
Clustering by Maximizing Sum-of-Squared Separation Distance

Yixin Chen∗† Jinbo Bi‡

Abstract

Maximizing the separating margin is crucial for the good

generalization performance of Support Vector Machines

(SVMs). Analogous to the definition of separation distance

or separating margin in SVMs, we propose a definition on

separation distance in clustering tasks when a hyperplane

is used to separate clusters. For given training data and a

given metric distance, by maximizing the proposed separa-

tion distance, our clustering algorithm constructs an “opti-

mal” hyperplane that can be applied to unseen data in the

future. The resulting hyperplane corresponds to a nonlin-

ear decision boundary in the input feature space through

an appropriate distance feature mapping. A graph-theoretic

perspective of the proposed method is discussed. In partic-

ular, we show that, under certain conditions, the proposed

clustering algorithm is equivalent to a spectral relaxed graph

cut. Extensive experimental results are provided to validate

the method.

Keywords: biclustering, optimization, graph partitioning,

spectral relaxation, spectral clustering.

1 Introduction and Overview.

As an important branch in unsupervised learning, clus-
ter analysis aims at partitioning a collection of objects
into groups or “clusters” so that members within each
cluster are more closely related to one another than ob-
jects assigned to different clusters [12]. In a variety of
areas including bio-informatics, computer vision, infor-
mation retrieval, data mining, and VLSI design, clus-
tering algorithms provide automated tools to help iden-
tify a structure from an unlabeled data set. There is a
rich resource of prior work on this subject. The works
reviewed below are most related to ours, which by no
means represent a comprehensive list.

1.1 Related Work. Depending on the underlying
model assumption, clustering algorithms roughly fall
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into two categories: generative approach and discrim-
inative approach.

A generative clustering algorithm supposes that the
data are independent and identically distributed sam-
ples generated from an unknown probability density
function. This density function is usually parameter-
ized by a mixture model: weighted sum of a collection
of component density functions, each of which char-
acterizes one of the clusters. Consequently, clustering
turns into a density estimation problem, which is com-
monly tackled by Expectation Maximization (EM) algo-
rithm [6]. However, in practice there is usually no a pri-
ori knowledge about the parametric forms of component
density functions. In many applications the Gaussian
assumption does not lead to satisfactory performance.
Moreover, estimation techniques, such as EM algorithm,
only guarantee local optimality. Nonetheless, generative
clustering techniques have several advantages, such as
the scalability to large data sets [4] and the ability to
handle examples outside the training set.

A discriminative clustering algorithm works directly
on the training data without explicitly assuming an un-
derlying probability model. Each training sample is as-
signed to one and only one of the clusters. A “loss” func-
tion is defined over all possible assignments. It measures
the degree to which the clustering goal is met. Optimal
cluster assignments for all training samples are achieved
by optimizing the loss function. Since this optimiza-
tion problem is essentially combinatorial, discriminative
clustering algorithms are also called combinatorial clus-
tering algorithms [14]. Combinatorial optimization is
straightforward in principle: searching all possible as-
signments. Unfortunately, this is feasible only for very
small data sets since the number of distinct assignments
is O(kn), where k is the number of clusters and n is the
sample size. Therefore, practical discriminative clus-
tering algorithms typically seek for a trade-off between
optimality and computational complexity. For exam-
ple, the k-means [13] and k-medoids algorithms [16] use
an iterative greedy descent strategy to search for a sub-
optimal partition. Agglomerative (divisive) clustering
methods [16] generate a hierarchy of clusters via recur-
sively merging (splitting) clusters according to certain
greedy heuristics. Spectral clustering [20, 8, 17] formu-
lates clustering as a graph partitioning problem. The



optimal partition is approximated by eigenvectors of a
properly normalized affinity matrix of the graph. The
relationships between spectral partitioning methods and
kernel k-means are discussed in [7].

Interesting connections between generative and dis-
criminative approaches have been discussed in [2]. The
equivalence between a class of generative and discrimi-
native clustering algorithms were established based on
Bregman Divergence loss function [2]. Unlike generative
approaches, which can predict on examples outside the
training set, many discriminative clustering algorithms,
including those mentioned above, cannot do so without
rerunning the algorithm. In a recent work by Bengio et
al., a family of discriminative clustering methods were
extended to deal with “out-of-sample” examples [3].

The work proposed in this paper is a new discrimi-
native clustering algorithm based on a loss function mo-
tivated by the separating margin of Support Vector Ma-
chines (SVM) [21]. An overview is provided below.

1.2 Overview of Our Approach. In the past
decade, SVM has become an effective and robust tool
for solving supervised classification problems. Loosely
speaking, SVM finds an “optimal” hyperplane, in
a kernel-induced feature space, which separates two
classes of samples with the maximal margin. The char-
acteristics of SVM can be summarized as follows:
1. maximizing a separation distance, i.e., the so-called
separating margin, and
2. applying appropriate feature mappings, i.e., the ker-
nel mapping.
By a kernel mapping, SVM is able to construct non-
linear models using a linear learning mechanism. The
margin concept provides a theoretical basis for SVM
since maximizing margin is related to minimizing up-
per bounds on the generalization error [21]. This paper
proposes a novel clustering algorithm aiming to make
analogous uses of the above two well-established charac-
teristics of SVM in unsupervised learning, in particular,
cluster analysis.

From a basic rationale of clustering, members of
different clusters should be as dissimilar as possible.
In terms of a linear separating boundary, intuitively,
a good bipartition should divide the samples into two
groups, and put them away from the separating hyper-
plane as far as possible. In SVM, the separating margin
of two classes is defined as the shortest distance from
the vectors in either of the two classes to the separating
hyperplane 1. Figure 1 illustrates the definition. Let L

1The margin defined here refers to the “hard margin” when
separation is perfect. Margin can also be defined when perfect
separation is impossible or undesirable [21]. It is then called the
“soft margin.”
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Figure 1: The separation distance definition.

denote the geometric distance from an example to the
hyperplane. Assume indices i and j run through ex-
amples from cluster 1 and cluster 2, respectively. The
margin can be written as:

Margin = min
i

Li + min
j

Lj .

The use of margin was derived from VC theory for su-
pervised learning tasks. Unfortunately, maximizing the
margin on all examples with unknown labels in unsuper-
vised learning is an NP-complete problem. The evalu-
ation of margin varies for different possible label as-
signments. Hence we propose a different separation dis-
tance, which we call the sum-of-squared (SS) separation
distance and is defined:

SS =
∑

i

L2
i +

∑
j

L2
j =

∑
t

L2
t

where t runs through all training examples. We will
show that the sum-of-squared separation distance (SS)
is much easier to evaluate and maximize, and maximiz-
ing SS produces neat properties similar to those ob-
tained for spectral clustering.

For a nontrivial training set, there usually exist clus-
ter assignments under which the samples are not lin-
early separable in the input space. Therefore it is pos-
sible that some bipartitions, which may correspond to
good clustering, could not be realized by hyperplanes
in the input space. This is certainly undesirable since
the model itself may have already eliminated potentially
good bipartitions. To avoid such an intrinsic deficiency,
nonlinear feature mapping is adopted so that a hyper-
plane constructed in the feature space corresponds to a
nonlinear model in the original input space, such as the
kernel mapping used in SVMs. Notice that when per-
fect separation is impossible in supervised learning, a
“soft margin” can be defined in terms of the given class
labels. With unknown labels in unsupervised learning,
no way exists to define a soft margin. Bearing this in
mind, we propose a simple feature mapping, based on
the given data set and the distance (or dissimilarity)



measure, which maps input vectors to a new feature
space where samples are always linearly separable.

The proposed algorithm, Maximal Separation Clus-
tering (MSC), possesses several properties:

• MSC only requires the knowledge of a metric dis-
tance function measuring the dissimilarity between
samples with an assumption that prior knowledge
can be properly incorporated in the chosen metric
distance. For applications where a similarity func-
tion is specified, a transformation is needed to map
the similarity into a metric distance. The transfor-
mation will be discussed in Section 2.1. Note that
a metric distance function is a more general con-
cept than a positive-definite (PD) kernel function
since as long as an inner product (the PD kernel)
is given, the corresponding metric distance can be
induced, but not vice versa.

• Although MSC is a discriminative approach, the
algorithm can predict labels for out-of-sample ex-
amples because it learns an optimal separating hy-
perplane that transforms to a nonlinear decision
boundary in the input space.

• MSC has interesting connections with a class of
graph partitioning methods. Specifically, the opti-
mal bipartition generated by the algorithm can be
viewed as an approximation of an “optimal” graph
partition under spectral relaxation.

• MSC can be formulated as an eigenvalue decompo-
sition problem similar to spectral clustering under
certain circumstances. Hence it does not require
any integer programming solvers.

1.3 Outline of the Paper. The remainder of the
paper is organized as follows: In Section 2, we first
introduce a feature mapping such that any bipartition
of a given training set can be achieved by a hyperplane
in the new feature space. Clustering is then formulated
as maximizing the sum-of-squared separation distance
in the feature space. In Section 3, we propose a
class of graph partitioning problems and prove that
under certain conditions the optimal bipartition given
by a hyperplane is the solution of a graph partitioning
problem with spectral relaxation. Section 4 describes
the experiments we have performed and provides the
results. We conclude in Section 5, together with a
discussion of future work.

2 Maximal Separation Clustering.
We focus on problems of clustering examples into two
clusters. For applications requiring more than two clus-

ters, the proposed method can be recursively applied,
but only local optimality is ensured.

2.1 Distance Feature Mapping. Given a set of n
distinct training samples X = {xi ∈ � : i = 1, ..., n}
and a metric distance function 2 m : � × � → �, we
consider linear separation functions:

f(x) = wT d(x)(2.1)

where d : �→ �
m realizes a set of features induced by

the metric distance m and w are the model parameters.
An example xi is assigned into one cluster if f(xi) ≥ 0;
the other cluster if f(xi) < 0.

Note that the metric distance m can be any suitable
metric and does not have to be the Euclidean distance
in �. Since the distance function m provides the only
prior knowledge about clustering, m(xi,xj) should be
fully explored in the feature mapping d. We propose
to map any input vector x to an n dimensional space
where the jth dimension represents dj(x) = m(x,xj).

The mapping dX : �→ �
n can be written as:

dX (x) =




m(x,x1)
m(x,x2)

...
m(x,xn)


 .

Clearly, dX is data dependent. Now we validate if the
training samples are linearly separable for all possible
label assignments in the new feature space generated
by dX . Let us first stack n cluster assignments made by
(2.1) into a matrix equation:




f(x1)
f(x2)

...
f(xn)


 = Dw(2.2)

where

D =




m(x1,x1) m(x1,x2) · · · m(x1,xn)
m(x2,x1) m(x2,x2) · · · m(x2,xn)

...
...

. . .
...

m(xn,x1) m(xn,x2) · · · m(xn,xn)




is called the distance matrix or the dissimilarity ma-
trix. D is symmetric and nonnegative (all elements are
greater than or equal to zero.) For Euclidean distance
m(·, ·), D is always invertible with one positive eigen-
value and n − 1 negative eigenvalues [18]. It has been

2A metric distance function, m(·, ·), is a nonnegative function
satisfying: 1) m(x, y) ≥ 0, and m(x, y) = 0 iff x = y; 2)
m(x, y) = m(y, x); and 3) m(x, y) + m(y, z) ≥ m(x, z).



proved that this property holds for an arbitrary metric
distance m(·, ·) as well [1]. Consequently, for an arbi-
trary label assignment [f(x1), f(x2), · · · , f(xn)]T , equa-
tion (2.2) has a unique solution of w. This implies that
dX (xi)’s are always linearly separable.

In some clustering tasks, a distance metric is not
given directly. Instead, a similarity measure is specified.
A commonly used class of similarity measures is defined
by PD kernels [20, 17, 19]. A PD kernel, K : �×�→ �,
computes the inner product in a kernel-induced feature
space H via a mapping Φ : � → H, i.e., K(x,x′) =
Φ(x)T Φ(x′). Correspondingly,

m(x,x′) =
√

[Φ(x)− Φ(x′)]T [Φ(x)− Φ(x′)]

=
√

K(x,x) + K(x′,x′)− 2K(x,x′)(2.3)

defines a metric distance in H. This suggests that dX
and D can also be constructed from a PD kernel. There-
fore, for the rest of the paper, we assume that either a
metric distance or a similarity measure (described by a
PD kernel) is given.

2.2 Computing the Optimal Partition. In the
space where dX (x) resides, the decision boundary of the
separation function f(x) = wTdX (x) is a hyperplane
defined by wTdX = 0. The geometric distance from
a point dX (xi) to the hyperplane is Li = |wT dX (xi)|

‖w‖
where || · || denotes the 2-norm of a vector unless other-
wise stated. If we assume the separation function is nor-
malized such that ‖w‖ = 1, then the above geometric
distance can be simply calculated as Li = |wT dX (xi)|.
The term inside | · | gives the signed distance. The hence
proposed sum-of-squared separation distance is calcu-
lated as follows by taking all samples in X into consid-
eration:

n∑
i=1

[
wTdX (xi)

]2
= wTD2w.(2.4)

The optimal clustering corresponds to a unit length w
that separates two clusters with maximal value of (2.4).

It is not difficult to see that the unit length eigen-
vector p corresponding to the largest eigenvalue λ1 of
D2, maximizes (2.4). Unfortunately, the resulting sep-
aration function, f(x) = dX (x)T p, assigns all training
samples in X to one cluster because Dp = λ1p has
components either all positive or all negative. This is
due to the positivity of D2. The distance matrix D is a
symmetric and non-negative matrix, so the eigenvalue
decomposition exists. The corresponding D2 is thus a
positive matrix 3 which has the same eigenvectors as
those of D and eigenvalues equal to the square of the

3A matrix is positive if all it elements are positive [15].

eigenvalues of D. A positive matrix also has the follow-
ing properties(Ch.8.2, [15]):

• The largest eigenvalue λ1 is positive with algebraic
multiplicity 1;

• The corresponding eigenvector satisfies either p >
0 (called the Perron vector if pT e = 1 where e is
a vector of 1’s) or p < 0 4. All other eigenvectors
have elements with mixed signs.

To avoid trivial clustering like p, the following
constraint is imposed:

αT Dw = 0 .

Here α > 0 is a user-specified normalized weight
vector satisfying αTe = 1. Since Dw contains the
signed distances (cluster membership is indicated by the
sign), the above constraint enforces that the weighted
summation of signed distances is zero. In other words,
neither Dw > 0 nor Dw < 0 is allowed. The clustering
problem is then formulated as below.

Definition 2.1. (Maximal Separation Clustering)
Given a distance matrix D and a normalized weight
vector α > 0 (αT e = 1), an optimal clustering is given
by a separation function f(x) = w∗TdX (x) where

w∗ = argmax wT D2w .

w, ‖w‖=1

�T Dw=0

Since the weight vector should be chosen by a user
beforehand, a few insights about different choices of α
will be helpful. Three interesting choices are discussed:

• α1 ∝ e
It assumes that all samples are equally important.
Therefore, the signed distances should be weighted
uniformly, i.e., α1 = e

eT e .

• α2 ∝ De
A sample is weighted according to its overall dis-
similarity to the rest of the samples. The weight
for the signed distance wTdX (xi) is proportional
to dX (xi)T e =

∑n
k=1 m(xi,xk), which is the sum-

mation of the distances between xi and all samples
in X . After normalization, we get α2 = De

eT De
.

• α3 ∝ Dα3

This scheme carries a similar flavor as that of α2.
Here the weight for the signed distance wT dX (xi)
is proportional to dX (xi)T α3, which is a weighted

4For a matrix or a vector A, we write A > 0 if all it elements
are positive. This notation can be generalized to ≥, <, and ≤.



summation of the distances between xi and all
samples in X . In this case, α3 has to be an
eigenvector of D, i.e., λα3 = Dα3. Hence the
Perron vector p > 0 (satisfying pTe = 1) of D
is the only choice.

Empirical comparisons of the above weighting strategies
are provided in Section 4.

Theorem 2.1. The optimal solution w∗ of the MSC
problem described in Definition 2.1 is

w∗ = U�v,(2.5)

where U� ∈ �n×(n−1) is a matrix whose columns form
an orthonormal basis of the null space of αTD, and v
is a unit length eigenvector corresponding to the largest
eigenvalue of UT

�D2U�.

Proof. The feasible region of the optimization problem
in Definition 2.5 is

F = {w ∈ �n : ‖w‖ = 1, αTDw = 0} .

It is not difficult to check that F can be equivalently
written as

F = {w = U�z : z ∈ �n−1 , ‖z‖ = 1} .

So the original optimization problem becomes

z∗ = arg max
‖z‖=1

zT UT
�D2U�z

w∗ = U�z∗ .

Then (2.5) follows from the fact that z∗ = v. �

2.3 An Algorithmic View.

Algorithm 2.1. (Maximal Separation Clustering)

Input: Set X = {xi ∈ �d : i = 1, ..., n}, a metric
distance function m(·, ·), and weight α.

Output: Separation function f(x) = w∗TdX (x)
where the sign of f(x) defines the cluster
assignment of x.

Method:
1 Compute the n× n distance matrix D
2 Find an orthonormal basis of the null space
of αTD and stack them as columns of U�

3 Compute z∗, an eigenvector corresponding to
the largest eigenvalue of UT

�D2U�

4 w∗ ← U�
z∗

‖z∗‖
5 OUTPUT f(x) = w∗T dX (x)

Note that the input metric distance can be con-
structed from a PD kernel based on (2.3). The orthonor-
mal basis of the null space of αTD is computed using the

Symmetric QR Algorithm (Ch.8.3, [10]). Therefore the
computational cost of Step 2 is O(n3). The eigenvalue
problem in Step 3 is solved by a Lanczos method (Ch.9,
[10]). The running time of a Lanczos method is O(kn2)
where k is the maximum number of matrix-vector com-
putations required. Usually, k is much smaller than n.
So the overall running time is O(n3 + kn2). It is worth
mentioning a special case where α is given as the Perron
vector of D, i.e., α = α3. Then one can show that w∗

is a unit length eigenvector corresponding to the second
largest eigenvalue of D2 (a proof will be given in Sec-
tion 3.3). In this case, the computational cost becomes
O(kn2) because there is no need to compute the null
space of αT D.

3 Connections with Graph Partitioning.
This section provides a graph-theoretic view of the MSC
method. We first propose a new graph-theoretic crite-
rion for measuring the goodness of graph bipartition. A
graph partitioning problem divides vertices into groups
so that the between-group dissimilarity is high, and/or
within-group dissimilarity is low. The novel criterion
measures the disparity between the between-group dis-
similarity and the within-group dissimilarity. Thus we
name the resulting bipartition – the disparity cut. The
maximization of the criterion can be formulated as an
eigenvalue problem. Then connections between Algo-
rithm 2.1 and the disparity cut are established.

3.1 Disparity Cut Criterion. Given a set of sam-
ples and a dissimilarity measure, one can construct a
weighted undirected graph G = (V,E) where V =
{1, 2, . . . , n} is the vertex set, E = {(i, j) : i, j ∈ V}
is the set of edges. The vertices represent the samples.
An edge is formed between every pair of vertices. The
weight dij of an edge (i, j) indicates the similarity or dis-
similarity between vertices i and j. The weights can be
organized into an affinity matrix, D. To be consistent
with notations in Section 2, we assume that dij describes
the dissimilarity. Note that a similarity measure can be
converted to a dissimilarity measure via (2.3).

Let sets A,B ⊂ V. In graph theory, a cut is defined
as:

cut(A,B) =
∑

i∈A,j∈B

dij .

Finding a bipartition of the graph that minimizes this
cut value is known as the minimum cut problem 5. Ef-
ficient algorithms exist for solving this problem. How-

5In the minimum cut problem, the affinity matrix is defined by
vertex similarities. If affinity matrix captures vertex dissimilari-
ties, as in this paper, the problem should be named the maximum
cut problem instead.



ever the minimum cut criterion tends to group small
sets of isolated nodes in the graph because the cut de-
fined above does not contain any within-group infor-
mation [20]. Many modified graph partition criteria
have been proposed to produce more balanced parti-
tions [11, 20, 8, 17]. Next, we introduce a new criterion,
disparity cut.

Let each vertex i be associated with a positive
weight, βi. Without loss of generality we assume ||β|| =
1. For A ⊂ V, we define a weighted cardinality of A,
|A|�, to be

|A|� =
∑
i∈A

β2
i .(3.6)

If weights are uniform (i.e., β = e), then (3.6) is
identical to the standard definition of set cardinality. By
taking vertex weights, β, into consideration, we define
a weighted cut as

cut�(A,B) =
∑

i∈A,j∈B

βiβjdij .

It is not difficult to see that cute(A,B) = cut(A,B).
Let A and B form a bipartition of V (i.e., A ∩B = ∅,
A ∪ B = V), the disparity cut, Dcut(A,B), is then
defined as

Dcut(A,B) = 2 cut�(A,B)−
|B|�
|A|� cut�(A,A)− |A|�|B|� cut�(B,B) .(3.7)

• cut�(A,B) measures the dissimilarity between ver-
tex sets A and B;

• cut�(A,A) and cut�(B,B) capture the vertex dis-
similarities within A and within B, respectively;

• |B|�
|A|� and |A|�

|B|� indicate the relative size of the two
groups. An “unbalanced” bipartition will make one
of the ratios a large number.

A “good” bipartition should generate two “balanced”
groups that have high between-group dissimilarity and
low within-group dissimilarity. This goal is achieved in
this article by maximizing the disparity cut criterion.
Finding the maximum disparity cut is NP-complete.
Nevertheless, it is possible to find an approximation via
spectral relaxation. This is described as below.

3.2 Spectral Relaxation. Given a weighted undi-
rected graph G = {V,E} with affinity matrix D and
vertex weights β, a bipartition of V into A and B can
be defined by a partition vector q ∈ {1,−1}n with ele-
ments

qi =
{

1, i ∈ A ,
−1, i ∈ B .

Let Γ denote the diagonal matrix formed by the vertex
weights β, i.e., Γii = βi. Then we have the following
identities:

cut�(A,A) =
1
4

(e + q)T ΓDΓ (e + q) ,

cut�(B,B) =
1
4

(e− q)T ΓDΓ (e− q) ,

cut�(A,B) =
1
4

(e + q)T ΓDΓ (e− q) .

If we define the ratio of weighted cardinality, r, as

r =
|A|�
|B|� ,

then (3.7) is equivalent to

Dcut(A,B) =
(e + q)T ΓDΓ (e− q)

2
−

(e + q)T ΓDΓ (e + q)
4r

− r (e− q)T ΓDΓ (e− q)
4

=
[(e + q)− r (e− q)]T ΓDΓ [r (e− q)− (e + q)]

4r
.

Let

y =
(e + q)− r (e− q)

2
,

and y can be viewed as a generalized partition vector
with elements

yi =
{

1, i ∈ A ,
−r, i ∈ B .

Then we have

Dcut(A,B) = −yT ΓDΓy
r

.

In addition, it is straightforward to derive that

βT Γy = 0 ,

yT Γ2y = r‖β‖2 = r .

Therefore, we can write Dcut in terms of the generalized
partition vector y as

Dcut(A,B) = −yT ΓDΓy
yT Γ2y

.

Finding the maximum disparity cut can then be stated
as the following discrete optimization problem.

Definition 3.1. (Maximal Disparity Cut) Given a
weighted undirected graph G = {V,E} with affinity ma-
trix D and unit length vertex weights β, the maximum
disparity cut is defined by the generalized partition vec-
tor

y∗ = argmax −yT ΓDΓy
yT Γ2y .

y,�T Γy=0,

y∈{1,−r}n



Even though the above discrete optimization prob-
lem is still NP-complete, it is possible to find an approx-
imation by relaxing the condition that y is either 1 or
−r. When we only require y to be continuous and set
z = Γy, the following optimization problem is obtained.

Definition 3.2. (Spectral Relaxation for Maximal
Disparity Cut) Given a weighted undirected graph G =
{V,E} with affinity matrix D and unit length vertex
weights β, a continuous approximation of the optimal
generalized partition vector is

z∗ = argmax −zTDz .

z,�T z=0,

‖z‖=1

(3.8)

The corresponding bipartition is A = {i ∈ V : z∗
i ≥ 0}

and B = {i ∈ V : z∗i < 0}.
Since Γ is a diagonal matrix with positive diagonal
entries, z∗ and Γ−1z∗ generate identical bipartitions
because their corresponding elements have identical
signs. This optimization problem is solved as below.

Theorem 3.1. The optimal solution z∗ of the problem
described in Definition 3.2 is

z∗ = U�v,(3.9)

where U� ∈ �n×(n−1) is a matrix whose columns form
an orthonormal basis of the null space of βT , and v is
a unit length eigenvector corresponding to the smallest
eigenvalue of UT

�DU�.

The proof is similar to that of Theorem 2.1, therefore,
is omitted.

3.3 Connections between MSC and Dcut. As
shown in Theorem 2.1, the maximal separation biparti-
tion relies on the weight vector α. Similarly, the spectral
relaxed maximal disparity cut depends on the choice of
the vertex weights β as shown in Theorem 3.1. We
prove that under certain conditions they generate iden-
tical bipartitions.

Lemma 3.1. Let the affinity matrix D in Definition 3.2
be the distance matrix in Definition 2.1 and p be the
Perron vector of D. If the smallest eigenvalue of
D is algebraically simple and we choose the weight
vectors α = p and β = p

‖p‖ , then the maximal
separation bipartition in Definition 2.1 is identical to
that generated by the spectral relaxed maximal disparity
cut in Definition 3.2.

Proof. Let λ1 ≥ λ2 ≥ . . . ≥ λn be eigenvalues of
D. Since D is a nonnegative distance matrix, from

the properties of (metric) distance matrices [18, 1] and
nonnegative matrices (Ch.8.2,[15]), we have that

λ1 > 0 > λ2 ≥ . . . ≥ λn ,

and p is an eigenvector corresponding to λ1. Moreover,
since

∑n
i=1 λi = Trace(D) = 0, we have

λ1 > |λi|, i = 2, . . . , n.

Since λn is algebraically simple, −λn is the largest
eigenvalue of−D and λ2

n is the second largest eigenvalue
of D2.

Let u2, . . . ,un be unit length eigenvectors associ-
ated with λ2, . . . , λn, respectively. Clearly, u2, . . . ,un

form an orthonormal basis of the null space of βT .
Therefore

z∗ = un .

Note that u2, . . . ,un also form an orthonormal basis of
the null space of αTD. Since

λ2
1 > λ2

n > λ2
n−1 ≥ . . . ≥ λ2

2

are eigenvalues of D2 with corresponding eigenvectors
p,un,un−1, . . . ,u2, respectively, we get

w∗ = un .

The proof then follows from Dw∗ = λ1z∗. �

Therefore, the maximal separation bipartition in
Definition 2.1 is equivalent to the spectral relaxed max-
imal disparity cut when the affinity matrix is defined by
the distance matrix and the Perron vector of the dis-
tance matrix is used as the weight vectors. Given an
arbitrary positive weight vector α for maximal separa-
tion bipartition, can we find positive vertex weights β
such that z∗ = Dw∗

‖Dw∗‖ , i.e., two bipartitions are identi-
cal? A necessary condition is presented as below.

Lemma 3.2. Let the affinity matrix D in Definition 3.2
be the distance matrix in Definition 2.1 and w∗ be
calculated by (2.5). Let z∗ be computed by (3.9) and
z∗ is not an eigenvector of D. If z∗ = Dw∗

‖Dw∗‖ , then

β =

(
I− Dw∗w∗T D

‖Dw∗‖2

)
D2w∗

‖
(
I− Dw∗w∗T D

‖Dw∗‖2

)
D2w∗‖

(3.10)

where I is an identity matrix.

Proof. For the constrained optimization problem (3.8),
the Lagrange function is

L(z, σ1, σ2) = −zT Dz− σ1

(
zT z− 1

)− σ2β
T z



where σ1 and σ2 are Lagrange multipliers. Setting the
respective derivatives to zero yields

2Dz + 2σ1z + σ2β = 0 ,(3.11)
zT z = 1 ,(3.12)
βT z = 0 .(3.13)

Left multiplying both sides of (3.11) with zT and
applying identities (3.12) and (3.13), we obtain

σ1 = −zT Dz .(3.14)

Similarly, we get

σ2 = −2βTDz
‖β‖2(3.15)

by multiplying both side of (3.11) with βT and applying
identities (3.13) and (3.14). Substituting (3.14) and
(3.15) into (3.12) gives

(
I− zzT

)
Dz =

βTDz
‖β‖2 β .

Since z∗ is not an eigenvector of D, we have βTDz∗ �= 0.
Therefore

β =
‖β‖2

βTDz∗
(
I− z∗z∗T

)
Dz .(3.16)

By substituting z∗ = Dw∗
‖Dw∗‖ into (3.16) and enforcing

the unit length constraint on β, we get (3.10). �

4 Experiments.
Based on an artificial data set, the USPS data set, and
a COREL image data set, we evaluate the performance
of Algorithm 2.1. Comparisons with the normalized
cut (Ncut) method in [20] are provided in some of our
experimental results.

4.1 Artificial Data Set. The artificial data set con-
sists of 200 samples belonging to two classes. Each class
contains 100 samples. The samples in the first class
are distributed as a two dimensional Gaussian with zero
means and identity covariance matrix. The samples in
the second class are generated by the following stochas-
tic process:

[
X1

X2

]
=

[
cos θ sin θ
− sin θ cos θ

] [
Y1

Y2

]

where [Y1, Y2]T is distributed as a two dimensional
Gaussian with means [3, 3]T and identity covariance
matrix, and θ is a random variable with uniform dis-
tribution over the interval [0, 2π]. Figure 2 shows 200
randomly generated samples from the two classes.

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6
Class 1
Class 2
Decision Boundary

Figure 2: An artificial data set. Samples in Class 1 and
Class 2 are denoted by stars and circles, respectively.
The curve in the middle is the decision boundary of
maximal separation clustering.

We compare the performance of Algorithm 2.1 with
that of Ncut. The affinity matrix in Ncut is defined by

Gaussian kernel K(x,y) = e−
‖x−y‖2

σ2 . Since Gaussian
kernel computes the inner produce in a kernel-induced
feature space H, a metric distance in H can be defined
according to (2.3) and is used in Algorithm 2.1 to
calculate the distance matrix D. Because we know the
“true” class label for each sample, the classification error
is one way to capture the goodness of clustering. Let
C1 and C2 be a bipartition of the data set C. The
classification error is defined as

Err(C1,C2) =
1
|C| min (|C1,1|+ |C2,2|, |C1,2|+ |C2,1|)

where |C| is the size of the data set C, Ci,j consists of
samples in Ci that belong to class j (i, j = 1, 2).

The kernel parameter, σ2, is allowed to take values
of 1, 3, 5, . . ., 29. Under each value, experiments are
repeated over 10 randomly generated data sets for each
algorithm. The minimum of the average classification
errors is listed in Table 1 along with the corresponding
σ2 values and 95% confidence intervals. Clearly, for
this artificial data set, the MSC algorithm performs
significantly better than Ncut. For the MSC algorithm,
the Perron weight vector works better than the other
two weighting schemes. But the difference is not
statistically significant.

Since the MSC algorithm learns a decision bound-
ary (the curve in the center of Figure 2), the clustering
generalizes to unseen inputs. Each decision boundary is



Table 1: Comparing the MSC algorithm and Ncut on
artificial data sets. The numbers listed are the average
classification errors over 10 randomly generated data
sets and the corresponding 95% confidence intervals.
MSC1: MSC with α1 weight vector; MSC2: MSC with
α2 weight vector; MSC3: MSC with α3 weight vector.
α1, α2, and α3 are defined in Section 2.2

σ2 Average 95% Confidence
Classification Error Interval

MSC1 7 3.9% [2.81%, 4.99%]

MSC2 15 3.6% [2.53%, 4.67%]

MSC3 7 3.1% [2.47%, 3.73%]

Ncut 23 29.95% [27.79%, 32.11%]

Table 2: The generalization performance of the MSC
algorithm on artificial data sets. The numbers listed
are the average generalization errors over 10 randomly
generated testing sets and the corresponding 95% con-
fidence intervals.

σ2 Average 95% Confidence
Generalization Error Interval

MSC1 7 4.15% [3.14%, 5.16%]

MSC2 15 4.85% [3.72%, 5.98%]

MSC3 7 3.90% [2.52%, 5.28%]

tested over a new set of 200 samples generated by the
above distributions (each class contains 100 samples).
The average generalization errors over 10 testing sets
are reported in Table 2 along with the corresponding
95% confidence intervals.

4.2 USPS Data Set. The USPS data set contains
9298 grayscale images of handwritten digits. The
images are size normalized to fit in a 16 × 16 pixel
box while preserving their aspect ratio. The data set is
divided into a training set of 7291 samples and a testing
set of 2007 samples. For each sample, the input feature
vector consists of 256 grayscale values. Since MSC deals
with binary clustering, the training set is divided into
45 subsets, Si,j , i = 0, . . . , 9, j = 1, . . . , 9, i �= j. The
subset Sij consists of digits i and j. In the same way,
the testing set is divided into 45 subsets.

We compare the performance of the MSC algorithm
with that of Ncut using the training set. The affinity
matrix in Ncut is defined by Gaussian kernel. The dis-
tance matrix in Algorithm 2.1 is computed using (2.3).
The kernel parameter, σ2, is allowed to take values of
50, 100, . . ., 600. For each value of σ2, the average
classification error (defined in Section 4.1) is computed
over the 45 subsets. The numbers reported in Table 3
are the minimum average classification errors along with
the corresponding σ2 values and standard deviations.

Table 3: Comparing the MSC algorithm and Ncut
on the USPS data set. The numbers listed are the
average classification errors over 45 subsets and the
corresponding standard deviations.

σ2 Average Standard
Classification Error Deviation

MSC1 350 7.86% 8.05%

MSC2 300 7.68% 8.17%

MSC3 250 7.70% 8.12%

Ncut 100 7.05% 8.39%

Table 4: The generalization performance of the MSC
algorithm on the USPS data set. The numbers listed
are the average generalization errors over 45 subsets and
the corresponding standard deviations.

σ2 Average Standard
Generalization Error Deviation

MSC1 350 9.26% 7.54%

MSC2 300 8.91% 7.78%

MSC3 250 9.06% 7.67%

As we can see Ncut performs slightly better than the
proposed method for the USPS data set. However, the
difference is not statistically significant. The separation
functions learned from the training sets are also applied
to the testing sets. The average generalization errors
over 45 subsets are reported in Table 4 along with the
corresponding standard deviations.

4.3 COREL Data Set. The image data set em-
ployed in our empirical study consists of 2000 images
taken from 20 CD-ROMs published by COREL Corpo-
ration. Each COREL CD-ROM of 100 images repre-
sents one distinct topic of interest. Therefore, the data
set has 20 thematically diverse image categories. All
the images are in JPEG format with size 384 × 256 or
256 × 384. The image category names and some ran-
domly selected sample images from each category are
shown in Figure 3. Each image is represented as a col-
lection of regions obtained from image segmentation.
Nine features are extracted from each region. They
capture the color, texture, and shape properties of the
region. For a detailed discussion of the image segmenta-
tion algorithm and imagery features, please refer to [5].
The image data set and region features are available at
http://www.cs.uno.edu/∼yixin/ddsvm.html.

Let Bi = {xij ∈ �9 : j = 1, . . . , Ni} be the collec-
tion of region features for image i. The distance between
two images, with respective collection of regions features
Bk and Bl, is defined by the Hausdorff distance [9]

H(Bk,Bl) = max (h(Bk,Bl), h(Bl,Bk))



Category 0: Africa Category 1: Beach

Category 2: Historical buildings Category 3: Buses

Category 4: Dinosaurs Category 5: Elephants

Category 6: Flowers Category 7: Horses

Category 8: Mountains Category 9: Food

Category 10: Dogs Category 11: Lizards

Category 12: Fashion Category 13: Sunsets

Category 14: Cars Category 15: Waterfalls

Category 16: Antiques Category 17: Battle ships

Category 18: Skiing Category 19: Desserts

Figure 3: Sample images taken from 20 image categories.

where

h(Bk,Bl) = max
x∈Bk

min
y∈Bl

‖x− y‖ .

Since the Hausdorff distance is a metric, it is applied to
construct the distance matrix in Algorithm 2.1.

The MSC algorithm is recursively applied to the

data set. Each time, the largest cluster is bipartitioned.
Clearly, t iterations produce t+1 clusters. We use purity
and entropy to measure the goodness of image cluster-
ing. Assume we are given a set of n images (n = 2000
in this experiment) belonging to c distinctive classes de-
noted by 0, . . . , c−1 (c = 20 in this experiment) and the



Table 5: Maximal separation clustering of images with
α1 weight vector.

Cluster Size Purity Entropy Dominant Class

1 65 0.2769 0.7397 Antiques

2 138 0.1594 0.8709 Horses

3 90 0.2667 0.7445 Cars

4 111 0.2162 0.8037 Lizards

5 120 0.1500 0.8160 Beach

6 83 0.2651 0.6563 Battle ships

7 111 0.2613 0.7869 Fashion

8 129 0.3333 0.7690 Food

9 106 0.3868 0.6793 Horses

10 83 0.5783 0.4564 Dinosaurs

11 81 0.1852 0.7625 Waterfalls

12 123 0.3821 0.6062 Buses

13 97 0.2371 0.7923 Lizards

14 101 0.5149 0.5440 Sunsets

15 124 0.2258 0.6615 Mountains

16 91 0.1868 0.8178 Africa

17 86 0.5930 0.4603 Flowers

18 93 0.2258 0.7799 Waterfalls

19 98 0.2653 0.7582 Elephants

20 70 0.3571 0.5619 Dinosaurs

images are grouped into t+1 clusters Cj , j = 1, . . . , m.
Cluster Cj ’s purity can be defined as

p(Cj) =
1
|Cj | max

k=1,...,c
|Cj,k|

where Cj,k consists of images in Cj that belong to class
k. Each cluster may contain images of different classes.
Purity gives the ratio of the dominant class size in the
cluster to the cluster size itself. The value of purity is
always in the interval [1c , 1] with a larger value means
that the cluster is a “purer” subset of the dominant
class. Entropy is another cluster quality measure, which
is defined as follows:

h(Cj) = − 1
log c

c∑
k=1

|Cj,k|
|Cj | log

|Cj,k|
|Cj | .

Since entropy considers the distribution of semantic
classes in a cluster, it is a more comprehensive measure
than purity. Note that we have normalized entropy so
that the value is between 0 and 1. Contrary to the purity
measure, an entropy value near 0 means the cluster is
comprised mainly of 1 category, while an entropy value
close to 1 implies that the cluster contains a uniform
mixture of all categories. For example, if half of the
images of a cluster belong to one class and the rest of
the images are evenly divided into 19 different classes,
then the entropy is 0.7228 and the purity is 0.5.

Table 5, Table 6, and Table 7 show the purity and
entropy of clusters generated by Algorithm 2.1 (with

Table 6: Maximal separation clustering of images with
α2 weight vector.

Cluster Size Purity Entropy Dominant Class

1 109 0.2844 0.7384 Elephants

2 111 0.4865 0.5437 Buses

3 89 0.2921 0.7782 Fashion

4 135 0.2148 0.7078 Mountains

5 106 0.3019 0.7481 Waterfalls

6 100 0.2200 0.8197 Lizards

7 108 0.4444 0.6142 Horses

8 70 0.3143 0.5938 Dinosaurs

9 84 0.5595 0.5252 Flowers

10 134 0.1493 0.8197 Beach

11 41 0.2195 0.7470 Lizards

12 151 0.2119 0.8411 Lizards

13 125 0.3840 0.7480 Food

14 81 0.2716 0.6567 Battle ships

15 104 0.1731 0.8434 Africa

16 91 0.1868 0.7654 Sunsets

17 100 0.5300 0.5323 Sunsets

18 78 0.2564 0.7555 Antiques

19 90 0.3111 0.7150 Cars

20 93 0.5484 0.5092 Dinosaurs

weight vector α1, α2, and α3, respectively) after 19
bipartitions (i.e., 20 clusters). Size of each cluster and
the name of the dominant class in each cluster are also
listed. Since the images belong to 20 classes, ideally,
each of the 20 clusters should contains 100 images from a
unique classes. In our experiments, the average purities
under α1, α2, and α3 are 0.3034, 0.3180, and 0.3155,
respectively. And the average entropies are 0.7034,
0.6999, 0.6992. Although the results we obtained is far
from perfect, they are significantly better than a random
guess where the average purity would be 0.05 and the
average entropy would be 1.0. It is observed that in each
of the three experiments, there are 4 classes which do
not appear as the dominant class in any of the clusters:
Historical buildings, Dogs, Skiing, and Desserts. It is
interesting to observe that in all three experiments,
Historical buildings is the second largest class in the
cluster where the dominant class is Battle ships; Dogs
is the second largest class in the cluster where Horses
is the dominant class; and Skiing is the second largest
class in the cluster where Beach is the dominant class.
Desserts does not even show up as the second largest
class in any clusters. But it turns out to be the third
largest class in the cluster where the top two largest
classes are Battle ships and Historical buildings.

5 Conclusions and Future Work.

In this paper, we propose a new clustering algorithm
which computes an “optimal” hyperplane maximizing
the sum of squared distance in a feature space induced



Table 7: Maximal separation clustering of images with
α3 weight vector.

Cluster Size Purity Entropy Dominant Class

1 100 0.5300 0.5323 Sunsets

2 50 0.2200 0.7720 Lizards

3 101 0.1980 0.8214 Africa

4 81 0.2840 0.6540 Battle ships

5 100 0.2900 0.7474 Waterfalls

6 151 0.2053 0.8331 Lizards

7 113 0.2566 0.7616 Elephants

8 93 0.5376 0.5128 Dinosaurs

9 86 0.5698 0.5057 Flowers

10 129 0.1550 0.8076 Beach

11 113 0.4779 0.5472 Buses

12 101 0.2178 0.8167 Lizards

13 125 0.3760 0.7439 Food

14 135 0.2148 0.7029 Mountains

15 108 0.4259 0.6345 Horses

16 93 0.2903 0.7757 Fashion

17 89 0.1798 0.7641 Sunsets

18 74 0.2568 0.7462 Antiques

19 88 0.2955 0.7222 Cars

20 70 0.3286 0.5833 Dinosaurs

by the training data and the given metric distance. The
separating hyperplane transforms to a nonlinear deci-
sion boundary in the input space. Hence the cluster-
ing generalizes to unseen samples. The connection be-
tween the proposed clustering algorithm and spectral
graph partition methods is discussed. Specifically, we
prove that, under proper weight vectors, the proposed
clustering algorithm is equivalent to a spectral relaxed
graph cut – disparity cut. The disparity cut criterion
takes into account the between-cluster dissimilarity, the
within-cluster dissimilarity, and the size of the clusters.
We provide extensive experimental results to verify the
method.

Acknowledgements.

This work was supported in part by the University of
New Orleans, The Research Institute for Children, and
NASA/EPSCoR DART Grant NCC5-573. The authors
would like to thank Bin Fu for valuable discussions.

References

[1] J. W. Auer, An Elementary Proof of the Invertibility
of Distance Matrices, Linear and Multilinear Algebra,
40:119–124, 1995.

[2] A. Banerjee, S. Merugu, I. Dhillon, and J. Ghosh,
Clustering with Bregman Divergences, Proc. 4th SIAM
Int’l Conf. on Data Mining, pages 234–245, 2004.

[3] Y. Bengio, J.-F. Paiement, P. Vincent, O. Delalleau,
N. Le Roux, and M. Ouimet, Out-of-Sample Exten-
sions for LLE, Isomap, MDS, Eigenmaps, and Spectral

Clustering, Advances in Neural Information Processing
Systems 16, 2003.

[4] P. S. Bradley, U. M. Fayyad, and C. Reina, Scaling
Clustering Algorithms to Large Databases, Proc. 4th
Int’l Conf. on Knowledge Discovery and Data Mining,
pages 9–15, 1998.

[5] Y. Chen and J. Z. Wang, Image Categorization by
Learning and Reasoning with Regions, Journal of
Machine Learning Research, 5:913–939, 2004.

[6] A. P. Dempster, N. M. Laird, and D. B. Rubin,
Maximum Likelihood from Incomplete Data via the
EM Algorithm, Journal of the Royal Statistical Society,
Series B, 39:1–38, 1977.

[7] I. S. Dhillon, Y. Guan, and B. Kulis Kernel k-means,
Spectral Clustering and Normalized Cuts, Proc. ACM
SIGKDD Int’l Conf. on Knowledge Discovery and Data
Mining, 2004.

[8] C. Ding, X. He, H. Zha, M. Gu and H. Simon,
Spectral Min-Max Cut for Graph Partitioning and
Data Clustering, Proc. 1st IEEE Int’l Conf. on Data
Mining, pages 107–114, 2001.

[9] G. B. Folland Real Analysis: Modern Techniques and
Their Applications, 2nd edition, John Wiley & Sons,
Inc., 1999.

[10] G. H. Golub and C. F. Van Loan, Matrix Analysis, 3rd
ed., Johns Hopkins University Press, 1996.

[11] L. Hagen and A. B. Kahng, New Spectral Methods for
Ratio Cut Partitioning and Clustering, IEEE Trans-
actions on Computer-Aided Design, 11(9):1074–1085,
1992.

[12] J. A. Hartigan, Clustering Algorithms, John Wiley &
Sons, 1975.

[13] J. A. Hartigan and M. A. Wong, Algorithm AS136:
A k-means Clustering Algorithm, Applied Statistics,
28:100-108, 1979.

[14] T. Hastie, R. Tibshirani, and J. Friedman, The Ele-
ments of Statistical Learning, Springer-Verlag, 2001.

[15] R. A. Horn and C. R. Johnson, Matrix Analysis,
Cambridge University Press, 1990.

[16] L. Kaufman and P. J. Rousseeuw, Finding Groups in
Data: An Introduction to Cluster Analysis, John Wiley
& Sons, 1990.

[17] A. Y. Ng, M. I. Jordan, and Y. Weiss, On Spectral
Clustering: Analysis and an Algorithm, Advances in
Neural Information Processing Systems 14, 2001.

[18] I. J. Schoenberg, On Certain Metric Spaces Arising
from Euclidean Spaces by a Change of Metric and
Their Imbedding in Hilbert Space, The Annals of
Mathematics, 38(4):787–793, 1937.

[19] N. Shental, A. Zomet, T. Hertz, and Y. Weiss, Pairwise
Clustering and Graphical Models, Advances in Neural
Information Processing Systems 16, 2003.

[20] J. Shi and J. Malik, Normalized Cuts and Image
Segmentation, IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22(8):888–905, 2000.

[21] V. Vapnik, Statistical Learning Theory, Wiley-
Interscience, 1998.


