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Abstract

We develop an intuitive geometric framework for support vector
regression (SVR). By examining when ε-tubes exist, we show that
SVR can be regarded as a classification problem in the dual space.
Hard and soft ε-tubes are constructed by separating the convex
or reduced convex hulls respectively of the training data with the
response variable shifted up and down by ε. A novel SVR model is
proposed based on choosing the max-margin plane between the two
shifted datasets. Maximizing the margin corresponds to shrinking
the effective ε-tube. In the proposed approach the effects of the
choices of all parameters become clear geometrically.

1 Introduction

Support Vector Machines (SVMs) [6] are a very robust methodology for inference
with minimal parameter choices. Intuitive geometric formulations exist for the
classification case addressing both the error metric and capacity control [1, 2]. For
linearly separable classification, the primal SVM finds the separating plane with
maximum hard margin between two sets. The equivalent dual SVM computes the
closest points in the convex hulls of the data from each class. For the inseparable
case, the primal SVM optimizes the soft margin of separation between the two
classes. The corresponding dual SVM finds the closest points in the reduced convex
hulls. In this paper, we derive analogous arguments for SVM regression (SVR).

We provide a geometric explanation for SVR with the ε-insensitive loss function.
From the primal perspective, a linear function with no residuals greater than ε cor-
responds to an ε-tube constructed about the data in the space of the data attributes
and the response variable [6] (see e.g. Figure 1(a)). The primary contribution of this
work is a novel geometric interpretation of SVR from the dual perspective along
with a mathematically rigorous derivation of the geometric concepts. In Section
2, for a fixed ε > 0 we examine the question “When does a “perfect” or “hard”



ε-tube exist?”. With duality analysis, the existence of a hard ε-tube depends on
the separability of two sets. The two sets consist of the training data augmented
with the response variable shifted up and down by ε. In the dual space, regression
becomes the classification problem of distinguishing between these two sets. The
geometric formulations developed for the classification case [1] become applicable to
the regression case. We call the resulting formulation convex SVR (C-SVR) since it
is based on convex hulls of the augmented training data. Much like in SVM classifi-
cation, to compute a hard ε-tube, C-SVR computes the nearest points in the convex
hulls of the augmented classes. The corresponding maximum margin (max-margin)
planes define the effective ε-tube. The size of margin determines how much the
effective ε-tube shrinks. Similarly, to compute a soft ε-tube, reduced-convex SVR
(RC-SVR) finds the closest points in the reduced convex hulls of the two augmented
sets.

This paper introduces the geometrically intuitive RC-SVR formulation which is a
variation of the classic ε-SVR [6] and ν-SVR models [5]. If parameters are properly
tuned, the methods perform similarly although not necessarily identically. RC-
SVR eliminates the pesky parameter C used in ε-SVR and ν-SVR. The geometric
role or interpretation of C is not known for these formulations. The geometric
roles of the two parameters of RC-SVR, ν and ε, are very clear, facilitating model
selection, especially for nonexperts. Like ν-SVR, RC-SVR shrinks the ε-tube and
has a parameter ν controlling the robustness of the solution. The parameter ε
acts as an upper bound on the size of the allowable ε-insensitive error function. In
addition, RC-SVR can be solved by fast and scalable nearest-point algorithms such
as those used in [3] for SVM classification.

2 When does a hard ε-tube exist?
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Figure 1: The (a) primal hard ε0-tube, and dual cases: (b) dual strictly separable ε > ε0,

(c) dual separable ε = ε0, and (d) dual inseparable ε < ε0.

SVR constructs a regression model that minimizes some empirical risk measure
regularized to control capacity. Let x be the n predictor variables and y the depen-
dent response variable. In [6], Vapnik proposed using the ε-insensitive loss function
Lε(x, y, f) = |y− f(x)|ε = max (0, |y − f(x)| − ε), in which an example is in error if
its residual |y− f(x)| is greater than ε. Plotting the points in (x, y) space as in Fig-
ure 1(a), we see that for a “perfect” regression model the data fall in a hard ε-tube
about the regression line. Let (Xi, yi) be an example where i = 1, 2, · · · ,m, Xi is the
ith predictor vector, and yi is its response. The training data are then (X, y) where
Xi is a row of the matrix X ∈ Rm×n and y ∈ Rm is the response. A hard ε-tube
for a fixed ε > 0 is defined as a plane y = w′x+ b satisfying −εe ≤ y−Xw− be ≤ εe
where e is an m-dimensional vector of ones.

When does a hard ε-tube exist? Clearly, for ε large enough such a tube always



exists for finite data. The smallest tube, the ε0-tube, can be found by optimizing:

min
w,b,ε

ε s.t.− εe ≤ y −Xw − be ≤ εe (1)

Note that the smallest tube is typically not the ε-SVR solution. Let D+ and D− be
formed by augmenting the data with the response variable respectively increased
and decreased by ε, i.e. D+ = {(Xi, yi + ε), i = 1, · · · ,m} and D− = {(Xi, yi −
ε), i = 1, · · · ,m}. Consider the simple problem in Figure 1(a). For any fixed ε > 0,
there are three possible cases: ε > ε0 in which strict hard ε-tubes exist, ε = ε0
in which only ε0-tubes exist, and ε < ε0 in which no hard ε-tubes exist. A strict
hard ε-tube with no points on the edges of the tube only exists for ε > ε0. Figure
1(b-d) illustrates what happens in the dual space for each case. The convex hulls of
D+ and D− are drawn along with the max-margin plane in (b) and the supporting
plane in (c) for separating the convex hulls.

Clearly, the existence of the tube is directly related to the separability of D+ and
D−. If ε > ε0 then a strict tube exists and the convex hulls of D+ and D− are strictly
separable1. There are infinitely many possible ε-tubes when ε > ε0. One can see
that the max-margin plane separating D+ and D− corresponds to one such ε. In
fact this plane forms an ε̂ tube where ε > ε̂ ≥ ε0. If ε = ε0, then the convex hulls
of D+ and D− are separable but not strictly separable. The plane that separates
the two convex hulls forms the ε0 tube. In the last case, where ε < ε0, the two sets
D+ and D− intersect. No ε-tubes or max-margin planes exist.

It is easy to show by construction that if a hard ε-tube exists for a given ε > 0 then
the convex hulls of D+ and D− will be separable. If a hard ε-tube exists, then there
exists (w, b) such that

(y + εe)−Xw − be ≥ 0, (y − εe)−Xw − be ≤ 0. (2)

For any convex combination of D+,
(

X′

(y+εe)′
)
u where e′u = 1, u ≥ 0 of points

(Xi, yi + ε), i = 1, 2, · · · ,m, we have (y + εe)′u − w′(X′u) − b ≥ 0. Similarly for
D− ,

(
X′

(y−εe)′
)
v where e′v = 1, v ≥ 0 of points (Xi, yi − ε), i = 1, 2, · · · ,m, we have

(y− εe)′v−w′(X′v)− b ≤ 0. Then the plane y = w′x+ b in the ε-tube separates the
two convex hulls. Note the separating plane and the ε-tube plane are the same. If
no separating plane exists, then there is no tube. Gale’s Theorem2 of the alternative
can be used to precisely characterize the ε-tube.

Theorem 2.1 (Conditions for existence of hard ε-tube) A hard ε-tube exists
for a given ε > 0 if and only if the following system in (u, v) has no solution:

X′u = X′v, e′u = e′v = 1, (y + εe)′u− (y − εe)′v < 0, u ≥ 0, v ≥ 0. (3)

Proof A hard ε-tube exists if and only if System (2) has a solution. By Gale’s
Theorem of the alternative [4], system (2) has a solution if and only if the following
alternative system has no solution: X′u = X′v, e′u = e′v, (y+ εe)′u− (y− εe)′v =
−1, u ≥ 0, v ≥ 0. Rescaling by 1

σ where σ = e′u = e′v > 0 yields the result.
1We use the following definitions of separation of convex sets. Let D+ and D− be

nonempty convex sets. A plane H = {x : w′x = α} is said to separate D+ and D− if
w′x ≥ α, ∀x ∈ D+ and w′x ≤ α, ∀x ∈ D− . H is said to strictly separate D+ and D− if
w′x ≥ α + ∆ for x ∈ D+, and w′x ≤ α−∆ for each x ∈ D− where ∆ is a positive scalar.

2The system Ax ≤ c has a (or has no) solution if and only if the alternative system
A′y = 0, c′y = −1, y ≥ 0 has no (or has a) solution.



Note that if ε ≥ ε0 then (y + εe)′u − (y − εe)′v ≥ 0. for any (u, v) such that
X′u = X′v, e′u = e′v = 1, u, v ≥ 0. So as a consequence of this theorem, if
D+ and D− are separable, then a hard ε-tube exists.

3 Constructing the ε-tube

For any ε > ε0 infinitely many possible ε-tubes exist. Which ε-tube should be used?
The linear program (1) can be solved to find the smallest ε0-tube. But this corre-
sponds to just doing empirical risk minimization and may result in poor generaliza-
tion due to overfitting. We know capacity control or structural risk minimization is
fundamental to the success of SVM classification and regression.

We take our inspiration from SVM classification. In hard-margin SVM classification,
the dual SVM formulation constructs the max-margin plane by finding the two
nearest points in the convex hulls of the two classes. The max-margin plane is
the plane bisecting these two points. We know that the existence of the tube is
linked to the separability of the shifted sets, D+ and D−. The key insight is that
the regression problem can be regarded as a classification problem between D+ and
D−. The two sets D+ and D− defined as in Section 2 both contain the same number
of data points. The only significant difference occurs along the y dimension as the
response variable y is shifted up by ε in D+ and down by ε in D− . For ε > ε0,
the max-margin separating plane corresponds to a hard ε̂-tube where ε > ε̂ ≥ ε0.
The resulting tube is smaller than ε but not necessarily the smallest tube. Figure
1(b) shows the max-margin plane found for ε > ε0. Figure 1(a) shows that the
corresponding linear regression function for this simple example turns out to be the
ε0 tube. As in classification, we will have a hard and soft ε-tube case. The soft
ε-tube with ε ≤ ε0 is used to obtain good generalization when there are outliers.

3.1 The hard ε-tube case

We now apply the dual convex hull method to constructing the max-margin plane
for our augmented sets D+ and D− assuming they are strictly separable, i.e. ε > ε0.
The problem is illustrated in detail in Figure 2. The closest points of D+ and D− can
be found by solving the following dual C-SVR quadratic program:

min
u,v

1
2

∥∥∥
(

X′

(y+εe)′
)
u− (

X′

(y−εe)′
)
v
∥∥∥

2

s.t. e′u = 1, e′v = 1, u ≥ 0, v ≥ 0.
(4)

Let the closest points in the convex hulls of D+ and D− be c =
(

X′

(y+εe)′
)
û and

d =
(

X′

(y−εe)′
)
v̂ respectively. The max-margin separating plane bisects these two

points. The normal (ŵ, δ̂) of the plane is the difference between them, i.e., ŵ =
X′û −X′v̂, δ̂ = (y + εe)′û − (y − εe)′v̂. The threshold, b̂, is the distance from the
origin to the point halfway between the two closest points along the normal: b̂ =
ŵ′

(
X′û+X′v̂

2

)
+δ̂

(
y′û+y′v̂

2

)
. The separating plane has the equation ŵ′x+δ̂y−b̂ = 0.

Rescaling this plane yields the regression function.

Dual C-SVR (4) is in the dual space. The corresponding Primal C-SVR is:
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Figure 2: The solution ε̂-tube found by C-SVR can have ε̂ < ε. Squares are original data.

Dots are in D+. Triangles are in D− . Support Vectors are circled.

min
w,δ,α,β

1
2 ‖w‖2 + 1

2δ2 − (α− β)

s.t.
Xw + δ(y + εe)− αe ≥ 0
Xw + δ(y − εe)− βe ≤ 0.

(5)

Dual C-SVR (4) can be derived by taking the Wolfe or Lagrangian dual [4] of primal
C-SVR (5) and simplifying.

We prove that the optimal plane from C-SVR bisects the ε̂ tube. The supporting
planes for class D+ and class D− determines the lower and upper edges of the ε̂-tube
respectively. The support vectors from D+ and D− correspond to the points along
the lower and upper edges of the ε̂-tube. See Figure 2.

Theorem 3.1 (C-SVR constructs ε̂-tube) Let the max-margin plane obtained
by C-SVR (4) be ŵ′x+δ̂y−b̂ = 0 where ŵ = X′û−X′v̂, δ̂ = (y+εe)′û−(y−εe)′v̂, and
b̂ = ŵ′

(
X′û+X′v̂

2

)
+ δ̂

(
y′û+y′v̂

2

)
. If ε > ε0, then the plane y = w′x + b corresponds

to an ε̂-tube of training data (Xi, yi), i = 1, 2, · · · ,m where w = − ŵ
δ̂
, b = b̂

δ̂
and

ε̂ = ε− α̂−β̂

2δ̂
< ε.

Proof First, we show δ̂ > 0. By the Wolfe duality theorem [4], α̂ − β̂ > 0,
since the objective values of (5) and the negative objective value of (4) are equal at
optimality. By complementarity, the closest points are right on the margin planes
ŵ′x+ δ̂y− α̂ = 0 and ŵ′x+ δ̂y− β̂ = 0 respectively, so α̂ = ŵ′X′û + δ̂(y+ εe)′û and
β̂ = ŵ′X′v̂+δ̂(y−εe)′v̂. Hence b̂ = α̂+β̂

2 , and ŵ, δ̂, α̂, and β̂ satisfy the constraints of
problem (5), i.e., Xŵ+δ̂(y+εe)−α̂e ≥ 0, Xŵ+δ̂(y−εe)−β̂e ≤ 0. Then subtract the
second inequality from the first inequality: 2δ̂ε − α̂ + β̂ ≥ 0, that is, δ̂ ≥ α̂−β̂

2ε > 0
because ε > ε0 ≥ 0. Rescale constraints by −δ̂ < 0, and reverse the signs. Let
w = − ŵ

δ̂
, then the inequalities become Xw − y ≤ εe − α̂

δ̂
e, Xw − y ≥ −εe − β̂

δ̂
e.

Let b = b̂
δ̂
, then α̂

δ̂
= b + α̂−β̂

2δ̂
and β̂

δ̂
= b − α̂−β̂

2δ̂
. Substituting into the previous

inequalities yields Xw−y ≤
(
ε− α̂−β̂

2δ̂

)
e−be, Xw−y ≥ −

(
ε− α̂−β̂

2δ̂

)
e−be. Denote

ε̂ = ε− α̂−β̂

2δ̂
< ε. These inequalities become Xw+be−y ≤ ε̂e, Xw+be−y ≥ −ε̂e.

Hence the plane y = w′x + b is in the middle of the ε̂ < ε tube.

3.2 The soft ε-tube case

For ε < ε0, a hard ε-tube does not exist. Making ε large to fit outliers may result
in poor overall accuracy. In soft-margin classification, outliers were handled in the
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Figure 3: Soft ε̂-tube found by RC-SVR: left: dual, right: primal space.

dual space by using reduced convex hulls. The same strategy works for soft ε-tubes,
see Figure 3. Instead of taking the full convex hulls of D+ and D− , we reduce the
convex hulls away from the difficult boundary cases. RC-SVR computes the closest
points in the reduced convex hulls

min
u,v

1
2

∥∥∥
(

X′

(y+εe)′
)
u− (

X′

(y−εe)′
)
v
∥∥∥

2

s.t. e′u = 1, e′v = 1, 0 ≤ u ≤ De, 0 ≤ v ≤ De.
(6)

Parameter D determines the robustness of the solution by reducing the convex hull.
D limits the influence of any single point. As in ν-SVM, we can parameterize D
by ν. Let D = 1

νm where m is the number of points. Figure 3 illustrates the case
for m = 6 points, ν = 2/6, and D = 1/2. In this example, every point in the
reduced convex hull must depend on at least two data points since

∑m
i=1 ui = 1 and

0 ≤ ui ≤ 1/2. In general, every point in the reduced convex hull can be written as
the convex combination of at least d1/De = dν ∗me. Since these points are exactly
the support vectors and there are two reduced convex hulls, 2 ∗ dνme is a lower
bound on the number of support vectors in RC-SVR. By choosing ν sufficiently
large, the inseparable case with ε ≤ ε0 is transformed into a separable case where
once again our nearest-points-in-the-convex-hull-problem is well defined.

As in classification, the dual reduced convex hull problem corresponds to computing
a soft ε-tube in the primal space. Consider the following soft tube version of the
primal C-SVR (7) which has its Wolfe Dual RC-SVR (6):

min
w,δ,α,β,ξ,η

1
2 ‖w‖2 + 1

2δ2 − (α− β) + D(e′ξ + e′η)

s.t. Xw + δ(y + εe)− αe + ξ ≥ 0, ξ ≥ 0
Xw + δ(y − εe)− βe− η ≤ 0, η ≥ 0

(7)

The results of Theorem 3.1 can be easily extended to soft ε-tubes.

Theorem 3.2 (RC-SVR constructs soft ε̂-tube) Let the soft max-margin
plane obtained by RC-SVR (6) be ŵ′x + δ̂y − b̂ = 0 where ŵ = X′û − X′v̂,

δ̂ = (y+ εe)′û− (y− εe)′v̂, and b̂ =
(

X′û+X′v̂
2

)′
ŵ +

(
y′û+y′v̂

2

)
δ̂. If 0 < ε ≤ ε0, then

the plane y = w′x + b corresponds to a soft ε̂ = ε − α̃−β̃

2δ̂
< ε-tube of training data

(Xi, yi), i = 1, 2, · · · ,m, i.e., a ε̂-tube of reduced convex hull of training data where
w = − ŵ

δ̂
, b = b̂

δ̂
and α̃ = ŵ′X′û + δ̂(y + εe)′û, β̃ = ŵ′X′v̂ + δ̂(y − εe)′v̂.

Notice that the α̃ and β̃ determine the planes parallel to the regression plane and
through the closest points in each reduced convex hull of shifted data. In the



inseparable case, these planes are parallel but not necessarily identical to the planes
obtained by the primal RC-SVR (7).

Nonlinear C-SVR and RC-SVR can be achieved by using the usual kernel trick. Let
Φ by a nonlinear mapping of x such that k(Xi, Xj) = Φ(Xi) ·Φ(Xj). The objective
function of C-SVR (4) and RC-SVR (6) applied to the mapped data becomes

1
2

∑m
i=1

∑m
j=1 ((ui − vi)(uj − vj)(Φ(Xi) · Φ(Xj) + yiyj)) + 2ε

∑m
i=1 (yi(ui − vi))

= 1
2

∑m
i=1

∑m
j=1 ((ui − vi)(uj − vj)(k(Xi, Xj) + yiyj)) + 2ε

∑m
i=1 (yi(ui − vi)) (8)

The final regression model after optimizing C-SVR or RC-SVR with kernels takes
the form of f(x) =

∑m
i=1 (ūi − v̄i) k(Xi, x) + b̄, where ūi = ûi

δ̂
, v̄i = v̂i

δ̂
, δ̂ = (û −

v̂)′y+2ε, and the intercept term b̄ = (û+v̂)′K(û−v̂)

2δ̂
+ (û+v̂)′y

2 where Kij = k(Xi, Xj).

4 Computational Results

We illustrate the difference between RC-SVR and ε-SVR on a toy linear problem3.
Figure 4 depicts the functions constructed by RC-SVR and ε-SVR for different
values of ε. For large ε, ε-SVR produces undesirable results. RC-SVR constructs the
same function for ε sufficiently large. Too small ε can result in poor generalization.
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Figure 4: Regression lines from (a) ε-SVR and (b) RC-SVR with distinct ε.

In Table 1, we compare RC-SVR, ε-SVR and ν-SVR on the Boston Housing problem.
Following the experimental design in [5] we used RBF kernel with 2σ2 = 3.9, C =
500·m for ε-SVR and ν-SVR, and ε = 2.6 for RC-SVR. RC-SVR, ε-SVR, and ν-SVR
are computationally similar for good parameter choices. In ε-SVR, ε is fixed. In
RC-SVR, ε is the maximum allowable tube width. Choosing ε is critical for ε-SVR
but less so for RC-SVR. Both RC-SVR and ν-SVR can shrink or grow the tube
according to desired robustness. But ν-SVR has no upper ε bound.

5 Conclusion and Discussion

By examining when ε-tubes exist, we showed that in the dual space SVR can be
regarded as a classification problem. Hard and soft ε-tubes are constructed by sep-
arating the convex or reduced convex hulls respectively of the training data with
the response variable shifted up and down by ε. We proposed RC-SVR based on
choosing the soft max-margin plane between the two shifted datasets. Like ν-SVM,
RC-SVR shrinks the ε-tube. The max-margin determines how much the tube can
shrink. Domain knowledge can be incorporated into the RC-SVR parameters ε

3The data consist of (x, y): (0 0), (1 0.1), (2 0.7), (2.5 0.9), (3 1.1) and (5 2). The
CPLEX 6.6 optimization package was used.



Table 1: Testing Results for Boston Housing, MSE: average of mean squared errors of 25
testing points over 100 trials, STD: standard deviation

2ν 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
RC-SVR MSE 37.3 11.2 10.7 9.6 8.9 10.6 11.5 12.5

STD 72.3 7.6 7.3 7.4 8.4 9.1 9.3 9.8
ε 0 1 2 3 4 5 6 7

ε-SVR MSE 11.2 10.8 9.5 10.3 11.6 13.6 15.6 17.2
STD 8.3 8.2 8.2 7.3 5.8 5.8 5.9 5.8
ν 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ν-SVR MSE 9.6 8.9 9.5 10.8 10.9 11.0 11.2 11.1
STD 5.8 7.9 8.3 8.2 8.3 8.4 8.5 8.4

and ν. The parameter C in ν-SVM and ε-SVR has been eliminated. Computa-
tionally, no one method is superior for good parameter choices. RC-SVR alone
has a geometrically intuitive framework that allows users to easily grasp the model
and its parameters. Also, RC-SVR can be solved by fast nearest point algorithms.
Considering regression as a classification problem suggests other interesting SVR
formulations. We can show ε-SVR is equivalent to finding closest points in a reduced
convex hull problem for certain C, but the equivalent problem utilizes a different
metric in the objective function than RC-SVR. Perhaps other variations would yield
even better formulations.
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