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Multiview Comodeling to Improve Subtyping and
Genetic Association of Complex Diseases

Jiangwen Sun, Jinbo Bi, and Henry R. Kranzler

Abstract—Genetic association analysis of complex diseases has
been limited by heterogeneity in their clinical manifestations and
genetic etiology. Research has made it possible to differentiate
homogeneous subtypes of the disease phenotype. Currently, the
most sophisticated subtyping methods perform unsupervised clus-
ter analysis using only clinical features of a disorder, resulting
in subtypes for which genetic association may be limited. In this
study, we seek to derive a novel multiview data analytic method
that integrates two views of the data: the clinical features and the
genetic markers of the same set of patients. Our method is based
on multiobjective programming that is capable of clinically cate-
gorizing a disease phenotype so as to discover genetically different
subtypes. We optimize two objectives jointly: 1) in cluster analysis,
the derived clusters should differ significantly in clinical features;
2) these clusters can be well separated using genetic markers by
constructed classifiers. Extensive computational experiments with
two substance-use disorders using two populations show that the
proposed algorithm is superior to existing subtyping methods.

Index Terms—Classification, cluster analysis, cotraining, genetic
association, multiview analysis, phenotypic subtyping.

I. INTRODUCTION

MANY disease traits are a collection of subtypes demon-
strating heterogeneity at the molecular and clinical syn-

drome levels [1]. Categorizing a disease phenotype clinically
has been hindered by the inconsistency of subtyping methods
and a lack of validation with objective metrics [2]. There is cur-
rently no empirically derived, statistically rigorous method to
identify and select optimal subtypes of a disease [3]. We propose
an approach aimed at finding homogeneous subtypes that can
be of use in clinical diagnosis and at the same time be of value
in gene finding efforts.

Multivariate cluster analysis has been the most sophisticated
method used in subtyping [4]–[7]. Three main steps have been
used in prior subtyping studies: 1) collecting both clinical and
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genetic data for a group of subjects, 2) identifying subgroups
by the application of cluster analysis with either k-means,
k-medoids, or hierarchical clustering or their combination to
clinical features [4]–[6], and 3) conducting linkage or associ-
ation analysis for the subtypes derived from the sample [7].
Because the creation of subgroups in the second step is inde-
pendent of the genetic analysis in the third step, the resultant
subtypes may be suboptimal and the association analysis may
fail.

In a subtyping study, an objective function may be used to
evaluate how strongly the subtypes derived from the grouping
are associated with a given set of genetic markers, or how well
the subtypes can be separated by the genetic markers. Mathe-
matically, given two sets of variables, clinical features Z and
genetic markers X from the same sample, the goal is to parti-
tion the sample into subgroups based on pairwise similarities
between subjects in Z so that the resultant subgroups y can
be classified by X . This problem is different from traditional
supervised or unsupervised machine learning problems where
labels of subjects are either given precisely or not given at all.
In our problem, the labels of subjects need to be derived from
the clinical features Z so they can be used to train a classifier
with the genetic data X .

In the machine learning literature, the most related work might
be the set of multiview data analysis methods, cotraining meth-
ods [8], and coclustering methods [9] where multiple groups
of input variables are collected for the same set of subjects.
When only a small portion of the data is labeled, cotraining
improves the classification accuracy by enforcing consistency
between the classification decisions of the unlabeled data deter-
mined by the models learned independently from each of the
views. Nevertheless, cotraining methods are not applicable to
the subtyping problem because there are no labeled data to start
with. Multiview clustering methods seek groupings of subjects
that are consistent across different views. These methods treat
the data from the two views equally as the input variables. In the
subtyping problem, however, the two views have to be treated
differently in that one is used to define the subtypes y and the
other is used to explain them. For instance, only a sparse set
of genetic risk markers are identified to be associated with a
subtype but the subtypes may be defined using many clinical
features.

The paper is organized as follows. Section II presents the pro-
posed subtyping methodology, based on which a multiobjective
program is derived in Section III together with an algorithm to
solve it. Computational results on the problems of subtyping
opioid dependence and cocaine dependence are examined in
Section IV and we conclude in Section V.
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II. PROPOSED METHODOLOGY

We propose a multiobjective optimization framework to solve
the subtyping problem. For a set of cluster labels y, each as-
signed to one subject, we construct a model as a function of a
subject’s genetic markers X to approximate the subject’s label.
The model M is built by minimizing a loss function �(y,X|Mθ )
where Mθ is a specific inference model, such as the model of
support vector machine (SVM), or logistic regression, and θ de-
notes the set of its parameters. Since the labels y of subjects are
not given beforehand, the labels themselves need to be derived.
In other words, we optimize the objective as follows:

min
y ,θ

�(y,X|Mθ ) + λR(Mθ ) (1)

for the best y and θ where R(Mθ ) defines the regularization
term that controls the complexity of the model M , and λ is a
tuning factor to balance between � and R. Note that not every
possible labeling y of subjects is a feasible solution of problem
(1). The search space of y is confined by the similarity measure
defined on the features Z.

Suppose that the classification of subjects y is obtained by
partitioning subjects based on a similarity measure that is pre-
specified on Z. The parameters used in the similarity measure
often need to be tuned, such as the parameter σ if a Gaussian
similarity exp(−‖Zi − Zj‖2/σ2) is used, where Zi and Zj are
the two vectors of clinical features for subjects i and j. Choosing
different values of σ or other relevant parameters will produce
different clusters of the subjects. In general, we expect that the
resultant clusters will be well differentiated from each other and
that subjects in the same cluster will be closer than those from
other clusters in the Z space. Many metrics have been derived in
the literature to measure the quality of clusters, such as the Dunn
validity index [10], Davies–Bouldin validity index (DBVI) [11],
and Silhouette validation [12]. If a metric ε(y|σ,Z) is employed
to measure the quality of clusters when using a specific value of
σ, the metric corresponds to another objective of the subtyping
problem. We hence optimize simultaneously two objectives as
follows:

min
y ,θ ,σ

{
Obj1 : ε(y|σ,Z)

Obj2 : �(y,X|Mθ ) + λR(Mθ ).
(2)

We assume that ε(y|σ,Z) is a metric to be minimized, or oth-
erwise it can be inverted or negated. The two objectives of
problem (2) may not be optimized at the same solution. Thus, it
formulates a multiobjective optimization problem.

Multiobjective programming (MOP) is a technique that was
developed to solve optimization problems with multiple con-
flicting objectives. Solving a multiobjective program requires
the search for Pareto-optimal solutions [13]. Traditional meth-
ods convert multiple objectives into a single objective using
certain schemes and user-specified parameters. Two simple and
widely used methods for such conversions are the weighted-
sum method and the constraint method [13]. The weighted sum
method transforms two objectives into a single objective by
multiplying each objective with a predefined weight and adding

them together as follows:

min c1Obj1 + c2Obj2 (3)

where the weights c1 and c2 are nonnegative and at least one
of them is not zero. If the MOP is not convex, the nonconvex
frontier of the Pareto-optimal set cannot be obtained by the
weighted-sum method. The constraint method reformulates the
MOP by keeping one of the objectives and restricting the rest of
the objectives within user-specified limits, such as,

min Obj2 , subject to Obj1 ≤ δ. (4)

Our MOP-based subtyping framework follows the constraint
method, and can be implemented using any proper cluster anal-
ysis algorithm to optimize Obj1 , and any suitable classification
algorithm to optimize Obj2 . In the following section, we will
instantiate this methodology by utilizing a spectral clustering
method [14] and the one-norm SVM [15] in the MOP.

III. MULTIOBJECTIVE OPTIMIZATION FORMULATION

A spectral clustering method [14] is employed to search for
the cluster assignments of subjects by varying the parameter σ in
its Gaussian similarity measure. The DBVI [11], measuring how
significantly the resultant clusters differ from each other, serves
as Obj1 . The one-norm SVM [15] is used to build a classifier, as
a function of the genetic variables X , that separates subjects in
different clusters. The loss function used in the one-norm SVM
serves as Obj2 . Notice that the framework (2) can be realized in
conjunction with other choices of clustering and classification
methods.

A. Clustering Algorithm

Spectral clustering is a method based on undirected similarity
graph G = (V,E) in which each node in V represents a data
point (a subject) and each edge in E is weighted by the similarity
between the two connected data points. Partitions of data points
represented in the similarity graph can be obtained by cutting
the graph into unconnected components with the minimum cost.
In a balanced cut, the sizes of these unconnected components
should be comparable. Two methods have been proposed to
achieve this kind of balanced cut, RatioCut [16] and Ncut [17],
that minimize the following objectives, respectively:

RatioCut(C1 , . . . , Ck ) :=
1
2

k∑
i=1

A(Ci, C̄i)
|Ci |

= Tr(HT LH)

Ncut(C1 , . . . , Ck ) :=
1
2

k∑
i=1

A(Ci, C̄i)
vol(Ci)

= Tr(TT D−1/2LD−1/2T ) (5)

where Ci is one of the identified components (clusters), |Ci |
and vol(Ci) denote the number of nodes and the sum of edge
weights in Ci , respectively, and C̄i consists of the nodes that are
not in Ci . The matrix A = {aij} is the adjacency matrix and
aij measures the similarity between the nodes i and j, D is a
diagonal matrix whose ith diagonal element dii =

∑
j :j �=i aij ,
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L is the graph Laplacian defined by L = D − A, Tr(·) means
the trace norm, and both H and T are matrices consisting of
indicator vectors as columns defined as follows:

H =

[
1√
|C1 |

11 , . . . ,
1√
|Ck |

1k

]

T = D1/2

[
1√

vol(C1)
11 , . . . ,

1√
vol(Ck )

1k

]
(6)

where 1i is an indicator vector whose entries equal 1 if the cor-
responding nodes are in Ci , or 0 otherwise. Finding the global
optimal solution to either of these two objectives is NP hard [18].
Their relaxed versions have been defined by allowing the indica-
tor vectors in H and T to take real values. It has been shown that
the optimal solutions to the relaxed problems of RatioCut and
Ncut are the matrices composed by the eigenvectors correspond-
ing to the first k smallest eigenvalues of L and D−1/2LD−1/2 ,
respectively [14].

In spectral clustering, the clusters are determined by the ad-
jacency matrix A which is further determined by a prechosen
similarity measure. Spectral clustering is sensitive to changes in
the similarity measure [14]. In our approach, we search for the
most suitable similarity measure, more precisely, the best value
of σ in the Gaussian similarity, to optimize Obj1 and Obj2 .

B. Objectives in Our Multiobjective Program

1) First Objective: Spectral clustering requires an adjacency
matrix A that encodes the pairwise similarities between subjects
and the desired number of clusters k as its inputs, and outputs
the clusters Ci of subjects, i = 1, . . . , k. In our approach, we
search for the best value of σ in the Gaussian similarity measure
to optimize the DBVI [11] that measures the quality of the
clusters. DBVI is a measure related to the ratio of within-cluster
distance to between-cluster distance. The lower value of DBVI
indicates better quality of the clusters. Hence, we minimize the
DBVI as follows using Ncut [17] for the best σ:

min
σ

DBVI =
1
k

k∑
i=1

max
i �=j

Dist(Ci) + Dist(Cj )
Dist(Ci, Cj )

(7)

where Dist(Ci) is the average distance from each data point
in Ci to the cluster center, and Dist(Ci, Cj ) is the distance
between the center of Ci and the center of Cj . These distances
are calculated in the Z dimension.

2) Second Objective: For each cluster Ci , without loss of
generality, we construct a classifier in the linear form of
f(X) = WT X + b to separate the subjects in Ci from the
remaining subjects. The model WT

i X + bi specific for clus-
ter Ci is obtained by minimizing the regularized empirical
error �(yi,X,Wi) + λR(Wi) where we use a binary vector
yi to indicate the cluster membership: yj

i = 1 if subject Xj

is in Ci , or otherwise yj
i = −1, j = 1, . . . , n, for all n sub-

jects. We employ the hinge loss commonly used in SVMs, e.g.,
�(yi,X,Wi) =

∑n
j=1[1 − yj

i (W
T
i Xj + bi)]+ where [a]+ = 0

if a < 0; otherwise, [a]+ = a, and R(Wi) takes a sparse-
favoring form in order to select among features, in particular,

�1-norm ‖Wi‖1 =
∑

d |Wid |. The �1-norm shrinks the coeffi-
cients W of irrelevant variables to zero [15]. Constructing all of
the k classifiers together corresponds to minimizing the overall
regularized error as follows:

min
Wi ,bi ,i=1,...,k

k∑
i=1

[�(yi,X,Wi) + λR(Wi)] (8)

3) Constrained Conversion: Clearly, the first objective is
not convex, which leads to a nonconvex multiobjective pro-
gram. The constraint conversion method is more suitable to find
the Pareto-optimal solutions to this problem. As the subtyping
problem seeks to obtain clusters that are interpretable in the X
dimension (genetic markers), we model the first objective as a
constraint. In other words, we search for solutions that minimize
the second objective subject to an acceptable quality of clusters
in the Z dimension (clinical features). The following problem
(9) is the problem we will solve:

min
σ , W i , b i
i = 1 , . . . , k

k∑
i=1

⎛
⎝ n∑

j=1

[1 − yj
i (W

T
i Xj + bi)]+ + λ‖Wi‖1

⎞
⎠

subject to
1
k

k∑
i=1

max
i �=j

Dist(Ci) + Dist(Cj )
Dist(Ci, Cj )

≤ δ

lσ ≤ σ ≤ uσ (9)

where δ, lσ , and uσ are tuning parameters to bound σ.

C. Proposed Algorithm

Traditional methods for finding the optimal solution to a con-
strained optimization problem include deterministic approaches
such as gradient-based methods, Newton’s methods, and non-
deterministic approaches such as simulated annealing [19]. To
avoid the difficulty of computing derivatives of the objective
function, we design an efficient algorithm based on simu-
lated annealing to solve the converted MOP (9) as depicted in
Algorithm 1.

In Algorithm 1, the temperature T starts from a high value,
and decreases gradually at each iteration. A probability density
function defined according to T is used to search for σnew .
The first objective is evaluated after the clusters are obtained.
If this objective is within the prespecified limit δ, an SVM
model is constructed for each cluster, and the second objective
is evaluated. The probability of accepting σnew is calculated via
the acceptance probability density function discussed in [20]
and defined by the objective values h, hnew and the temperature
T . If this probability is larger than a number randomly drawn
from [0, 1], then σnew is accepted; otherwise, the previous value
of σ is retained. Readers can consult [20] for more discussions
on simulated annealing.

IV. COMPUTATIONAL RESULTS

We applied the proposed algorithm to two real-world datasets
that were aggregated from genetic studies of opioid dependence
(OD) and cocaine dependence (CD) [4]–[7]. We limited the anal-
ysis to European Americans to avoid confounding by population
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differences in allele frequencies and structure. We compared our
approach to an existing subtyping method that performed a se-
quence of two separate steps: spectral clustering and one-norm
SVM classification in the same fashion as in [4]. We refer to this
as the sequential subtyping method. The two approaches were
compared in terms of the separability of their resultant clusters
based on genetic markers.

A. Datasets

Subjects were recruited from multiple sites, including Yale
University School of Medicine, University of Connecticut
Health Center, University of Pennsylvania School of Medicine,
McLean Hospital and Medical University of South Carolina.
All subjects gave written, informed consent to participate, using
procedures approved by the institutional review board at each
participating site.

Opioid-use and cocaine-use behaviors were assessed by two
separate components dedicated to the diagnosis of OD and CD,
respectively, in a computer-assisted interview process, called
the semi-Structured Assessment for Drug Dependence and Al-
coholism (SSADDA) [21]. The SSADDA variables selected by
previous OD and CD subtyping studies [4], [6] were used in the
present analysis. Multiple correspondence analysis (MCA) [22]
was performed to reduce data. The top MCA dimensions that
overall explained more than 80% of data variance were used in
cluster analysis.

A total of 1350 single nucleotide polymorphisms (SNPs) se-
lected from 130 candidate genes were genotyped for association
tests [23]. For each dataset, we performed quality control as fol-
lows. SNPs for which data were available for less than 95% of
the subjects, or for which the P -value for Hardy–Weinberg equi-

TABLE I
SUMMARY OF THE OD AND CD DATASETS

librium was less than 10−7 were excluded from further analysis.
The minor allele frequency (MAF) of each SNP was calculated
within each population. SNPs with MAF less than 0.5% in a
population were removed from the association tests for the re-
spective population. The remaining missing entries in the SNP
data were imputed.

For the OD dataset, we treat opioid users as cases and healthy
subjects as controls. For the CD dataset, subjects who were
diagnosed with cocaine dependence were treated as cases and
healthy subjects who had been exposed to illicit drugs were
regarded as controls. Table I summarizes the statistics of the two
datasets in terms of the numbers of cases, controls, SSADDA
variables (Vars), MCA dimensions (Dims), and SNPs used in
the subtyping analysis.

B. Experimental Settings

We utilized the CPLEX optimization package to solve the
one-norm SVM, and implemented spectral clustering in MAT-
LAB. Adaptive simulated annealing, an open-source variant
of simulated annealing, together with its MATLAB gateway
(ASAMIN v1.39) was used to search for the value of σ that
optimizes the multiobjective program (9). The parameters δ and
λ were set to 0.7 and 0.08, respectively. The upper bound of
σ and uσ was set to a number that led to a pairwise similarity
value of at least 0.99, and the lower bound of σ, lσ was set to
the value producing a similarity matrix of the median value less
than 0.0001. These tuning steps were based on threefold cross
validation.

A typical way to choose a value for σ is to use the median
value of all entries in the pairwise distance matrix [14]. We fixed
σ to the median value in the sequential method. For both the
proposed and sequential methods, cluster analysis was only ap-
plied to cases. The resultant clusters were characterized based
on important clinical features related to drug use and related be-
haviors. A generalized estimating equation Wald Type 3 χ2-test
was employed to test the significance of the difference between
the resultant clusters in these clinical variables with Bonferroni
correction for multiple comparisons.

For each obtained cluster, an SVM model was built to separate
cases in the cluster labeled as +1 from controls labeled as −1.
SVM is sensitive to unbalanced data where the size of a sample
with one label is significantly larger than that with another label.
To address this problem, we duplicated subjects in the smaller
group to make the sample size of the two groups comparable.
Let a and b be the dominating and minor groups, respectively,
na and nb be their sample sizes, and t = �na/nb�. We first
duplicated each subject labeled by b t times, and then randomly
selected na − t ∗ nb subjects from the sample pool composed by
all subjects with label b. Tenfold cross validation with stratified
case-control split was conducted for every cluster, and receiver
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TABLE II
CLINICAL OPIOID-RELATED CHARACTERISTICS OF OPIOID USER CLUSTERS [N(%)]

operating characteristic (ROC) curves were obtained using the
test data combined from all folds to evaluate the classification
performance. We provide the area under the ROC curve (AUC)
in our results to compare the two methods. The AUC reflects
the cluster separability based on genetic markers.

Moreover, different analytic approaches, such as SVM, or
logistic regression, may identify important SNPs of different
associative effects. A larger coefficient for an SNP in the SVM
models does not necessarily translate into a smaller p-value in
logistic regression. We further tested each of the selected SNPs,
i.e., those with no zero coefficients in the SVM models, by a
separate logistic regression and evaluated their corresponding
p-values to determine the significance of the association with
the identified subtypes. Here, logistic regression models were
obtained in the similar sampling scheme introduced early to
balance the data.

C. Opioid-Use Subtypes

We set the desired number of clusters to 2, so that the resultant
clusters were sufficiently large and gave adequate statistical
power. The optimal value of σ found by our approach was 5.8.

1) Cluster Clinical Characteristics: We characterized the
two clusters obtained with σ = 5.8 based on 11 important clini-
cal variables depicting opioid use and its consequences. Table II
shows that the two clusters differ significantly on almost all
of these clinical features, except the mean age of first opioid
use. Subjects in Cluster 1 have used opioids more heavily than
those in Cluster 2. For example, they had heavier daily use and
more intravenous injections. The negative consequences of opi-
oid use, such as “interfering with work” and “been arrested”
among subjects in Cluster 1 were much more severe than those
for subjects in Cluster 2. Thus, Cluster 1 was a heavy opioid
user group, whereas Cluster 2 was composed of moderate opioid
users.

2) Associated Genetic Markers: Eight SNPs were associ-
ated with Cluster 1 at p < 1 × 10−3 as shown in Table III.
An SNP (rs915906) was very close to the empirical thresh-
old (p < 0.05/1154 = 4.34 × 10−5) after Bonferroni correction
was applied to address the inflation of type I error due to mul-
tiple tests. For Cluster 2, SNP rs6957496 on gene CHRM2 was
significant with a p-value close to 10−5 , and it remained sig-
nificant after Bonferroni correction (empirical threshold: p <

TABLE III
RISK FACTORS (SNPS) ASSOCIATED WITH OPIOID-USE SUBTYPES

TABLE IV
COMPARISON ON GENETIC SEPARABILITY OF OPIOID USER CLUSTERS

0.05/1154 = 4.34 × 10−5). Odds ratios and the genes where
the corresponding SNPs are located are also shown in Table III.

3) Comparison: For the sequential method, we followed the
standard approach to selecting σ for spectral clustering [14] and
computed the median value of the pairwise distances, which
was 1.07. When σ = 1.07, a very unbalanced partition resulted:
826 in one cluster and 1 in the other, which was not of practical
value. In order to find a σ value that gives clusters of similar
size, we increased the value of σ several times, and each time
by 1 until a proper σ was found. The final value was 6.07. Two
classifiers were built to separate cases in each subtype from the
controls based on genetic data, respectively, for our approach
and the sequential method. The AUC values of these classifiers
were compared to evaluate the cluster separability in the genetic
view as shown in Table IV. Genetic markers had better predictive
power for those clusters obtained by the proposed approach than
the sequential method with a larger supporting sample size, thus
demonstrating the effectiveness of the proposed method.

D. Cocaine-Use Subtypes

Since a large number of cases were available, we set the
desired number of clusters to 3. The optimal value of σ found
by our approach here was 1.76.

1) Cluster Clinical Characteristics: The three clusters ob-
tained with σ = 1.76 were characterized in Table V based on 12
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TABLE V
CLINICAL COCAINE-RELATED CHARACTERISTICS OF COCAINE USER CLUSTERS [N(%)]

TABLE VI
RISK FACTORS (SNPS) ASSOCIATED WITH COCAINE-USE SUBTYPES

important features related to cocaine use and its consequences.
Table V shows that the three clusters differ significantly on all
the 12 clinical features. Both Clusters 1 and 3 were heavy co-
caine user groups compared to Cluster 2 as indicated by almost
all of the features. For example, 96.76% and 94.71% of the sub-
jects in Clusters 1 and 3, respectively, ever used cocaine daily
or almost daily in comparison with only 76.52% of the subjects
in Cluster 2. Even though Clusters 1 and 3 were both heavy user
groups, they were distinct on several features, especially on the
age of onset and on cocaine intravenous injection rates. Subjects
in Cluster 1 started the initial and heavy use of cocaine at much
younger age than those in Cluster 3. Cluster 1 had a high portion
of subjects (91.47%) who had injected cocaine intravenously in
contrast to a much lower rate of that (9.19%) in Cluster 3.

2) Associated Genetic Markers: The results from associa-
tion tests for the three clusters are provided in Table VI, in
which only those SNPs with tested p-values less than 1 × 10−3

are shown. SNP rs3802280 on gene OPRK1 was associated
with Cluster 1 at p < 1 × 10−3 . Four SNPs were identified to
be nominally associated with Cluster 3 at p < 1 × 10−3 . None
of the SNPs was identified to be associated with Cluster 2 at
p < 1 × 10−3 .

3) Comparison: For the CD data, the median value of the
pairwise distances was 1.45, which was used as the value of
σ in the sequential method. We ran spectral clustering based
on the similarity matrix and also obtained three clusters. We
compared these three clusters against those obtained by our
approach in terms of the cluster separability based on genetic
data. We built three classifiers, each used to separate subjects
in one of the three clusters from the controls. We computed
the average and standard deviation of the classifiers’ AUC over
a tenfold cross validation, respectively, for the proposed and

Fig. 1. The comparison of genetic separability of the cocaine user clusters
obtained by the proposed method and the sequential method in [4].

sequential methods. A box plot in Fig. 1 was drawn for each
method. As shown in Fig. 1, classifiers trained on the clusters
obtained by the proposed method have a slightly better average
AUC value (i.e., separability) and significantly smaller error bar
than those obtained on the clusters from the sequential method,
which implicates that the proposed approach is better in terms of
finding genetically separable clinical clusters than the existing
approach.

V. CONCLUSION

Identifying genes that contribute to risk of complex diseases
has been challenging due to two major issues. (1) The diseases
have diverse clinical manifestations and complex etiology with
both genetic and environmental risk factors. (2) Disease pheno-
types are heterogeneous, and homogeneous subtypes have not
been optimized empirically. To address these issues, researchers
have sought to leverage the technology of cluster analysis to
identify clinically homogeneous subtypes that correlate to ho-
mogeneous genetic risk factors. Although encouraging results
have been obtained, success remains limited because existing
methods mismatch the clinical cluster analysis to the goal of
genetic association.

We have developed a novel multiobjective programming ap-
proach that optimizes two objectives: 1) the cluster-derived
subtypes should differ significantly in clinical features; 2) the
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subtypes can be classified using genetic markers. Our method
forms a novel multiview data analytic method that treats the
different views differently instead of equally as input views. In
our method, the view of clinical features was used to define and
derive subtypes of the disease based on cluster analysis, and
the view of genetic markers was used to interpret the subtypes
based on sparse modeling. Two case studies of subtyping of
opioid use and cocaine use, and related behaviors in aggregated
samples of European Americans were performed. A compar-
ison between our proposed approach and a typical subtyping
method [4] demonstrated the superiority of our approach.
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