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ABSTRACT
The 2006 KDD Cup Competition featured three data min-
ing tasks drawn from a medical imaging domain. At the
core, all of these tasks were concerned with identifying pul-
monary embolisms (PEs) from pre-processed computed to-
mography (CT) images of human lungs. However, these
tasks were complicated by features such as multi-instance
learning, stringent performance standards, hard-threshold
evaluation functions, spatial correlations, and small train-
ing sets. This paper gives an overview of the data and med-
ical imaging tasks, the competition and evaluation, and the
competition victors.

1. INTRODUCTION
The Tenth KDD Cup competition was held between May

and August, 2006. Participants from around the world worked
to design cutting-edge data mining methods for a medical
image detection problem. This paper describes the Computer-
Aided Detection problem domain and the Pulmonary Em-
bolism data sets that were the subject of the competition.
We also describe the data mining and evaluation challenges
involved in this type of data.

This domain is characterized by stringent performance
standards necessary to meet FDA approval and to ensure
physician confidence. The three performance tasks of the
KDD Cup competition (Section 3) were formulated to re-
flect these hard, real-world constraints. We describe the
performance tasks and the evaluation procedures. The hard
constraints imposed by the scoring criteria turned out to
be, in some sense, the most challenging aspect of this year’s
competition, and the strongest teams were often those who
focused on scoring criteria. We examine the difficulties pre-
sented by the data, tasks, and scoring criteria.

The methods used by the winning teams are described in
three companion reports to this one.

1.1 The Computer-Aided Detection Domain
Over the last decade, Computer-Aided Detection (CAD)

systems have moved from the sole realm of academic pub-
lications, to robust clinical systems that are used by physi-
cians in their clinical practice to help detect early cancer
from medical images. For example, CAD systems have been

employed to automatically detect (potentially cancerous)
breast masses and calcifications in X-ray images, detect lung
nodules in lung CT (computed tomography) images, and de-
tect polyps in colon CT images, to name just a few CAD
applications.

CAD applications lead to very interesting data mining
problems. Typical CAD training data sets are large and ex-
tremely unbalanced between positive and negative classes.
Often, fewer than 1% of the examples are true positives.
When searching for descriptive features that can character-
ize the target medical structures, researchers often deploy a
large set of experimental features, which consequently intro-
duces irrelevant and redundant features. Labeling is often
noisy as labels are created by expert physicians, in many
cases without corresponding ground truth from biopsies or
other independent confirmations. In order to achieve clinical
acceptance, CAD systems have to meet extremely high per-
formance thresholds to provide value to physicians in their
day-to-day practice. Finally, in order to be sold commer-
cially and employed clinically (at least in the United States),
most CAD systems have to undergo a clinical trial (in almost
exactly the same way as a new drug would). Typically, the
CAD system must demonstrate a statistically significant im-
provement in clinical performance, when used, for example,
by community physicians (without any special knowledge of
machine learning) on as yet unseen cases. That is, to be ac-
cepted, the sensitivity of physicians with CAD must be (sig-
nificantly) above their performance without CAD, without
a corresponding marked increase in false positives (which
may lead to unnecessary biopsies or expensive tests). In
summary, very challenging machine learning and data min-
ing tasks have arisen from CAD systems.

2. THE PULMONARY EMBOLISM DATA
SET

In this section, we describe the CAD data set that was
used for the 2006 KDD Cup Competition.

2.1 Pulmonary Embolism
Pulmonary embolism (PE) is a highly lethal condition

that occurs when an artery in the lung becomes completely
or partially blocked. In most cases, the blockage is caused
by one or more blood clots that travel to the lungs from
other parts of the body (e.g., legs or pelvis). While PE is
not always fatal, it is nevertheless the third most common
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cause of death in the US, with at least 650,000 cases oc-
curring annually [2]. The clinical challenge, particularly in
an Emergency Room scenario, is to correctly diagnose pa-
tients that have a PE and then send them on to therapy.
This, however, is not easy, as the primary symptom of PE
is dysapnea (shortness of breath), which has a variety of
causes, some of which are relatively benign. Thus, it is hard
to separate out the critically ill patients suffering from PE
from other patients who may require a different treatment
or none at all.

The two crucial clinical challenges for a physician, there-
fore, are to diagnose whether a patient is suffering from PE
and to identify the location of the PE. Computed Tomog-
raphy Angiography (CTA) has emerged as an accurate di-
agnostic tool for PE. However, each CTA study consists of
hundreds of images, each representing one slice of the lung.
Manual reading of these slices is laborious, time consuming
and complicated by various PE look-alikes (false positives)
including respiratory motion artifacts, flow-related artifacts,
streak artifacts, partial volume artifacts, stair step artifacts,
lymph nodes, and vascular bifurcation, among many others.

Additionally, when PE is diagnosed, medications are given
to prevent further clots, but these medications can some-
times lead to subsequent hemorrhage and bleeding since the
patient must stay on them for a number of weeks after the di-
agnosis. Thus, the physician must review each CAD output
carefully for correctness in order to prevent over-diagnosis.
Because of this, the CAD system has to produce only a
small number of false positives per patient scan. The goal
of a PE CAD system, therefore, is to automatically identify
PEs with as few false positives as possible. To handle any
residual false positives from CAD, in practice, each CAD
PE finding must be finally reviewed and accepted by the
radiologist before it is reported.

2.2 The Data Processing Pipeline
The PE CAD system developed at Siemens consists of the

following three consecutive components:

1. Candidate Generation: Identify potential candidate
regions of interest (ROI) from a medical image.

2. Feature Computation: Compute a number of descrip-
tive features for each generated candidate.

3. Classification: Classify each candidate (in this case,
whether it is a PE or not) based on its features.

The first stage is a “focus of attention” (FOA) stage that
identifies candidates: image regions that stand out from the
background and are more likely to contain the target ob-
ject (PEs). The second stage converts from image space to
a feature vector space that is more amenable to standard
classification techniques. The final stage filters out non-PE
candidates and returns PEs to the physician. This basic
three-stage architecture is a common approach to identify-
ing infrequent elements in image data [1].

There are significant real-world data mining challenges in
the first two steps but, because of medical privacy consid-
erations, the primary image data cannot be made publicly
available. Thus, for the 2006 KDD Cup data, Steps 1 and
2 have been performed at Siemens and only feature values
for every candidate ROI are provided. The goal of the KDD
Cup is to design a series of classifiers related to Step 3.

2.3 Competition Data Set and Features
In the 2006 KDD Cup, a total of 67 cases were collected

and labeled by expert chest radiologists, who reviewed each
case and marked the PEs. The cases were randomly di-
vided into training and test sets. The training set includes
46 cases, while the test set contains the remaining 21 cases.
(Originally 23 test cases were provided, but 2 duplicate pa-
tient cases were identified and hence removed.) The test
group was sequestered during the competition and was only
used to evaluate the performance of the final system.

2.3.1 Candidate generation and labeling
All the 67 cases were processed with a prototype version1

of the Siemens PE CAD system, which generated a total of
4424 candidates: 3033 candidates appear in the training set
and 1391 candidates in the test set. Each candidate is a
cluster of voxels (the 3-D analog of pixels), and represented
by a representative point with a 3-D coordinate derived from
the cluster of voxels.

Each candidate was then labeled as a PE or not based on
3-D landmark ground truth provided by the experts. In or-
der to automatically label each candidate, each PE pointed
out by an expert landmark is semi-automatically extracted
and segmented. Therefore, the ground truth for each PE is
also a cluster of voxels (i.e., the segmented PE). Any candi-
date that was found to be intersected with any of the seg-
mented PEs in the ground truth was labeled as a PE. How-
ever, it should be noted that the PE segmentation process
is semi-automatic, involving a manual process, and conse-
quently the segmentation of a PE might not be perfect. In
other words, the labeling may be noisy. Moreover, multiple
candidates may intersect with the same segmented PE, that
is, multiple candidates may correspond to a single PE. Since
each PE has a unique identifier, there may exist multiple
candidates labeled with the same PE identifier. This type
of problem is sometimes referred to as a multiple-instance
problem where each positive example has multiple instances.

2.3.2 Feature computation
For each candidate, a set of 116 features were calculated

within the Siemens PE CAD system. Three of the features
were the x, y, and z locations (a representative point in 3D)
of the candidate. The remaining features were image-based
features and were normalized to a unit range, with a feature-
specific mean. The features can be categorized into those
that are indicative of voxel intensity distributions within the
candidate, those those summarizing distributions in neigh-
borhood of the candidate, and those that describe the 3-D
shape of the candidate and enclosing structures. When com-
bined these features can capture candidate properties that
can disambiguate typical false positives such as dark areas
that result from poor mixing of bright contrast agents with
blood in veins, and dark connective tissues between vessels,
from true emboli. These features are not necessarily inde-
pendent, and may be correlated with each other, especially
with features in the same group.

2.3.3 Data format
Two text files are provided and they contain the training

and test feature matrices, respectively, where each row rep-
resents an example, each column represents a feature. The

1Not commercially available.
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first two columns supply the patient identifier and the PE
identifier. The PE identifier is also our target label variable
which tells whether or not the corresponding example is a
PE. If it is a PE, the label is the PE identifier (a positive
number); if it is not a PE, the label is set to 0. In the test
data, all labels are set to -1 (which means unknown).

3. THE KDD CUP TASKS
The KDD Cup competition this year comprised three tasks:

PE identification, patient classification, and patient nega-
tive predictive value. Teams could participate in any or all
of these tasks, and separate winners were awarded in each
task category. In addition, Tasks 1 and 2 each comprise
three sub-tasks. Competitors had the option of submitting
a single solution for all three sub-tasks or separate solution
vectors for each sub-task. Typically, competitors chose to
submit different solution vectors for each of the three sub-
tasks in an effort to improve sensitivity as the false positive
threshold was relaxed.

A submission for a sub-task is a vector containing a single
binary value for each data point in the test data. The com-
petition demanded a hard classification, rather than, say, a
confidence value to reflect the medical reality that the cus-
tomers (physicians) want to see a hard classification. A soft
classification, such as a probability or confidence, would re-
quire additional interpretation and training on the part of
the physician.

3.1 Task 1
The first classification task is to classify individual PEs.

For clinical acceptability, it is critical to control false positive
rates – A system that “cries wolf” too often will be rejected
out of hand by clinicians. Thus, the goal is to detect as
many true PEs as possible, subject to a constraint on false
positives. For this task, we make the following definitions:

PE sensitivity is defined as the number of PEs correctly
identified in a patient. A PE is correctly identified if at
least one of the candidates associated with that PE is
correctly labeled as a positive. In this case, identifying
2 or more candidates for the same PE makes no impact
on the sensitivity.

False positives are defined as the number of candidates
which are not true PEs but incorrectly classified by a
classifier as PEs in a patient. That is, the false positive
rate is the total of all negative candidates classified as
PEs in the patient.

Average FP rate for a test set is the average number of
FPs produced across all patients in that test set.

Example 1: Consider a patient with 2 PEs marked by
a physician and a total of 17 candidates. Assume the first
PE has 5 candidates associated with it, and the second PE
has 3 candidates (8 positive labels with two PE-ids for this
patient). If the classifier labels 3 of the candidates associated
with the first PE correctly, none of the candidates associated
with the second PE correctly, and marks 4 other candidates
not associated with either PE as positive, then the classifier
would have marked one PE correctly out of two possible
(sensitivity=50%), with 4 false positives.

Example 2: Suppose that a test set has a total of 10 pa-
tients. Two classifiers are applied to that test set. Classifier

A produces 2 FPs on each of the first nine patients and 3
FPs on the last patient. Classifier B produces zero FPs on
each of the first nine patients and five FPs on the final pa-
tient. Then classifier A has an average FP rate of 2.1, while
classifier B has an average FP rate of 0.5.

In this set of tasks, the goal is to produce a classifier that
maximizes sensitivity, subject to a threshold on maximum
allowable FPs (i.e., to maximize a Neyman-Pearson crite-
rion.) If, in any test set, a classifier exceeds the maximum
allowable average FP rate for that sub-task, the results are
completely disqualified for the entirety of Task 1. Classi-
fiers must meet the specified average FP threshold for all
three sub-tasks, or the entire submission is disqualified from
Task 1.

Example 3: The FP threshold for Task 1a (defined in
the following) is 2 per patient. Classifier A from Example
2 produces an average of 2.1 FP per patient on the test set
during this task and will be disqualified, regardless of its
sensitivity. Classifier B, however, passes the FP threshold,
so its sensitivity will be evaluated.

No extra credit was given for predictors that performed
better than this FP metric. Thus, say, producing 1 false
positive per patient, instead of 2, did not impact the final
score. (Though achieving 1 FP/patient at a high sensitivity,
would be extremely valuable, clinically speaking!).

Competitors were allowed to use different classifiers for
each of the following sub-tasks, and to submit different so-
lution vectors for each.

Task 1a: Build a system where the false positive rate is at
most 2 per patient.

Task 1b: Build a system where the false positive rate is at
most 4 per patient.

Task 1c: Build a system where the false positive rate is at
most 10 per patient.

In each task, the submissions were ranked based on PE sen-
sitivity, subject to the FP thresholds. Submissions that did
not meet the FP thresholds were disqualified for that sub-
task and for the task as a whole.

3.2 Task 2
The second classification task is to classify each patient as

having a PE or not. The reason why this is important is that
patient treatment for PE is systemic, i.e., many aspects of
the treatment are the same whether the patient has one or
many PE. For this task, we make the following definitions:

Patient sensitivity is defined as the number of patients
for whom at least one true PE is correctly identified.
As above, a PE is identified if any one of the candi-
dates associated with that PE is correctly classified,
and multiple correct identifications in a single patient
do not increase the sensitivity score.

False positives are defined as the number of candidates
falsely labeled as a PE in a patient.

Average FP rate for a test set is the average number of
FPs produced across all patients in that test set.

Example 1: Consider a patient with 2 PEs marked by a
physician. Assume the first PE has 5 candidates associated
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with it, and the second has 3 candidates associated with it.
If the classifier labels 2 of the candidates associated with the
first candidate correctly, none of the candidates associated
with the second PE, correctly, and four other candidates
not associated with either PE, then the classifier would have
labeled the patient correctly, with 4 false positives.

Again, for this task, 3 classifiers should be built, and any
classifier that yields an average FP rate above the specified
FP threshold on any sub-task will be disqualified.

Task 2a: Build a system where the false positive rate is at
most 2 per patient.

Task 2b: Build a system where the false positive rate is at
most 4 per patient.

Task 2c: Build a system where the false positive rate is at
most 10 per patient.

In each task, the submissions were ranked based on PE sen-
sitivity, subject to the FP thresholds. Submissions that did
not meet the FP thresholds were disqualified for that sub-
task and for the task as a whole. Competitors were free to
use the same classifier(s) as in Task 1, or to build different
classifiers for this task.

3.3 Task 3
The third classification task is to identify negative patients

while producing no false negatives. The reason for this task
is that one of the most useful applications for CAD would be
a system with very high (nearly 100%) Negative Predictive
Value. In other words, if the CAD system generated zero
positive candidates for a given patient, we would like to be
very confident that the patient was indeed free from PEs.

For this task, we make the following definitions:

A positive patient is defined as a patient who has at least
1 PE. Otherwise, it is a negative patient.

Identified as negative A patient is identified as negative
when the CAD system produces no positive labels for
any of that patient’s candidates.

Negative predictive value (NPV) for a classifier is

TN/(TN + FN)

(i.e., number of true negative patients divided by the
total of true and false negatives).

Note that the NPV is maximized by a classifier that cor-
rectly identifies some negative patients but produces no false
negatives (no positive patients identified as negative). To
qualify for this task, a classifier must have 100% NPV (i.e.,
when it says a patient has no positive marks, the patient
must have no true PEs). The primary criterion is the highest
number of negative patients identified in the test set (largest
TN), subject to a minimum cut-off of identifying 40% of the
negative patients on the test set. The first tie breaker is the
sensitivity on PEs (as defined in Task 1), followed by the
false positive rate on the entire test set.

3.4 Challenges
There were two broad classes of challenges in this competi-

tion: challenges arising from the data itself, and challenges
arising from the evaluation criteria. The data challenges

stemmed from the complex source (human medical imag-
ing), sparse access to domain knowledge, and small data
set sizes. The medical and anatomical aspects of the data
raise a number of interesting issues, only some of which were
exploited by any competitors.

Noisy ground truth Candidate labeling may be noisy, as
candidates are labeled as PEs according to segmented
PEs based on ground truth marks given by experts.
Since the segmented PEs are not perfect, some can-
didates may be falsely labeled as PEs due to PE seg-
mentation errors.

Feature correlation Many of the features computed for
each candidate are correlated.

Imbalanced data The data is very imbalanced between
positive and negative classes. Commonly, only around
1-5% of the candidates are true positives.

Sparse data The data is relatively sparse – even though,
from a machine learning point of view, this data has
relatively few positive examples, in real-life it costs
several million dollars to collect, label, and build the
features, all while maintaining strict patient confiden-
tiality as per legal and ethical requirements.

Spatial correlation The PE candidates are strongly spa-
tially correlated by their proximity to legitimate PEs
and to anatomical artifacts that are likely to produce
false PE candidates. For example, certain arteries are
likely to produce false PE candidates and arteries tend
to run vertically. In principle, it is possible to exploit
the vertical alignment of arterial PE candidates to fil-
ter out such false positives, though it does not appear
that any of the competitors attempted to do so.

Symmetry Some teams observed that lungs are bilaterally
symmetric and that false PEs arising from anatomi-
cal structure should, therefore, also be likely to cluster
symmetrically. Thus, statistics about anatomy can be
gathered from both lungs, while PEs (presumably in-
dependent of anatomy) should stand out due to asym-
metry.

The evaluation criteria in this year’s KDD Cup were quite
strict and created a much more difficult task than many
data mining practitioners are used to working with. Many
textbook and real-world data mining tasks are expressed in
terms of relatively “soft” objective functions such as squared-
error. In such tasks, small changes to the predicted value
of a datum make only small changes to the resulting score.
Even apparently “hard” objectives, such as 0-1 loss, write
the complete data-set score as a linear function of indepen-
dent hard-threshold evaluations for each data point. Thus,
the classification of any single datum makes only a small
impact on the global score. Further, we often “soften” even
these evaluations by employing tools such as ROC curves
that allow us to be agnostic about operating points and
acceptable performance levels. Altogether, these tools al-
low us to tune our data mining pipelines fairly aggressively,
attempting to eke out the maximum possible positive pre-
diction performance.

By contrast, the evaluation criteria for the 2006 KDD Cup
were very strict and highly nonlinear. PE sensitivity, patient
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sensitivity, and false positives are used for evaluation. These
metrics are more tuned to the clinical needs of physicians for
decision support. Further, there were three separate hard-
threshold decisions made in the scoring process:

Multiple instance scoring In all three tasks, the enti-
ties being classified (PEs or patients) were represented
by sets of candidates. That is, a single PE (for ex-
ample) might correspond to a dozen feature vectors.
To receive credit for identifying the PE, a competi-
tor had to correctly identify any one of this set. But
no additional credit was received for identifying more
than one candidate from this set. Thus, there is a
sharp no credit/credit threshold. Compare this to the
standard supervised learning framework in which most
scores are linear in the number of correctly classified
instances.

Acceptable false positive rate The FDA and physicians
will reject a system with an unacceptable false positive
(FP) rate. Therefore, it is useless to provide a system
with high sensitivity that “almost” meets the false pos-
itive rate. Thus, a competitor’s solution for some sub-
task was disqualified if it exceeded the allowable FP
threshold for that sub-task (see Section 3).

Boolean AND aggregation Because Tasks 1 and 2 each had
three sub-tasks (Section 3), it was necessary to aggre-
gate the competitors’ solutions across sub-tasks. Fol-
lowing the description document [4], Boolean AND was
used for this aggregation. That is, to qualify for a task,
a competitor’s set of solution vectors had to meet the
FP thresholds for all three sub-tasks.

These hard thresholds increase the impact of classification
variance: small changes in labellings of the test set can yield
dramatic changes in the score. In the worst case, changing a
single label of one feature vector in one sub-task can shift a
submission’s FP rate enough to move it from qualification to
disqualification. The sensitivity of a disqualified submission
is defined to be zero, so the change in a single label can
reduce a high sensitivity to zero.

Thus, controlling the variance of learned models is a key
consideration in these tasks. This is very different than the
“textbook” approach to data mining, in which the emphasis
is often on the expectation of a model’s performance. As it
turned out, many of the high-performing submissions in this
year’s KDD Cup were from teams who devoted substantial
attention to this issue.

4. OVERVIEW OF PARTICIPANTS AND AP-
PROACHES

Overall, sixty-eight groups submitted solutions to at least
one of the tasks. Participants spanned at least eighteen
countries, judging from their email address domains.2 There
were twenty-four student-led teams from at least eight coun-
tries. Overall, the student-led teams gave strong perfor-
mances, with student-led teams finishing in the top five
places in Tasks 1 and 2, and in the top ten places in Task 3.

2This is almost certainly a conservative estimate, as there
were a number of registrants who listed no affiliation or
provided only globally accessible email addresses, such as
gmail.com.

The space of techniques attempted by the competitors
ranged across a similarly wide spectrum of provenances.
Most teams brought to bear some combination of three crit-
ical steps of data mining: data cleaning/preprocessing, clas-
sifier training, and validation. The emphasis among these
three varied widely however. Some teams viewed the prob-
lem almost exclusively as a dimensionality reduction prob-
lem (almost in an unsupervised fashion) and focused sub-
stantial effort on the data cleaning/preprocessing phase, while
applying only very simple classifiers and validation there-
after. Others focused heavily on validation, attempting to
design their validation methods to account for the strin-
gency of the evaluation criteria. And, perhaps unsurpris-
ingly, a majority of the teams focused most of their effort
on creative variations in the classification space.

5. EVALUATION
The testing data for the KDD Cup were, unfortunately,

quite limited. While the organizers had hoped to have more
data available during the scope of the competition, this
proved to be impossible. For both practical and privacy
reasons, human medical imaging data are extremely expen-
sive to collect and pre-process. In the end, only 1391 PE
candidates (feature vectors), representing 67 patients, were
available for testing. And, of those, two patients (112 PE
candidates) turned out to be inadvertent duplicates from the
training data set and had to be dropped during the evalu-
ation phase. Thus, the final competition evaluation was on
only 1279 PE candidates.

5.1 Bootstrap Sampling
To partially offset this small evaluation set, we employed

bootstrap resampling [3] of the test set. This procedure pro-
vides an improved estimate of the expected sensitivity for
a submission, at the cost of increased variance. In light of
the sensitivity of the KDD Cup scoring procedure to vari-
ance (Section 3.4), this can have a large impact on classifiers
(Section 5.2). In some sense, the bootstrap samples simulate
random draws of patients from the same population as the
original testing data set. The variance impact on a submis-
sion can then be interpreted as a measure of the robustness
of the submission to variations in the patient pool. Because
of the hard thresholds in the scoring function, it is impor-
tant that a fielded classifier system for this kind of data not
be overly sensitive to such variations.

An interesting problem arose in the sampling phase. The
usual implementation of bootstrap sampling is to draw a new
data set by uniformly sampling, with replacement, from the
original data. However, this procedure is based on the as-
sumption that the data are originally generated IID so that
a uniform sample correctly captures marginal distributions.
This assumption is violated in the 2006 KDD Cup data:
candidates are correlated both within patients and by PE.
Given these dependencies, it is not immediately clear how
best to generate a bootstrap sample.

We examined two different sampling strategies. The flat
sampling strategy ignored data correlations and simply drew
uniformly with replacement from the test data. The hier-
archical sampling strategy, on the other hand, first sampled
uniformly with replacement from patients, and then drew
candidates conditioned on patient. The goal was to mimic
the generative process of the original data, in which PEs are
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a function of a patient’s health and do not simply occur IID
in the population, independent of patient.

MSE KL Div
Flat Hier Flat Hier

Pat 5e-4 0.03 9e-5 0.26
PE 9e-5 2e-3 2e-4 0.03

PE|Pat 0.041 0.034 0.0042 0.0038

Table 1: Comparison of flat versus hierarchical bootstrap
sampling on the KDD Cup data. Columns give measure-
ments of mean-squared error (MSE) and KL divergence (KL
Div) between the bootstrapped sample and the original test
data for both the flat and hierarchically sampled bootstraps.
The rows give the values for the marginal distribution of pa-
tients, the marginal distribution of PEs, and the conditional
distribution of PEs given patients. Note that while the hi-
erarchical sample has larger MSE/KL than the flat sample
for the marginals, it has smaller MSE/KL than flat for the
conditional.

To understand the difference between the flat and hierar-
chical bootstrap samples, we compared the distribution of
patients and PEs in the bootstrap to that in the original
testing data. Table 1 gives the mean-squared error and KL
divergence between the bootstrapped distribution and the
original data distribution. The first two rows show the mea-
sured values for the marginal distributions of the patients
and PEs, respectively, in the flat and hierarchically boot-
strapped samples. The values for the flat samples are essen-
tially zero, while the hierarchically bootstrapped samples
have small, but non-negligible, errors. The last row, how-
ever, shows the measured errors for the conditional distribu-
tions of PEs, given patient. Here we see that the flat sampled
data has worse error than the hierarchically sampled data.
This finding affirms that the hierarchically bootstrap sam-
ples are more nearly preserving the important patient-PE
dependency than the flat sample is. Thus, we believe that
the hierarchical bootstrap better represents the distribution
of patients and PEs that might be seen in a clinical setting
than a flat sampled bootstrap would.

We also found that both sampling strategies decreased
competitors’ average scores, compared to non-bootstrapped
scores. Most of the score decrease can be attributed to an
increase in average FP rate, which pushed the score of many
samples into the disqualified region. This is not surprising,
given the increased variance due to bootstrapping. However,
the relative rankings of competitors was less affected. In
particular, the first place competitors in both Tasks 1 and 3
remained unchanged by bootstrapping, and most of the top
competitors remained in the top decile. Furthermore, the
winning competitors won under both flat and hierarchical
bootstrapping. (Though the choice of bootstrap strategy did
have a substantial impact on relative rankings lower down
in the pool – especially below the top-ten competitors.)

For the final competition evaluation, we drew 200 hierar-
chical bootstrap samples from the testing data, each of 1279
candidates. A submission’s score was the mean score over
all bootstrap samples, where a sample on which the submis-
sion was disqualified was assigned a score of 0. The same
200 bootstrap vectors were used to evaluate all competitors.

5.2 The Effects of Boosting and Stringent Eval-
uation Criteria

The increase in average FP rate due to bootstrapping had
dramatic impact on some competitors, while others were
relatively less affected. Those who emerged at the top tier
of the bootstrap sample were, overall, less affected by the
sampling than were those in lower tiers. For example, on
Task 1 the top one-third of competitors’ scores changed by
an average of 0.62 due to bootstrapping, while the middle
third changed by an average of 1.02. (The bottom third
were those who, largely, were disqualified and scored zero on
both the original test data and the bootstrapped sample.)
For Task 2, the effect was even more dramatic, with the top
tier of competitors changing score by 2.71, while the middle
tier shifted by 8.02.

In Task 3, it turns out that only two competitors even
qualified on the original testing data. In this case, boot-
strapping was a great boon to many competitors, as many
of them qualified on some of the bootstrap samples and,
therefore, received a non-zero score in the final evaluation.
This allowed us to, for example, select a best student submis-
sion for Task 3 – a decision that would have been impossible
under the original data.

Some competitors’ scores were quite drastically impacted
on the bootstrap data. For example, some slid from a non-
zero score on the original test data to a zero score on the
bootstrapped data. To understand this counterintuitive out-
come, we examined the scores of individual bootstrap sam-
ples for a number of competitors. Tables 2 and 3 illustrate
this effect for Task 1. Each of these tables shows a few rows
from the bootstrap sample results. The first three columns
show the competitors’ raw FP rates on the corresponding
sub-task. The next three columns indicate whether that FP
rate qualified for the sub-task, and the final column shows
the overall qualification for Task 1 on that draw of the boot-
strap data.

Subtask FP Rate Subtask Qualification? Task
S-1 S-2 S-3 Q-1? Q-2? Q-3? Qual?

1.19 2.81 8.00 T T T T

1.29 3.71 10.57 T T F F

0.90 3.00 9.00 T T T T

1.43 3.76 10.05 T T F F

0.71 2.95 8.24 T T T T

Table 2: Example of a few results from the bootstrap evalu-
ation of the winning submission for Task 1. Each row gives
results from one bootstrap sample of the test data. The
first three columns display the FP rate measured from the
competitor’s submission on that sample for each of the three
sub-tasks of Task 1. The next three columns show whether
or not the FP rate met the required FP threshold for a given
sub-task on that sample. The final column displays whether
or not that sample qualified to compete (Boolean AND of the
previous three columns). We see that this competitor quali-
fied on three of the five samples shown here. Altogether, this
submission qualified on 179 of the 200 bootstrap samples.

Table 2 is data drawn from the winning submission for
this task. We see that, even in the presence of bootstrap-
ping, this submission qualifies on many samples. While the
bootstrap impacted the average FP rates for this competi-
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Subtask FP Rate Subtask Qualification? Task
S-1 S-2 S-3 Q-1? Q-2? Q-3? Qual?

2.24 5.48 9.86 F F T F

2.14 5.19 11.05 F F F F

1.62 5.62 12.14 T F F F

2.00 5.57 10.29 T F F F

1.71 5.48 11.24 T F F F

Table 3: Example of a few results from the bootstrap eval-
uation of another competitor’s submission for Task 1. Each
row gives results from the same bootstrap sample as dis-
played in Table 2. The columns are the same as in Table 2.
While this submission qualified in a number of sub-tasks in-
dividually, in every sample showed here the submission was
disqualified by the AND criterion. Altogether, this submission
did not qualify on any of the bootstrap samples.

tor, the design was fairly robust to variance and maintained
a passing score on 179 of the 200 bootstrap samples.

In Table 3, we see samples from a competitor whose sub-
mission moved from a non-zero score on the original testing
data to zero on the bootstrapped data. In this case, al-
though the submission qualified on a number of sub-tasks,
it missed the target FP threshold on at least one sub-task
and was disqualified in all cases. This competitor was much
more deeply affected by the variance imposed by the boot-
strap samples. In a more traditional data mining setting, in
which the scoring function changes linearly with the number
of incorrectly labeled instances, this would have had signifi-
cantly less impact on this competitor’s overall score. Under
the KDD Cup’s much more stringent scoring function, how-
ever, the relatively modest FP increases were dramatically
amplified.

Interestingly, some competitors’ scores actually improved
after the bootstrapping. This was primarily in the case
where a competitor was disqualified on the original test data,
but qualified on some samples from the bootstrap. It ap-
pears that for these submissions, the original test data was
a statistically poor sample, and that under a slightly differ-
ent data set, they would have performed better. Interest-
ingly, the number of competitors whose score improved from
zero after bootstrapping turned out to offset those whose
score was decreased to zero. In Task 1, for example, twenty-
eight of the sixty-four competitors scored zero on the original
test data, and twenty-eight scored zero on the bootstrapped
data. However, four competitors had shifted from zero to
non-zero, while four others shifted in the opposite direction.
The notable exception, as mentioned above, was Task 3, in
which twenty-one competitors received a non-zero score only
after bootstrapping.

Overall, it appears that, while a mixed blessing in some
cases, the combination of bootstrapping with a sharply non-
linear scoring function allowed us to identify competitors
whose methods were most robust to data variance. Given
the sensitivity of the target domain, in which evaluation cri-
teria are quite strict, these are the competitors that would
most likely win acceptance in the market.

6. VICTORS
For each task, we identified a winning team and one or

more runners-up teams. Each task also had a “best stu-

dent entry” prize, awarded to the best-performing student-
led team.

6.1 Task 1: PE Identification
The winners in Task 1 were:

First Place Robert Bell, Patrick Haffner, and Chris Volin-
sky (AT&T Research).

First Runner Up Dmitriy Fradkin (Ask.com).

Second Runner Up Domonkos Tikk (Budapest Univer-
sity of Technology & Economics), Zsolt T. Kardkovács
(Budapest University of Technology & Economics),
Ferenc P. Szidarovszky (Szidarovszky Ltd. and Bu-
dapest University of Technology & Economics), György
Biró (TextMiner Ltd.), and Zoltán Bálint (Budapest
University of Technology & Economics).

Best Student Entry Karthik Kumara (team leader), Sourang-
shu Bhattacharya, Mehul Parsana, Shivramkrishnan
K, Rashmin Babaria, Saketha Nath J, and Chiranjib
Bhattacharyya (Indian Institute of Science).

6.2 Task 2: Patient Classification
The winners in Task 2 were:

First Place Domonkos Tikk (Budapest University of Tech-
nology & Economics), Zsolt T. Kardkovács (Budapest
University of Technology & Economics), Ferenc P. Szi-
darovszky (Szidarovszky Ltd. and Budapest Univer-
sity of Technology & Economics), György Biró (TextMiner
Ltd.), and Zoltán Bálint (Budapest University of Tech-
nology & Economics).

First Runner Up Ruiping Wang, Yu Su, Ting Liu, Fei
Yang, Liangguo Zhang, Dong Zhang, Shiguang Shan,
Weiqiang Wang, Ruixiang Sun, and Wen Gao (Insti-
tute of Computing Technology, Chinese Academy of
Sciences).

Second Runner Up Cas Zhang, Y. Zhou, Q. Wang, and
H. Ge (Joint R&D Lab, Chinese Academy of Sciences).

Third Runner Up Dmitriy Fradkin (Ask.com).

Best Student Entry Zhang Cas (IA, PKU).

6.3 Task 3: Negative Predictive Value
The winners in Task 3 were:

First Place William Perrizo and Amal Shehan Perera (Data-
SURG Group, North Dakota State University)

Runner Up Nimisha Gupta and Tarun Agarwal (Strand
Life Sciences Pvt. Ltd.)

Best Student Entry Karthik Kumara (team leader), Sourang-
shu Bhattacharya, Mehul Parsana, Shivramkrishnan
K, Rashmin Babaria, Saketha Nath J, and Chiranjib
Bhattacharyya (Indian Institute of Science).
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7. RESOURCES
The 2006 KDD Web site will continue to be active at

http://www.cs.unm.edu/kdd_cup_2006. This site contains
the full KDD Cup training and testing data and the full com-
petition rules. This site also hosts a downloadable archive,
containing all of the above, as well as the bootstrap vec-
tors used for the competition, the list of excluded testing
data (Section 5), and the scoring software. The three win-
ning teams have provided reports on their approaches to the
competition, appearing as companions to this one.

8. CONCLUSIONS
The 2006 KDD Cup was an exciting competition, with a

rich problem domain and an excellent field of competitors.
The data set was drawn from an important and high-profile
real-world medical domain. The real-world facets of the data
and domain contributed a number of important challenges to
the competition, ranging from inter-point correlations to an
extremely difficult scoring criterion. A broad field of teams
competed in three tasks on this data. In the end, it appears
that the strongest competitors were those who planned for
robustness to sample variance.

Overall, the competition was quite strong and we had a
number of truly excellent submissions. It is clear from the
quality of results that all of the competitors poured enor-
mous creativity and effort into the competition. We hope
that this will spur continued research into the many chal-
lenges raised by this type of data and evaluation criteria.
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