γ,

(4)

where γ > 0 is a tuning parameter. Empirical results included in [12] demonstrate
the effectiveness of the formulation (3) with P1(·) =

∑d
j=1 β2

tj and P2(·) =
∑d

j=1 |cj |.
To effectively optimize (3), we design an alternating optimization algorithm,

which is, in spirit, similar to the Expectation-Maximization approach. At itera-
tion s, the “E” step estimates the optimal cs, which serves the common prior,
based on βs−1. The “M” step estimates a new βs

t for each t by maximizing
the posterior based on cs. The algorithm does the following steps at the s-th
iteration:

Algorithm A(Cs−1, βs−1
t , t = 1, · · · , T )

– Fix C = Cs−1 (initially, to I), convert X̃t ← XtC, solve (5) for βs
t ,

∀ t = 1, · · · , T, minβt
L(βt, X̃t,yt) + P1(βt). (5)

– Fix βt = βs
t , convert X̂t ← XtBt where Bt is a diagonal matrix with

diagonal elements equal to βs
t , solve problem (6) for cs,

min
c≥0

L(c, X̂t,yt), subject to P2(c) ≤ γ. (6)
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3 A Statistical Justification

Let p(yt|Xt,wt) specify the likelihood for task t, with a noise model which is
independent of other tasks. Here wt is the model parameter to be determined.
In a hierarchical Bayesian framework, we assume all the function weights wt are
i.i.d. sampled from a common prior p(·), which accounts for the dependencies
between different tasks. Typically a zero mean Gaussian prior with covariance
Σ is assigned to the weights wt, i.e., wt ∼ N(0,Σ). Then the a posteriori
distribution of all function coefficients {wt} can be calculated via Bayes rule
as, p(W|X,y,Σ) ∝

∏
t p(yt|Xt,wt)p(wt|Σ) where W is a matrix containing all

weight vectors wt as rows, and X, y contain data from all tasks.
We are interested in learning the shared covariance matrix Σ rather than

fixing it. A Bayesian treatment would be to assign a hyperprior to Σ and learn
W and Σ jointly. Since Σ is symmetric and positive definite, one choice of
the prior is p(Σ) ∝ |Σ|T/2 exp

(
− 1

2 tr(Σ)
)
, with tr(·) the matrix trace. This is

essentially a Wishart distribution with degrees of freedom d + T + 1 and scale
matrix I. Now the joint a posteriori distribution of (W,Σ) is

p(W,Σ|X,y) ∝ p(Σ)
∏

t

p(yt|Xt,wt)p(wt|Σ). (7)

The maximum a posteriori (MAP) estimate is to find a point estimate that max-
imizes the posterior (7). This is equivalent to solving the following optimization
problem minwt,Σ

∑T
t=1

(
L(wt,Xt,yt) + w�

t Σ−1wt

)
+ tr(Σ) by taking the

negation of the logarithm of (7) and removing the normalization constant. Here
the loss function for each task t is L(wt,Xt,yt) ∝ − log p(yt|Xt,wt). This can
also be equivalently written as

min
wt,t=1,··· ,T,Σ

T∑

t=1
L(wt,Xt,yt) + w�

t Σ−1wt,

subject to tr(Σ) ≤ γ
(8)

with an appropriately chosen γ > 0. For each of the task t, this trace condition
essentially requires that the expected variance of each weight component wj

t of
wt, ∀t, is proportional to γ. With a small γ, some components will become small
to achieve sparse estimates of wt. Thus this formulation leads to a jointly sparse
structure of the weight matrix W.

If we decompose the matrix Σ to its eigen-form Σ = UΛU� where U is an
orthonormal matrix and the diagonal matrix Λ contains eigen-values σj ≥ 0, the
problem (8) becomes an equivalent form with αt = U�wt:

min
αt,t=1,··· ,T,U,σ≥0

T∑

t=1

(

L(αt,XtU,yt) +
d∑

j=1

1
σj

α2
tj

)

,

subject to
d∑

j=1
σj ≤ γ.

(9)
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Problem (9) implies that the original input x has been transformed to U�x and
then a linear function is constructed in the transformed space where features are
independent.

Many image features in CAD applications are computationally expensive, so
one of the major goals is to reduce the number of image features in the models.
Since the resulting orthonormal U may not be sparse, we assume U = I to
enforce the sparsity on the original image features instead of sparse represen-
tations in the transformed space. By showing equivalence between (4) and (9),
the probabilistic model in this section provides a statistical justification for our
algorithms.

Theorem 1. For any optimal solution of Problem (9) where U = I, there is a
corresponding optimal solution to Problem (4), and vice versa.

The proof can be obtained by change of variables as follows: βtj = αtj/
√

σj ,
∀t = 1, . . . , T , cj = √

σj , j = 1, . . . , d. Correspondingly, αtj = cjβtj and
∑

j c2
j =∑

j σj ≤ γ.

4 Connection to Existing Methods

Feature selection for multi-task learning using a joint regularization has been
recently proposed in [9] where a so-called �1/�2 norm is applied to the weight
matrix A formed by all αt as rows. A more recent work [10] dedicated to multi-

task feature learning has defined a new norm as ‖A‖2,1 =
∑d

j=1

√∑T
t=1 α2

tj ,
which is the same as the �1/�2 norm in [9]. Assuming U = I, both work essentially
solves the following optimization problem

min
αt,t=1,··· ,T

T∑

t=1
L(αt,Xt,yt),

subject to
d∑

j=1

√
T∑

t=1
α2

tj ≤ κ,

(10)

or an equivalent problem as follows

min
αt,t=1,··· ,T

T∑

t=1
L(αt,Xt,yt) + λ

(
d∑

j=1

√∑T
t=1 α2

tj

)2

, (11)

where κ and λ are pre-specified parameters, and these two problems are equiv-
alent for properly chosen κ and λ. The problem in [9] does not use the squared
regularized term as in problem (10) whereas the formulation in [10] uses the
square of ‖A‖2,1 as the second term in problem (11).

As shown in [9,10], these regularization-based algorithms advance the multi-
task learning research, but there has been lack of investigation if a probabilistic
interpretation exists for these methods. The following theorem characterizes the
connection between our formulation and (11). Hence, our probabilistic model is
also feasible to justify these approaches that these methods assume a Wishart
prior on the common covariance Σ of function weights wt, ∀t.
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Theorem 2. The Karush-Kuhn-Tucker (KKT) conditions of Problem (9) with
U = I are identical to the KKT conditions of Problem (11) for any convex and
continuously differentiable loss function L(α,X,y).

Proof. The Lagrangian of the problem (9) is:

L(αt, σ, a,b) =
∑T

t=1 L(αt,Xt,yt) +
∑T

t=1
∑d

j=1
α2

tj

σj

+a(
∑d

j=1 σj − γ) − bTσ,

where a and b are Lagrangian multipliers, and a ≥ 0 is a scalar and b ≥ 0 is a
vector.

Problem (9) minimizes a convex objective over a convex feasible region, and
thus is a convex program. Then the KKT necessary and sufficient conditions are
as follows:

∂L
∂σj

= −
∑T

t=1
α2

tj

σ2
j

+ a − bj = 0, (12)

∂L
∂αtj

= ∂L(αt,Xt,yt)
∂αtj

+ 2αtj

σj
= 0, (13)

∑d
j=1 σj ≤ γ, a ≥ 0, b ≥ 0, σ ≥ 0 (14)

a(
∑d

j=1 σj − γ) = 0 (15)
bjσj = 0, j = 1, . . . , d (16)

Now we discuss the various cases in terms of the Lagrange multipliers a and bj .

(1) If bj > 0, by the complementary condition (16), σj = 0. It implies α·j = 0
which denotes that for a specific number j, αtj = 0, ∀t = (1, . . . , T ).
(2) If bj = 0 (implying σj > 0) and a = 0, by KKT condition (12),

∑T
t=1 α2

tj = 0.
Hence, α·j = 0.
(3) If bj = 0 and a > 0 (implying

∑
j σj = γ by (15)), then a = 1

σ2
j

∑T
t=1 α2

tj ,

and further we have σj = γ
√∑T

t=1 α2
tj/

∑d
j=1

√∑T
t=1 α2

tj . Substituting σj into
KKT condition (13) yields the optimality condition, which can be summarized
as follows:

∀(t = 1, . . . , T, j = 1, . . . , d),⎧
⎪⎨

⎪⎩

∂L(αt,Xt,yt)
∂αtj

+ 2
γ

(
d∑

j=1

√
T∑

t=1
α2

tj

)

(
T∑

t=1
α2

tj)
− 1

2 αtj = 0

or α·j = 0,

Now let λ = 1/γ in Problem (11). Due to the convexity of Problem (11), its
KKT conditions are necessary and sufficient and can be shown as

∀(t = 1, . . . , T, j = 1, . . . , d),⎧
⎪⎨

⎪⎩

∂l(αt,Xt,yt)
∂αtj

+ 2
γ

(
d∑

j=1

√
T∑

t=1
α2

tj

)

(
T∑

t=1
α2

tj)
− 1

2 αtj = 0

or α·j = 0, and α·j = 0 ∈ ∂g(α·j),
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where we use g(α·j) to denote the objective function in (11) as a function of
α·j , and ∂f to denote the subgradient of function g. The use of subgradient
is necessary since the objective g becomes nondifferentiable as its argument
goes to zero. The equivalence is established by comparing the two sets of KKT
conditions.

Theorem 2 establishes an equivalence between the learning formulations (10),
(11) and (9) (more precisely (4)). Hence our probabilistic model in Section 3
can interpret all these formulations as assuming a common covariance matrix
Σ across wt, ∀t and employing a Wishart hyperprior on Σ. Furthermore, as a
byproduct of Theorem 2, a closed-form solution for c can be further derived to
simplify calculation in Algorithm A specifically for the formulation (4).

Theorem 3. Given β̂t, t = 1, · · · , T, that are optimal solutions of Problem (4),

cj =

√
√
√
√ γ

∑T
t=1 β̂2

tj
∑d

j=1
∑T

t=1 β̂2
tj

, j = 1, · · · , d

are optimal to Problem (4).

Proof. The proof can be obtained by re-examining Theorem 1 from which we
have αtj = √

σjβtj and cj = √
σj , and Theorem 2 from which we have σj =

γ
√∑T

t=1 α2
tj/(

∑d
j=1

√∑T
t=1 α2

tj). Substituting αtj into the formula for σj yields

σj = γ
∑T

t=1 β2
tj/(

∑d
j=1

∑T
t=1 β2

tj). Taking the square root of σj yields the for-
mula for cj .

5 Convergence Analysis

Although alternating optimization has been used to develop many efficient al-
gorithms, the convergence proof does not necessarily exist. Convergence analy-
sis usually encloses local convergence and global convergence properties. Local
convergence implies that the algorithm converges to a solution (β̂t, ĉ) if being
initialized from a close neighborhood of (β̂t, ĉ). A global convergence proves that
the algorithm converges when initialized at any arbitrary points in the feasible
region S.

The local convergence property of Algorithm A is analyzed for
Formulation (4). The key point is the requirement of the local strict convex-
ity of the loss function L with respect to (βt, c).

Theorem 4. Let (β̂t, ĉ) be a local minimizer of Problem (4). If ∃ a neighbor-
hood N of (β̂t, ĉ), such that the loss function L has continuous second-order
derivatives and is strictly convex in N , then ∃ N̂ ((β̂t, ĉ)) for any initial point
in N̂ ((β̂t, ĉ)), Algorithm A converges q-linearly to (β̂t, ĉ).
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Proof. Solving Problem (4) is equivalent to minimizing (5) with a properly cho-
sen γ̄ > 0

minβt,t=1,··· ,T,c≥0 g(β1, · · · , βT , c) =
∑T

t=1 L(Cβt,Xt,yt)
+

∑T
t=1

∑d
j=1 β2

tj + γ̄
∑d

j=1 c2
j

The objective function g has continuous second-order derivatives with respect to
βt and c and is strict convex in N due to the local property of the loss function L.
Then the local convergence result developed in [13] on unconstrained problems
is applied to show our theorem.

Global convergence analysis is usually more difficult and requires stronger con-
ditions. We use the results developed in the mathematical programming field
[13,14] to obtain a global convergence analysis which requires that both sub-
problems, (5) and (6), have an unique optimal solution. This condition highly
relies on the property of loss functions. If strictly convex loss functions are em-
ployed, such as the logistic regression loss or least squares loss, the loss term
L(Cβt,Xt,yt) is bi-convex with respect to (βt, c), in other words, is strictly
convex with respect to βt if c is fixed, and vice versa. The strict bi-convexity
guarantees that sub-problems have an unique solution.

Let us denote the feasible set of the problem (4) as S. In Algorithm A, S =
S1 × S2 where S1 is the feasible region for c, S1 = {c | ‖c‖2 ≤ γ}, and S2 is the
feasible region for βt, t = 1, · · · , T . Problem (4) has a 2-norm regularization on
β, so each βt has to remain in the set S2 = {(β1, · · · , βT )|

∑T
t=1

∑d
j=1 β2

tj ≤ γ̃}
for a γ̃ > 0.

Theorem 5. Let Ω be the set of fixed points of A as

{(c, β1, · · · , βT ) ∈ S | (c, β1, · · · , βT ) = A(c, β1, · · · , βT )}.

If the loss function L is strictly convex in terms of βt, ∀ t, for fixed c and is
also strictly convex in terms of c for fixed β, and the regularizers P1 and P2 are
strictly convex respectively in terms of βt and c, then for any initial point in S,
Algorithm A

(i) either converges to Ω;
(ii) or the limit of every convergence subsequence is in Ω.

Proof. To achieve the results (i) or (ii), the theorem shown in [13,14] requires
the following conditions: (a) each sub-problem in A has an unique optimal
solution; (b) S = S1 × S2, where each Si is a compact subset in a real space of
proper dimension. We thus validate the satisfaction of these conditions.
Since the objective function of the unconstrained equivalent form (5) is strictly
convex in terms of one set of variables when fixing the other due to the strict
convexity of L, P1 and P2, (a) holds. Obviously, S1 = {c|P2(c) ≤ γ} is a closed
and bounded ball in a d-dimensional space, and S2 = {β|

∑
t P1(βt) ≤ γ̃} defines

a closed and bounded ball in a (d × T )-dimensional space. Thus both sets are
compact subsets of a real space.
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Some common loss functions satisfy the conditions in Theorem 5. For example,
in the logistic regression loss function (1) and the least squares loss function (2),
L(αt,Xt,yt) is strictly convex in terms of αt. Hence L(Cβt,Xt,yt) is strictly
convex in terms of c if all βt are fixed, and in terms of βt if c is fixed. For such
a loss function, the global convergence holds.

Particularly, Problem (4) is equivalent to Problem (9) which is a convex pro-
gram for any convex loss function, so any local optimal solution obtained by
Algorithm A is also a global minimizer of (4). In our experiments, we implement
Algorithm A with the logistic regression loss and the least squares loss with the
2-norm regularization for P1 and P2, and thus the algorithm globally converges.

6 Experiments

We validate the proposed collaborative learning approach by comparing it to
standard single-task learning (STL) approaches where multiple tasks are tackled
independently, and to two commonly-used multi-task learning (MTL) methods,
a regularization-based MTL method in [15] and a Bayesian MTL method based
on Gaussian processes (CGP) in [5]. Notice that Algorithm A with the 1-norm
penalty term for both P1 and P2 in Problem (3) has been implemented in our
early work [12] where a pooling method which trains a single model for all tasks
has also been compared. Readers can consult [12] for corresponding results.

6.1 Synthetic Data

We generated synthetic data to verify the behavior of the developed algorithms
regarding the selected features and the performance in comparison with single-
task learning (STL) logistic regression. The synthetic data was generated as
follows:

– generate x ∈ R10 with each component xi ∼ Uniform[−1, 1];
– set T = 3 and the coefficient vectors of the 3 tasks to

α1 = [1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
α2 = [0, 1, 1, 1, 0, 0, 0, 0, 0, 0],
α3 = [0, 0, 1, 1, 1, 0, 0, 0, 0, 0];

– y = sign(α�
t x) for every sample x of task t.

For each task, we generated training sets of sizes � = [20, 40, 60, 80], each
used in a different trial, 150 samples for tuning and 1000 samples for testing,
and repeated each trial 20 times. The misclassification rates averaged over the
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Fig. 3. Performance on synthetic data: error rates versus training sample sizes

3 tasks and 20 runs are shown in Fig. 3 for different training sample sizes,
respectively by our approach and STL. Fig. 3 obviously shows the superiority of
our approach. As expected, the difference of the two approaches becomes smaller
as the sample size of each task becomes larger.

We show bar plots of the averaged estimated coefficient vectors by our ap-
proach in Fig. 4-left and the STL logistic regression in Fig. 4-right. Our approach
successfully removed irrelevant features. For lucid presentation, each coefficient
vector was normalized by its norm, averaged over all trials, and shown on Fig. 4.
Although STL produced reasonable classifiers for each task, it could not delete
all irrelevant features using data available for each single task.

6.2 Lung Cancer Data

A prototype version of our lungCAD system [16] (not commercially available)
was applied on a proprietary anonymized patient data set collected from multiple
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Fig. 4. Performance on synthetic data: left, coefficient vectors by our MTL; right,
coefficient vectors by STL logistic regression
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hospitals. The nodule dataset consisted of 176 CT images that were randomly
partitioned into two groups by a third party agency for development and eval-
uation respectively: 90 volumes in training and 86 volumes in test. The GGO
dataset consisted of 60 CT images. Due to the limited size of GGO set, GGO
detection performance could not be measured reliably, so GGO cases were used
only for improving nodule detection performance. In total, 129 nodules and 53
GGOs were labeled by radiologists, and 81 nodules appeared in the training set
and 48 in the test set. The lungCAD system was independently applied to the
training, test nodule sets and the GGO set, generating totally 11056, 13985 and
10265 suspicious candidates in the respective sets. Among them, 131, 81 and 87
candidates were true detections associated with nodules or GGOs. A total of 86
numerical image features were calculated. The statistics of the lungCAD data
set is characterized in Table 1.

Table 1. Specifications of lungCAD data sets

Nodule train Nodule test GGO
No. patients 90 86 60

No. candidates 11056 13985 10265
No. cancer 81 48 53

No. positives 131 81 87
No. False Positives /vol 121 161 169

No. feature 86 86 86

The first set of experiments were conducted as follows. We randomly sampled
50% (45 volumes) of the nodule training cases and 50% (30 volumes) of the GGO
cases to train a classifier that was tested on 86 test nodule cases, and repeated
15 trials. In the first trial, we tuned the model parameter γ in Algorithm A
and the regularized parameters in [15] according to a 3-fold cross validation
performance within training, and we fixed them for other trials. Fig. 5 shows
the test ROC curves averaged over the 15 trials with error variance bars. Our
algorithm A produces a curve that dominates the ROC curves corresponding to
other approaches. It also had a relatively small model variance by referencing
the error bars. The regularized MTL and CGP were superior to STL learning,
inferior to our method, and the regularized MTL also presented a relatively large
error variance as shown by the error bars.

We conducted more complete performance comparisons using the AUC mea-
sure by randomly sampling p% of training nodule cases with a fixed amount of
GGO cases where p = 10, 25, 50, 75, 100, and 15 trials were performed for
each p. We averaged the AUC numbers over 15 trials for each value of p, and il-
lustrated them in Fig. 6 together with error bars. The resulting models achieved
better performance with less help from related tasks when more samples of the
nodule detection task were used.
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Fig. 5. On Lung Cancer Data: test ROC plots of models trained using 50% of nodule
and GGO training patient volumes

6.3 Heart Wall Motion Data

Cardiac wall motion data has a different structure from lung cancer data (in
lungCAD data, different patient data were provided for different tasks). Here we
collected 220 ultrasound images of patients hearts, and 432 image features were
extracted from the left ventricle of each heart to characterize the global motion
and segment-level wall motion of the LV. Hence each heart was represented by a
feature vector of 432 components. Overall 16 labels, one for each segment, were
provided to a single feature vector. Hence the same set of patients were provided
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Fig. 6. On Lung Cancer Data: the plot of averaged AUC versus training sample size
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Fig. 7. On Heart Data: the plot of test AUC versus task index

for the different 16 tasks. This is sometimes referred to as multi-label prediction
problems.

Although great efforts were made to collect a reasonable number of abnormal
studies, the normal versus abnormal segment-level distribution was extremely
unbalanced since most patients only have one or two abnormal segments. Many
of the segments had fewer than 3 abnormal cases. Only 8 segments (out of 16
segments), for which enough abnormal cases (25 cases on average) were present
in the 220 cases, were used in our experiments.

The 220 cases were randomly split 15 times into two sets of an equal size, one
for training and one for test. We tuned model parameters such as γ using a 2-fold
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Fig. 8. On Heart Data: comparison of the selected features by our MTL and STL
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cross validation within the training set. The average test AUC values for each of
the 8 tasks are depicted in Figure 7 which clearly shows the effectiveness of our
MTL approach. The regularized MTL and CGP were not originally proposed
for sparse estimation, which may result in poor performance on data where
dimension is much larger than the available sample size, such as the heart data.

The c vector learned by our approach was very sparse as shown in Fig. 8 which
shows only 21 features were used by all the 8 classifiers combined. Notice that
each classifier only chooses features from the features selected by c. Whereas,
STL logistic regression used much more features as the averaged weight vector
α in Fig. 8 was dense.

7 Conclusions

We have designed a series of approaches to learning multiple tasks jointly. Effi-
cient algorithms have been developed through alternating optimization to find
the optimal solutions of these approaches. Convergence analysis shows that the
algorithms globally converge for strictly convex loss functions and regularization
conditions. Our framework also provides a probabilistic interpretation for exist-
ing regularized multi-task learning methods. Although the proposed algorithms
are general enough to be applied to any multi-task setting, they are motivated
by the challenges of the real-world medical diagnostic problems. Computational
results of the proposed approach on medical diagnostic problems demonstrate
superiority to some early multi-task learning approaches. The proposed approach
has been deployed in our lungCAD system which has received clinical approval
from Food and Drug Administration. Possible extension of this work includes
the examination of general feature representation without the independence as-
sumption among features and the related algorithm design.
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