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Abstract

This paper investigates a new learning model in which the input data
is corrupted with noise. We present a general statistical framework to
tackle this problem. Based on the statistical reasoning, we propose a
novel formulation of support vector classification, which allows uncer-
tainty in input data. We derive an intuitive geometric interpretation of
the proposed formulation, and develop algorithms to efficiently solve it.
Empirical results are included to show that the newly formed method is
superior to the standard SVM for problems with noisy input.

1 Introduction

In the traditional formulation of supervised learning, we seek a predictor that maps input
x to output y. The predictor is constructed from a set of training examples {(xi, yi)}. A
hidden underlying assumption is that errors are confined to the output y. That is, the input
data are not corrupted with noise; or even when noise is present in the data, its effect is
ignored in the learning formulation.

However, for many applications, this assumption is unrealistic. Sampling errors, modeling
errors and instrument errors may preclude the possibility of knowing the input data exactly.
For example, in the problem of classifying sentences from speech recognition outputs for
call-routing applications, the speech recognition system may make errors so that the ob-
served text is corrupted with noise. In image classification applications, some features
may rely on image processing outputs that introduce errors. Hence classification problems
based on the observed text or image features have noisy inputs. Moreover, many systems
can provide estimates for the reliability of their outputs, which measure how uncertain each
element of the outputs is. This confidence information, typically ignored in the traditional
learning formulations, can be useful and should be considered in the learning formulation.

A plausible approach for dealing with noisy input is to use the standard learning formula-
tion without modeling the underlying input uncertainty. If we assume that the same noise
is observed both in the training data and in the test data, then the noise will cause similar
effects in the training and testing phases. Based on this (non-rigorous) reasoning, one can
argue that the issue of input noise may be ignored. However, we show in this paper that by
modeling input uncertainty, we can obtain more accurate predictors.



2 Statistical models for prediction problems with uncertain input

Consider (xi, yi), where xi is corrupted with noise. Let x
′
i be the original uncorrupted

input. We consider the following data generating process: first (x′
i, yi) is generated ac-

cording to a distribution p(x′
i, yi|θ), where θ is an unknown parameter that should be es-

timated from the data; next, given (x′
i, yi), we assume that xi is generated from x

′
i (but

independent of yi) according to a distribution p(xi|θ
′, σi,x

′
i), where θ′ is another possibly

unknown parameter, and σi is a known parameter which is our estimate of the uncertainty
(e.g. variance) for xi. The joint probability of (x′

i,xi, yi) can be written as:

p(x′
i,xi, yi) = p(x′

i, yi|θ)p(xi|θ
′, σi,x

′
i).

The joint probability of (xi, yi) is obtained by integrating out the unobserved quantity x
′
i:

p(xi, yi) =

∫

p(x′
i, yi|θ)p(xi|θ

′, σi,x
′
i)dx

′
i.

This model can be considered as a mixture model where each mixture component corre-
sponds to a possible true input x′

i not observed. In this framework, the unknown parameter
(θ, θ′) can be estimated from the data using the maximum-likelihood estimate as:

max
θ,θ′

∑

i

ln p(xi, yi|θ, θ
′) = max

θ,θ′

∑

i

ln

∫

p(x′
i, yi|θ)p(xi|θ

′, σi,x
′
i)dx

′
i. (1)

Although this is a principled approach under our data generation process, due to the in-
tegration over the unknown true input x

′
i, it often leads to a very complicated formulation

which is difficult to solve. Moreover, it is not straight-forward to extend the method to non-
probability formulations such as support vector machines. Therefore we shall consider an
alternative that is computationally more tractable and easier to generalize. The method we
employ in this paper can be regarded as an approximation to (1), often used in engineering
applications as a heuristics for mixture estimation. In this method, we simply regard each
x
′
i as a parameter of the probability model, so the maximum-likelihood becomes:

max
θ,θ′

∑

i

ln sup
x

′

i

[p(x′
i, yi|θ)p(xi|θ

′, σi,x
′
i)]. (2)

If our probability model is correctly specified, then (1) is the preferred formulation. How-
ever in practice, we may not know the exact p(xi|θ

′, σi,x
′
i) (for example, we may not

be able to estimate the level of uncertainty σi accurately). Therefore in practice, under
mis-specified probability models, (1) is not necessarily always a better method.

Intuitively (1) and (2) have similar effects since large values of p(x′
i, yi|θ)p(xi|θ

′, σi,x
′
i)

dominate the summation in
∫

p(x′
i, yi|θ)p(xi|θ

′, σi,x
′
i)dx

′
i. That is, both methods prefer

a parameter configuration such that the product p(x′
i, yi|θ)p(xi|θ

′, σi,x
′
i) is large for some

x
′
i. If an observation xi is contaminated with large noise so that p(xi|θ

′, σi,x
′
i) has a flat

shape, then we can pick a x
′
i that is very different from xi which predicts yi well. On the

other hand, if an observation xi is contaminated with very small noise, then (1) and (2)
penalize a parameter θ such that p(xi, yi|θ) is small. This has the effect of ignoring data
that are very uncertain and relying on data that are less contaminated.

In the literature, there are two types of statistical models: generative models and discrim-
inative models (conditional models). We focus on discriminative modeling in this paper
since it usually leads to better prediction performance. In discriminative modeling, we
assume that p(x′

i, yi|θ) has a form p(x′
i, yi|θ) = p(x′

i)p(yi|θ,x
′
i).

As an example, we consider regression problems with Gaussian noise:

p(x′
i, yi|θ) ∼ p(x′

i) exp

(

−
(θT

x
′
i − yi)

2

2σ2

)

, p(xi|θ
′, σi,x

′
i) ∼ exp

(

−
‖xi − x

′
i‖

2

2σ2
i

)

.



The method in (2) becomes

θ = arg min
θ

∑

i

inf
x

′

i

[

(θT
x
′
i − yi)

2

2σ2
+

‖xi − x
′
i‖

2

2σ2
i

]

. (3)

This formulation is closely related (but not identical) to the so-called total least squares
(TLS) method [6, 5]. The motivation for total least squares is the same as what we con-
sider in this paper: input data are contaminated with noise. Unlike the statistical modeling
approach we adopted in this section, the total least squares algorithm is derived from a
numerical computation point of view. The resulting formulation is similar to (3), but its
solution can be conveniently described by a matrix SVD decomposition. The method has
been widely applied in engineering applications, and is known to give better performance
than the standard least squares method for problems with uncertain inputs. In our frame-
work, we can regard (3) as the underlying statistical model for total least squares.

For binary classification where yi ∈ {±1}, we consider logistic conditional probability
model for yi, while still assume Gaussian noise in the input:

p(x′
i, yi|θ) ∼ p(x′

i)
1

1 + exp(−θT x′
iyi)

, p(xi|θ
′, σi,x

′
i) ∼ exp

(

−
‖xi − x

′
i‖

2

2σ2
i

)

.

Similar to the total least squares method (3), we obtain the following formulation from (2):

θ = arg min
θ

∑

i

inf
x

′

i

[

ln(1 + e−θT
x

′

i
yi) +

‖xi − x
′
i‖

2

2σ2
i

]

. (4)

A well-known disadvantage of logistic model for binary classification is that it does not
model deterministic conditional probability (that is, p(y = 1|x) = 0, 1) very well. This
problem can be remedied using the support vector machine formulation, which has attrac-
tive intuitive geometric interpretations for linearly separable problems. Although in this
section a statistical modeling approach is used to gain useful insights, we will focus on
support vector machines in the rest of the paper.

3 Total support vector classification

Our formulation of support vector classification with uncertain input data is motivated by
the total least squares regression method that can be derived from the statistical model (3).
We thus call the proposed algorithm total support vector classification (TSVC) algorithm.

We assume that inputs are subject to an additive noise, i.e., x
′
i = xi + ∆xi where noise

∆xi follows certain distribution. Bounded and ellipsoidal uncertainties are often discussed
in the TLS context [7], and resulting approaches find many real-life applications. Hence
instead of assuming Gaussian noise as in (3) and (4), we consider a simple bounded un-
certainty model ‖∆xi‖ ≤ δi with uniform priors. The bound δi has a similar effect of
the standard deviation σi in the Gaussian noise model. However, under the bounded un-
certainty model, the squared penalty term ||xi − x

′
i||

2/2σ2
i is replaced by a constraint

‖∆xi‖ ≤ δi. Another reason for us to use the bounded uncertainty noise model is that the
resulting formulation has a more intuitive geometric interpretation (see Section 4).

SVMs construct classifiers based on separating hyperplanes {x : wT
x+b = 0}. Hence the

parameter θ in (3) and (4) is replaced by a weight vector w and a bias b. In the separable
case, TSVC solves the following problem:

min
w,b,∆xi,i=1,··· ,`

1

2
‖w‖2

subject to yi

(

w
T (xi + ∆xi) + b

)

≥ 1, ‖∆xi‖ ≤ δi, i = 1, · · · , `.
(5)



For non-separable problems, we follow the standard practice of introducing slack variables
ξi, one for each data point. In the resulting formulation, we simply replace the square loss in
(3) or the logistic loss in (4) by the margin-based hinge-loss ξ = max{0, 1−y(wT

x+b)},
which is used in the standard SVC.

min
w,b,ξ,∆xi,i=1,··· ,`

C
∑`

i=1
ξi + 1

2
‖w‖2

subject to yi

(

w
T (xi + ∆xi) + b

)

≥ 1 − ξi, ξi ≥ 0, i = 1, · · · , `,
‖∆xi‖ ≤ δi, i = 1, · · · , `.

(6)

Note that we introduced the standard Tikhonov regularization term 1

2
‖w‖2

2 as usually em-
ployed in SVMs. The effect is similar to a Gaussian prior in (3) and (4) with the Bayesian
MAP (maximum a posterior) estimator. One can regard (6) as a regularized instance of (2)
with a non-probabilistic SVM discriminative loss criterion.

Problems with corrupted inputs are more difficult than problems with no input uncertainty.
Even if there is a large margin separator for the original uncorrupted inputs, the observed
noisy data may become non-separable. By modifying the noisy input data as in (6), we
reconstruct an easier problem, for which we may find a good linear separator. Moreover,
by modeling noise in the input data, TSVC becomes less sensitive to data points that are
very uncertain since we can find a choice of ∆xi such that xi+∆xi is far from the decision
boundary and will not be a support vector. This is illustrated later in Figure 1 (right). TSVC
thus constructs classifiers by focusing on the more trust-worthy data that are less uncertain.

4 Geometric interpretation

Further investigation reveals an intuitive geometric interpretation for TSVC which allows
users to easily grasp the fundamentals of this new formulation. We first derive the following
fact that when the optimal ŵ is obtained, the optimal ∆x̂i can be represented in terms of
ŵ. If w is fixed in problem (6), optimizing problem (6) is equivalent to minimizing

∑

ξi

over ∆xi. The following lemma characterizes the solution.

Lemma 1. For any given hyperplane (w, b), the solution ∆x̂i of problem (6) is ∆x̂i =
yiδi

w

‖w‖ , i = 1, · · · , `.

Proof. Since the noise vector ∆xi only affects ξi and does not have impact on other
slack variables ξj , j 6= i. The minimization of

∑

ξi can be decoupled into ` subproblems
of minimizing each ξi = max{0, 1 − yi(w

T (xi + ∆xi) + b)} = max{0, 1 − yi(w
T
xi +

b) − yiw
T ∆xi} over its corresponding ∆xi. By the Cauchy-Schwarz inequality, we have

|yiw
T ∆xi| ≤ ‖w‖·‖∆xi‖ with equality if and only if ∆xi = cw for some scalar c. Since

∆xi is bounded by δi, the optimal ∆x̂i = yiδi
w

‖w‖ and the minimal ξ̂i = max{0, 1 −

yi(w
T
xi + b) − δi‖w‖}.

Define Sw(X) = {xi + yiδi
w

‖w‖ , i = 1, · · · , `}. Then Sw(X) is a set of points that are
obtained by shifting the original points labeled +1 along w and points labeled −1 along
−w, respectively, to its individual uncertainty boundary. These shifted points are illustrated
in Figure 1(middle) as filled points.

Theorem 1. The optimal hyperplane (ŵ, b̂) obtained by TSVC (5) separates Sŵ(X) with
the maximal margin. The optimal hyperplane (ŵ, b̂) obtained by TSVC (6) separates
Sŵ(X) with the maximal soft margin.

Proof. 1. If there exists any w such that Sw(X) is linearly separable, we can solve
problem (5) to obtain the largest separation margin. Let (ŵ, b̂,∆x̂i) be optimal to problem
(5). Note that solving problem (5) is equivalent to max ρ subject to constraints yi(w

T (xi+



w w

Figure 1: The separating hyperplanes obtained (left) by standard SVC and (middle) by total
SVC (6). The margin can be magnified by taking into account uncertainties. Right: TSVC
solution is less sensitive to outliers with large noise.

∆xi) + b) ≥ ρ and ‖w‖ = 1, so the optimal ρ = 1

‖ŵ‖ [8]. To have the greatest ρ, we want

to max yi(ŵ
T (xi + ∆xi) + b̂) for all i’s over ∆xi. Hence following similar arguments

in Lemma 1, we have |yiŵ
T ∆xi| ≤ ‖ŵ‖‖∆xi‖ = δi‖ŵ‖ and when ∆x̂i = yiδi

ŵ

‖ŵ‖ , the
“equal” sign holds.

2. If no w exists to separate Sw(X) or even when such a w exists, we may solve problem
(6) to achieve the best compromise between the training error and the margin size. Let ŵ

be optimal to problem (6). By Lemma 1, the optimal ∆x̂i = yiδi
ŵ

‖ŵ‖ .

According to the above analysis, we can convert problems (5) and (6) to a problem in
variables w, b, ξ, as opposed to optimizing over both (w, b, ξ) and ∆xi, i = 1, · · · , `. For
example, the linearly non-separable problem (6) becomes

min
w,b,ξ

C
∑`

i=1
ξi + 1

2
‖w‖2

subject to yi

(

w
T
xi + b

)

+ δi‖w‖ ≥ 1 − ξi, ξi ≥ 0, i = 1, · · · , `.
(7)

Solving problem (7) yields an optimal solution to problem (6), and problem (7) can be
interpreted as finding (w, b) to separate Sw(X) with the maximal soft margin. The similar
argument holds true for the linearly separable case.

5 Solving and kernelizing TSVC

TSVC problem (6) can be recast to a second-order cone program (SOCP) as usually done
in TLS or Robust LS methods [7, 4]. However, directly implementing this SOCP will be
computationally quite expensive. Moreover, the SOCP formulation involves a large amount
of redundant variables, so a typical SOCP solver will take much longer time to achieve an
optimal solution. We propose a simple iterative approach as follows based on alternating
optimization method [1].

Algorithm 1
Initialize ∆xi = 0, repeat the following two steps until a termination criterion is met:
1. Fix ∆xi, i = 1, · · · , ` to the current value, solve problem (6) for w, b, and ξ.
2. Fix w, b to the current value, solve problem (6) for ∆xi, i = 1, · · · , `, and ξ.

The first step of Algorithm 1 solves no more than a standard SVM by treating xi + ∆xi as
the training examples. Similar to how SVMs are usually optimized, we can solve the dual
SVM formulation [8] for ŵ, b̂. The second step of Algorithm 1 solves a problem which has
been discussed in Lemma 1. No optimization solver is needed. The solution ∆xi of the
second step has a closed form in terms of the fixed w.



5.1 TSVC with linear functions

When only linear functions are considered, an alternative exists to solve problem (6) other
than Algorithm 1. As analyzed in [5, 3], Tikhonov regularization min C

∑

ξi + 1

2
‖w‖2

has an important equivalent formulation as min
∑

ξi, subject to ‖w‖ ≤ γ where γ is a
positive constant. It can be shown that if γ ≤ ‖w∗‖ where w

∗ is the solution to problem
(6) with 1

2
‖w‖2 removed, then the solution for the constraint problem is identical to the so-

lution of the Tikhonov regularization problem for an appropriately chosen C. Furthermore,
at optimality, the constraint ‖w‖ ≤ γ is active, which means ‖ŵ‖ = γ. Hence TSVC prob-
lem (7) can be converted to a simple SOCP with the constraint ‖w‖ ≤ γ or a quadratically
constrained quadratic program (QCQP) as follows if equivalently using ‖w‖2 ≤ γ2.

min
w,b,ξ

∑`

i=1
ξi

subject to yi

(

w
T
xi + b

)

+ γδi ≥ 1 − ξi, ξi ≥ 0, i = 1, · · · , `, ‖w‖2 ≤ γ2.
(8)

This QCQP produces exactly the same solution as problem (6) but is much easier to imple-
ment than (6) since it contains much less variables. By duality analysis similarly adopted
in [3], problem (8) has a dual formulation in dual variables α as follows

min
α

γ
√

∑`

i,j=1
αiαjyiyjx

T
i xj −

∑`

i=1
(1 − γδi)αi

subject to
∑`

i=1
αiyi = 0, 0 ≤ αi ≤ 1, i = 1, · · · , `.

(9)

5.2 TSVC with kernels

By using a kernel function k, the input vector xi is mapped to Φ(xi) in a usually high
dimensional feature space. The uncertainty in the input data introduces uncertainties for
images Φ(xi) in the feature space. TSVC can be generalized to construct separating hyper-
planes in the feature space using the images of input vectors and the mapped uncertainties.
One possible generalization of TSVC is to assume the images are still subject to an additive
noise and the uncertainty model in the feature space can be represented as ‖∆Φ(xi)‖ ≤ δi.
Then following the similar analysis in Sections 4 and 5.1, we obtain a problem same as (8)
only with xi replaced by Φ(xi) and ∆xi replaced by ∆Φ(xi), which can be easily kernel-
ized by solving its dual formulation (9) with inner products x

T
i xj replaced by k(xi,xj).

It is more realistic, however, that we are only able to estimate uncertainties in the input
space as bounded spheres ‖∆xi‖ ≤ δi. When the uncertainty sphere is mapped to the
feature space, the mapped uncertainty region may correspond to an irregular shape in the
feature space, which brings difficulties to the optimization of TSVC. We thus propose an
approximation strategy for Algorithm 1 based on the first order Taylor expansion of k.

A kernel function k(x, z) takes two arguments x and z. When we fix one of the arguments,
for example z, k can be viewed as a function of the other argument x. The first order Taylor
expansion of k with respect to x is k(xi +∆x, ·) = k(xi, ·)+∆x

T k′(xi, ·) where k′(xi, ·)
is the gradient of k with respect to x at point xi.

Solving the dual SVM formulation in step 1 of Algorithm 1 with ∆xj fixed to ∆x̄j yields
a solution (w̄ =

∑

j yjᾱjΦ(xj +∆x̄j), b̄) and thus a predictor f(x) =
∑

j yjᾱjk(x,xj +

∆x̄j) + b̄. In step 2, we set (w, b) to (w̄, b̄) and minimize
∑

ξi over ∆xi, which as we
discussed in Lemma 1, amounts to minimizing each ξi = max{0, 1 − yi(

∑

j yjᾱjk(xi +

∆xi,xj + ∆x̄j) + b)} over ∆xi. Applying the Taylor expansion yields

yi

(

∑

j yjᾱjk(xi + ∆xi,xj + ∆x̄j) + b
)

= yi

(

∑

j yjᾱjk(xi,xj + ∆x̄j) + b
)

+ yi∆x
T
i

∑

j yjᾱjk
′(xi,xj + ∆x̄j).



Table 1: Average test error percentages of TSVC and standard SVC algorithms on synthetic
problems (left and middle ) and digits classification problems (right).

Synthetic linear target Synthetic quadratic target Digits
` 20 30 50 100 150 20 30 50 100 150 100 500
SVC 8.9 7.8 5.5 2.9 2.1 9.9 7.5 6.7 3.2 2.8 24.35 18.91
TSVC 6.1 5.2 3.8 2.1 1.6 7.9 6.1 4.4 2.8 2.4 23.00 16.10

The optimal ∆xi = yiδi
vi

‖vi‖
where vi =

∑

yjᾱjk
′(xi,xj+∆x̄j) by the Cauchy-Schwarz

inequality. A closed-form approximate solution for the second step is thus acquired.

6 Experiments

Two sets of simulations were performed, one on synthetic datasets and one on NIST hand-
written digits, to validate the proposed TSVC algorithm. We used the commercial opti-
mization package ILOG CPLEX 9.0 to solve problems (8), (9) and the standard SVC dual
problem that is part of Algorithm 1.

In the experiments with synthetic data in 2 dimensions, we generated ` (=20, 30, 50, 100,
150) training examples xi from the uniform distribution on [−5, 5]2. Two binary classifica-
tion problems were created with target separating functions as x1−x2 = 0 and x2

1+x2
2 = 9,

respectively. We used TSVC with linear functions for the first problem and TSVC with the
quadratic kernel (xT

i xj)
2 for the second problem. The input vectors xi were contaminated

by Gaussian noise with mean [0,0] and covariance matrix Σ = σiI where σi was randomly
chosen from [0.1, 0.8]. The matrix I denotes the 2 × 2 identity matrix. To produce an
outlier effect, we randomly chose 0.1` examples from the first 0.2` examples after exam-
ples were ordered in an ascending order of their distances to the target boundary. For these
0.1` examples, noise was generated using a larger σ randomly drawn from [0.5, 2]. Models
obtained by the standard SVC and TSVC were tested on a test set of 10000 examples that
were generated from the same distribution and target functions but without contamination.
We performed 50 trials for each experimental setting. The misclassification error rates av-
eraged over the 50 trials are reported in Table 1. TSVC performed overall better than SVC.
Two representative modeling results of ` = 50 are also visually depicted in Figure 2.
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Figure 2: Results obtained by TSVC (solid lines) and standard SVC (dash lines) for the
problem with (left) a linear target function and the problem with (right) a quadratic target
function. The true target functions are illustrated using dash-dot lines.

The NIST database of handwritten digits does not contain any uncertainty information



originally. We created uncertainties by image distortions. Different types of distortions
can present in real-life data. We simulated it only by rotating images. We used ` (=100,
500) digits from the beginning of the database in training and 2000 digits from the end
of the database in test. We discriminated between odd numbers and even numbers. The
angle of rotation for each digit was randomly chosen from [−8o, 8o]. The uncertainty
upper bounds δi can be regarded as tuning parameters. We simply set all δi = δ. The data
was preprocessed in the following way: training examples were centered to have mean 0
and scaled to have standard deviation 1. The test data was preprocessed using the mean
and standard deviation of training examples. We performed 50 trials with TSVC and SVC
using the linear kernel, which means we need to solve problem (9). Results are reported
in Table 1 and the tuned parameter δ was 1.38 for ` = 100 and 1.43 for ` = 500. We
conjecture that TSVC performance can be further improved if we obtain an estimate of δi.

7 Discussions

We investigated a new learning model in which the observed input is corrupted with noise.
Based on a probability modeling approach, we derived a general statistical formulation
where unobserved input is modeled as a hidden mixture component. Under this framework,
we were able to develop estimation methods that take input uncertainty into consideration.
Motivated by this probability modeling approach, we proposed a new SVM classification
formulation that handles input uncertainty. This formulation has an intuitive geometric
interpretation. Moreover, we presented simple numerical algorithms which can be used to
solve the resulting formulation efficiently. Two empirical examples, one artificial and one
with real data, were used to illustrate that the new method is superior to the standard SVM
for problems with noisy input data. A related approach, with a different focus, is presented
in [2]. Our work attempts to recover the original classifier from the corrupted training data,
and hence we evaluated the performance on clean test data. In our statistical modeling
framework, rigorously speaking, the input uncertainty of test-data should be handled by a
mixture model (or a voted classifier under the noisy input distribution). The formulation
in [2] was designed to separate the training data under the worst input noise configuration
instead of the most likely configuration in our case. The purpose is to directly handle test
input uncertainty with a single linear classifier under the worst possible error setting. The
relationship and advantages of these different approaches require further investigation.
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