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Abstract

We describe a method for sparse feature selection for a class

of problems motivated by our work in Computer-Aided

Detection (CAD) systems for identifying structures of

interest in medical images. Typical CAD data sets for

classification are large (several thousand candidates) and

unbalanced (significantly fewer than 1% of the candidates

are ”positive”). To be accepted by physicians, CAD systems

must generalize well with extremely high sensitivity and

very few false positives. In order to find the features that

can lead to superior generalization, researchers typically

generate a large number of experimental features for each

candidate. The reason for such a large number of features is

that there are no definitive methods for capturing the shape

and image-based characteristics that correspond to the

diagnostic features used by physicians to identify structures

of interest in the image - for example, cancerous polyps in

a CT (computed tomography) volume of a patient’s colon.

Thus several (100+) shape, texture, and intensity based

features may be generated for each candidate at various

levels of resolution. We propose a sparse formulation for

Fisher Linear Discriminant (FLD) that scales well to large

datasets; our method inherits all the desirable properties

of FLD, while improving on handling large numbers of

irrelevant and redundant features. We demonstrate that our

sparse FLD formulation outperforms conventional FLD and

two other methods for feature selection from the literature

on both an artificial dataset and a real-world Colon CAD

dataset.

Keywords: fisher linear discriminant, sparse formu-
lation, feature selection

1 Problem Specification.

Over the last decade, Computer-Aided Detection
(CAD) systems have moved from the sole realm of aca-
demic publications, to robust commercial systems that
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are used by physicians in their clinical practice to help
detect early cancer from medical images. The growth
has been fueled by the Food and Drug Administration’s
(FDA) decision to grant approval in 1998 for a CAD sys-
tem that detected breast cancer lesions from mammo-
grams (scanned x-ray images) [1]. Since then a number
of CAD systems have received FDA approval. Virtually
all these commercial CAD systems, focus on detection
(or more recently diagnosis [2]) of breast cancer lesions
for mammography.

The typical workflow for a CAD system when used
to identify structures in a new patient image is:

1. Identify candidate structures in the image: Most
medical images, particularly image volumes gen-
erated by high-resolution computed tomography
(CT), are very large. Typically, a very efficient
image processing algorithm considers each pixel (or
voxel) in the image as a potential candidate ”seed”,
and selects a small fraction of the seeds as candi-
dates. Even this small fraction is necessarily very
large, in order to maintain high sensitivity. High
sensitivity (ideally very close to 100%) is essential,
because any cancers missed at this stage can never
be found by the CAD system.

2. Extract features for each candidate: Unlike the
previous step, the image processing algorithms
to extract the features may be compuationally
expensive. Thus, sparse feature selection (while
building the classifier) is important in order to
ensure a relatively small number of features in the
deployed CAD system.

3. Classify candidates as positive or negative: A
previously-trained classifier is used to label each
candidate.

4. Display a positive candidates: Typically, the digi-
tized image is displayed with marks for inspection
by the physician.



Typically, CAD systems are used as ”second read-
ers” – the physician views the image to identify po-
tential cancers (the ”first read”), and then reviews the
CAD marks to determine if any additional cancers can
be found. In order to receive clinical acceptance and to
actually be used in the daily practice of a physician, it
is immediately obvious that CAD systems must be effi-
cient (for instance, completing the detections in the min-
utes taken by the physician during the ”first read”) and
have very high sensitivity (the whole point of CAD is to
boost the physician’s sensitivity, which is already fairly
high – 80%-90% for colon cancer – to the high 90’s).
What is not immediately obvious is that these systems
must also have extremely high specificity, at best, only
a few (5 or fewer) false marks per image is acceptabe.
There are a number of reasons for this, including the
risk of introducing unnecessary biopsies (a concern of
the FDA before clinical approval is granted), liability
issues, but most of all, every false mark increases the
time needed to review the image, and this is particu-
larly unacceptable in the US because of the financial
pressures on physicans.

It is immediately obvious that the same CAD
paradigm can be applied to detect not only breast
cancer but other cancers, and also to analyze imaging
modalities that can provide more resolution than a 2-
dimensional x-ray image. The applications that are
likely to constitute the next wave of CAD systems
in clinical are detection of colon cancer and of lung
cancer from 3-dimensional computed tomography (CT)
volumes. As with breast cancer, to be successful
ColonCAD and LungCAD systems must be efficient,
have extremely high sensitivity, and introduce very few
false positives per volume. As with BreastCAD, this
performance must be demonstrated to the FDA in a
clinical trial, on new (as yet unseen) CT volumes. The
choice of features and the classifier in the CAD system
is critical to success.

The key requirement of the CAD classifier, is its
ability to generalize well. Namely, it should correctly
label as yet unseen datasets. Although generalization is
a fundamental problem of machine learning commonly
encountered in all domains, the inherent nature of the
data collection and feature extraction process makes
this problem more challenging to deal with in CAD al-
gorithms. The typical process for off-line training of
the classifier used in Step 3 of the CAD workflow, is to
gather a database of patient images, within which struc-
tures have been labelled by a panel of expert physicians,
generate candidates from these images with high sensi-
tivity (i.e., ideally there should exist candidates corre-
sponding to each ”positive” label), generate a features
for each candidate, and train the classifier. The biggest

problem is the choice of features, both in the training
set, and in the deployed classifier.

Physicians detect cancers by visually extracting
shape and texture based features, that are often qualita-
tive rather than quantitative from the images (hereafter,
”image” and ”volume” are used interchangably in this
document). However, there are usually no definitive
image-processing algorithms that exactly correspond
to the precise, often subtle, features used intuitively
by physicians. To achieve high sensitivity and speci-
ficity, CAD researchers must necessarily consider a very
large number of experimental image processing features.
Therefore, a typical training dataset for a CAD classifier
is extremely unbalanced (significantly less than 1% of
the candidates are positive), contains a very large num-
ber of candidates (several thousand), each described by
many features (100+), most of which redundant and
irrelevant. Note that because of the efficiency require-
ment of the deployed CAD system, as few features as
possible should be used by the CAD classifier.

The rest of this paper is organized as follows. In
the next section, we discuss the need for a linear classi-
fier and briefly review the Fisher Linear Discriminant
(FLD). We also introduce our notion of spare FLD,
where we seek to eliminate the redundant and irrele-
vant features from the original training set using a wrap-
per approach. In Section 3 we review the concept and
formulation of FLD. In Section 4 we modify the con-
ventional FLD problem so as to achieve sparseness and
propose an iterative feature selection algorithm based on
our the sparse formulation. Finally we present experi-
mental results on an artificial dataset and a ColonCAD
dataset, and compare our approach with conventional
FLD and also with two well-known methods from the
literature for feature selection. We empirically demon-
strate that unlike some of the conventional methods
for feature selection, our sparse FLD formulation not
only inherits all the desirable generalization properties
of FLD, it is especially efficient on problems character-
ized by large datasets with many features,

2 Feature selection with FLD

As discussed, a typical training dataset for a CAD clas-
sifier is large, extremely unbalanced, and has many fea-
tures (100+), most of which redundant and irrelevant.
Because of the efficiency requirement of the deployed
CAD system, as few features as possible should be used
by the CAD classifier.

A large number of features provides more control
over the discriminant function. However, even with our
”large” training sample, the high-dimensional feature
space is mostly empty [5]. This allows us to find many
classifiers that perform well on the training data, but



it is well-known that few of these will generalize well.
This is particularly true of nonlinear classifiers that
represent more complex discriminant functions. Fur-
thermore, many computationally expensive nonlinear
classification algorithms (e.g. nonlinear SVM, neural
networks, kernel-based algorithms) do not scale well to
large datasets. When the potential pitfalls of designing
a classifier and the characteristics of the data are con-
sidered, it appears safer to train a CAD system with a
linear classifier. This is empirically demonstrated in our
previous study [6] where we compare the generalization
capability of some linear and nonlinear classification al-
gorithms on a CAD dataset.

Fisher Linear Discriminant (FLD) [7] is a well-
known classification method that projects high-
dimensional data onto a line and performs classification
in this one dimensional space. This projection is ob-
tained by maximizing the ratio of between and within
class scatter matrices – the so called Rayleigh quotient.
As a linear classifier it is rather robust against feature
redundancy and noise and has an order of complex-
ity O

(

ld2
)

(l is the number of training samples in the
dataset and d is the number of features in the feature
set). This linear dependence on data size permits mul-
tiple fast runs of the algorithm even with large data
sets. In addition to these properties, FLD is closely con-
nected to the Bayes classifier. More specifically, when
the classes are normally distributed with equal covari-
ance matrices, the discriminants obtained through FLD
and the Bayes classifier are in the same direction and
with the choice of an appropriate threshold Bayes error
can be achieved. Although it relies on heavy assump-
tions which are not true in most practical cases, FLD
has proven very powerful in a wide variety of challenging
real-world applications.

In this study we propose a sparse formulation of
FLD where we seek to eliminate the irrelevant and
redundant features from the original dataset within a
wrapper framework [8]. To achieve sparseness, earlier
studies focused on direct optimization of an objective
function consisting of two terms: the goodness of
fit and the regularization term. In order to avoid
overfitting by excessively maximizing the goodness of
fit, a regularization term commonly expressed as `0 −
norm [9], [10] or `1−norm [11], [12] of the discriminant
vector is added to the objective function. Optimization
of this objective function generates sparse solutions, i.e.
a solution that depends only on a subset of the features.

The proposed approach is similar in nature to the
sparse formulation introduced in [11] for Kernel Fisher
Discriminant with quadratic loss and linear regularizer.
The technique in [11] is well-formulated providing some
algorithmic advantages and reveals some pleasing theo-

retical connections of Fisher Discriminant with Support
Vector Machines and Relevance Vector Machines [13].
Although this technique scales well to high-dimensional
feature sets the constraints on each sample in the train-
ing set does not permit the algorithm to scale well to
very large datasets.

Our approach achieve sparseness by introducing
regularity constraints into the problem of finding FLD.
Since we maintain the original formulation of FLD as we
introduce the regularization constraints, the proposed
technique can scale to very large datasets (on the order
of hundred thousand samples). Casting this problem as
a biconvex programming problem provides us a more
direct way of controlling the size of the feature subset
selected. This problem is iteratively solved and once
the algorithm stops the nonzero elements of the solution
indicates features that are relevant to classification task
at hand, and their value quantifies the degree of this
relevancy. The proposed algorithm inherits all desirable
characteristics of FLD while improving on handling
large number of redundant and irrelevant features.
This makes the algorithm numerically more stable and
improve its prediction performance.

3 Fisher’s Linear Discriminant

Let Xi ∈ Rd×l be a matrix containing the l training
data points on d-dimensional space and li the number
of labeled samples for class wi, i ∈ {±}. FLD is the
projection α, which maximizes,

J (α) =
αT SBα

αT SW α
(3.1)

where

SB = (m+ − m−) (m+ − m−)
T

SW =
∑

i∈{±}

1

li

(

Xi − mie
T
li

) (

Xi − mie
T
li

)T

are the between and within class scatter matrices re-
spectively and

mi =
1

li
Xieli

is the mean of class wi and eli is an li dimensional vector
of ones.

Transforming the above problem into a convex
quadratic programming problem provides us some algo-
rithmic advantages. First notice that if α is a solution
to (3.1), then so is any scalar multiple of it. Therefore to



avoid multiplicity of solutions, we impose the constraint
αT SBα = b2, which is equivalent to αT (m+ − m−) = b

where b is some arbitrary positive scalar. Then the op-
timization problem of (3.1) becomes,

Problem 1 : minα∈Rd αT SW α

s.t. αT (m+ − m−) = b

For binary classification problems the solution of

this problem is α∗ =
bS

−1

W
(m+−m−)

(m+−m−)T S
−1

W
(m+−m−)

. Note

that each element of the discriminant vector is a
weighted sum of the difference between class mean
vectors where the weighting coefficients are rows of

bS
−1

W

(m+−m−)T S
−1

W
(m+−m−)

. According to this expansion

since S−1
W is positive definite unless the difference of the

class means along a given feature is zero all features
contributes to the final discriminant.

If a given feature in the training set is redundant, its
contribution to the final discriminant would be artificial
and not desirable. As a linear classifier FLD is well-
suited to handle features of this sort provided that
they do not dominate the feature set, that is, the
ratio of redundant to relevant features is not significant.
Although the contribution of a single redundant feature
to the final discriminant would be negligible when
several of these features are available at the same time,
the overall impact could be quite significant leading
to poor prediction accuracy. Apart from this impact,
in the context of FLD these undesirable features also
pose numerical constraints on the computation of S−1

W

especially when the number of training samples is
limited. Indeed, when the number of features, d is
higher than the number of training samples, l, SW

becomes ill-conditioned and its inverse does not exist.
Hence eliminating the irrelevant and redundant features
may provide a two-fold boost on the performance.

In what follows we propose a sparse formulation of
FLD. The proposed approach incorporates a regulariza-
tion constraint on the conventional algorithm and seeks
to eliminate those features with limited impact on the
objective function.

4 Sparse Fisher Discriminant Analysis

Blindly fitting classifiers without appropriate regular-
ization conditions is guaranteed to give badly over-fitted
models. Methods for controlling model complexity are
essential in modern data analysis. Especially when the
number of features available is large, an appropriate reg-
ularization can dramatically reduce the dimensionality
and produces better generalization performance which
is supported by learning theory [16]. For linear models
of the form αT x as considered here, well-established reg-

ularization conditions include the 2-norm penalty and
1-norm penalty on the weight vector α. The generic
regularized model fitting problem is written as:

f̂ = min
f

(error(f) + λP (f)) .(4.2)

where λ is called the regularization parameter. Due
to the sparsity and favorable computational properties
of the 1-norm penalty, the 1-norm regularization has
drawn a lot of attention in the statistical community.
We thus adopt the 1-norm penalty P (f) =

∑

|αi| in
our sparse FLD formulation, which generates sparser
feature subsets than 2-norm penalty. As analyzed in
[16], the regularized model fitting formulation 4.2 has
an important equivalent formulation as

f̂ = min
f

{error(f), subj. to:P (f) ≤ γ}.(4.3)

where the parameter γ plays a similar role to the
regularization parameter λ in (4.2) to trade off between
the training error and the penalty term.

If we require α to be nonnegative, the 1-norm of α

can be calculated as αT el. We thus obtain the following
optimization problem.

With the new constraints Problem 1 can be updated
as follows,

Problem 2 : minα∈Rd αT SW α

s.t. αT (m+ − m−) = b

αT el ≤ γ, α ≥ 0

We denote the feasible set associated with
Problem 1 by Ω1 =

{

α ∈ Rd, αT (m+ − m−) = b
}

and that associated with Problem 2 by Ω2 =
{

α ∈ Rd, αT (m+ − m−) = b, αT el ≤ γ, α ≥ 0
}

and observe that Ω2 ⊂ Ω1. Then we define δmax =
maxi

b
(m+−m−)

i

and δmin = mini
b

(m+−m−)
i

where

i = {1, . . . , d}. The set Ω2 is empty whenever δmax < 0
or δmin > γ. In addition to the feasibility constraints
γ < δmax should hold in order to achieve a sparse
solution. In what follows we introduce a linear trans-
formation which will ensure δmax > 0 and standardize
the sparsity constraint.

For the sake of simplicity and without loss of
generality we assume that SW is a diagonal matrix
with elements λi, i = 1, . . . , d where λi are the
eigenvalues of SW . Under this scenario the solution

to Problem 1 is α∗ = b̄
[

(m+−m−)
1

λ1
, . . . ,

(m+−m−)
d

λd

]T

where b̄ = b
∑

i∈{±}

(m+−m−)2
i

λi

. Next we define

a linear transformation D = diag (α∗
1, . . . , α

∗
d) =

b̄ diag
(

(m+−m−)
1

λ1 , . . . ,
(m+−m−)

d

λd

)

such that x 7→ Dx



where diag indicates a diagonal matrix. With this trans-
formation Problem 2 takes the following form,

Problem 3 : minα∈Rd αT DSW Dα

s.t. αT D (m+ − m−) = b

αT el ≤ γ, α ≥ 0

We redefine δ̄max = maxi
bλi

b̄(m+−m−)2
i

and δ̄min

= mini
bλi

b̄(m+−m−)2
i

where i = {1, . . . , d}. Note that

both δ̄min and δ̄max are nonnegative and hence both
feasibility constraints are satisfied when γ > δ̄min. For
γ > d the globally optimum solution α∗ to Problem 3
is α∗ = [1, . . . , 1]

T
, i.e nonsparse solution. For γ < d

sparse solutions can be obtained. Unlike Problem 2
where the upper bound on γ depends on mean vectors
here the upper bound is d, i.e. the number of features.

The above sparse formulation is indeed a biconvex
programming problem.

Problem 4 : minα, a∈Rd αT
(

SW ∗
(

aaT
))

α

s.t. αT ((m+ − m−) ∗ a) = b

αT el ≤ γ, α ≥ 0

We first initialize α = [1, . . . , 1]
T

and solve for a∗,
i.e. the solution to Problem 1, then we fix a∗ and solve
for α∗, i.e. the solution to Problem 3.

5 The Iterative Feature Selection Algorithm

Successive feature elimination can be obtained by iter-
atively solving the above biconvex programming prob-
lem.

(0) Set α0 = en, d0 = d, γ << d

For each iteration i do the following:

(i) Select the di features with αi
j values greater than

ε, di ≤ di−1.

(ii) Calculate the class scatter matrices and means in
the di − dimensional feature space.

(iii) Solve Problem 4 to obtain ai.

(iv) Fix a to ai and update the class scatter matrices
and means.

(v) Solve Problem 4 to obtain αi.

Stop when all αi
j , for j = 1, 2, . . . , di are greater

than ε = 1e − 16.
Since at each iteration we truncate α the above

algorithm is not guaranteed to converge. However
at any iteration i when di ≤ γ no sparseness would
be achieved and hence all αi

j would be equal to one.
Therefore the algorithm is guaranteed to stop at the
latest when di ≤ γ.

6 Experimental Results and Discussion

6.1 A Toy Example This experiment is adapted
from [14]. Using an artificial data we demonstrate that
the performance of conventional FLD suffers from the
presence of too many irrelevant features whereas the
proposed sparse approach produces a better prediction
accuracy by successfully handling these irrelevant fea-
tures.

The probability of y = 1 or y = −1 is equal. The
first three features x1, x2, x3 are drawn as xi = yN (i, 5).
Note that only one of these features is relevant for
discriminating one class from the other, the other two
are redundant. The rest of the features are drawn as
xi = N (0, 20). Note that these features are noise.
The noise features are added to the feature set one by
one allowing us to observe the gradual change in the
prediction capability of both approaches.

We initialize d = 3, i.e. start with the first
three features and proceed as follows. We generate
200 samples for training and 1000 samples for testing.
Then we train and test both approaches and record the
corresponding prediction errors. Next we increase d
by one and repeat the above procedure until we reach
d = 20. For the proposed approach we select the best
two features. The error bars in Figure 1 are obtained
by repeating the above process 100 times for each d each
time using a different training and testing set.

Looking at the results, at d = 3 with two redun-
dant features the prediction accuracy of the conven-
tional FLD is decent. With the same two redundant fea-
tures at d = 3 the standard deviation in prediction error
is slightly smaller with the proposed formulation indi-
cating the elimination of one or both of the redundant
features. As d gets larger and noise features are added to
the feature set the performance of the conventional FLD
deteriorates significantly whereas the average prediction
error for the proposed formulation remains around its
initial level with some increase in the standard devia-
tion. Also 90% of the time the proposed formulation
selects feature two and three together. These are the
two most powerful features in the set.

6.2 Example 2: Colon Cancer

6.2.1 Data Sources and Domain Description

Colorectal cancer is the third most common cancer
in both men and women. It is estimated that in
2004, nearly 147,000 cases of colon and rectal cancer
will be diagnosed in the US, and more than 56,730
people would die from colon cancer [3]. While there
is wide consensus that screening patients is effective in
decreasing advanced disease, only 44% of the eligible
population undergoes any colorectal cancer screening.
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Figure 1: Testing Error vs l for the Artificial Data. Full
dimensionality and two-dimensional feature subset com-
pared. The dotted curve corresponds to Conventional
FLD, the solid curve corresponds to proposed sparse
appraoch

There are many factors for this, Multiple reasons have
been identified for non-compliance, key being: patient
comfort, bowel preparation and cost. Non-invasive
virtual colonoscopy derived from computer tomographic
(CT) images of the colon holds great promise as a
screening method for colorectal cancer, particularly if
CAD tools are developed to facilitate the efficiency of
radiologists’ efforts in detecting lesions. In over 90%
of the cases colon cancer progressed rapidly is from
local (polyp adenomas) to advanced stages (colorectal
cancer), which has very poor survival rates. However,
identifying (and removing) lesions (polyp) when still in
a local stage of the disease, has very high survival rates
[4], thus illustrating the critical need for early diagnosis.

The database of high-resolution CT images used in
this study were obtained from NYU Medical Center,
Cleveland Clinic Foundation, and two EU sites in
Vienna and Belgium. The 163 patients were randomly
partitioned into two groups: training (n=96) and test
(n=67). The test group was sequestered and only used
to evaluate the performance of the final system.

Training Data Patient and Polyp Info: There were
96 patients with 187 volumes. A total of 76 polyps
were identified in this set with a total number of 9830
candidates.

Testing Data Patient and Polyp Info: There were
67 patients with 133 volumes. A total of 53 polyps
were identified in this set with a total number of 6616

candidates. A combined total of 207 features are
extracted for each candidate by three imaging scientists.

6.2.2 Feature Selection and Classification: In
this experiment we consider three feature selection al-
gorithms in a wrapper framework and compare their
prediction performance on the Colon Dataset. These
techniques are namely, the sparse formulation proposed
in this study (SFLD), the sparse formulation introduced
in [11] for Kernel Fisher Discriminant with linear loss
and linear regularizer (SKFD) and a greedy sequen-
tial forward-backward feature selection algorithm [15]
implemented with FLD (GFLD). In what follows we
present a brief overview of these algorithms and discuss
possible design issues.

Sparse Fisher Linear Discriminant (SFLD): The
choice of γ plays an important role on the generalization
performance of our algorithm. It regularizes the algo-
rithm by seeking a balance between the ”goodness of
fit”, i.e. Rayleigh Quotient and the number of features
used to achieve this performance.

We estimate the value of this parameter by cross
validation. We adopt Leave-One-Patient-Out (LOPO)
cross validation approach. In this scheme, we leave-
out both views, i.e. the supine and the prone views,
of one patient from the training data. The classifier
is trained using the patients from the remaning set,
and tested on both views of the ”left-out” patient.
LOPO is superior to other cross-validation metrics
such as leave-one-volume-out, leave-one-polyp-out or
k-fold cross-validation because it simulates the actual
use, wherein the CAD system processes both volumes
for a new patient. For instance, with any of the
above alternative methods, if a polyp is visible in both
views, the corresponding candidates could be assigned
to different folds; thus a classifier may be trained and
tested on the same polyp (albeit in different views).

In order to find the optimum value of γ, we run
the algorithm in Section 5 for varying sizes of γ ∈ [1 d].
For each value of γ we obtain the Receiver Operating
Characteristics (ROC) curve by evaluating the Leave
One Patient Out (LOPO) Cross Validation performance
of the algorithm and then compute the area under this
curve. We choose the optimum value of γ as the value
that results in the largest area.

Kernel Fisher Discriminant with linear loss and
linear regularizer (SKFD): In this approach there is a
set of contraints for every data point on the training set
which leads to large optimization problems. In order
to alleviate the computational burden on mathematical
programming formulation for this approach we choose
to use Laplacian models for both the loss function
and the regularizer as suggested in [11]. This choice



leads to linear programming formulation instead of the
more conventional and more computationally expensive
quadratic programming formulation that is obtained
when a gaussian model is assumed for both the loss
function and the regularizer.

The linear programming formulation used in this
experiment is

min
(α,β,ε)∈Rn+1+m

ν‖ε‖1 + ‖α‖1

s.t. Aα + β = y + ε

e′iεi = 0 for i ∈ {+}
e′iεi = 0 for i ∈ {−}

(6.4)

Where e± is vector of ones of size the number of points
in class ±. The final classfier for an unseen data point x

is given by sign(αT x−β). The regularization parameter
ν is estimated by LOPO.

Greedy sequential forward-backward feature selec-
tion algorithm with FLD (GFLD):

This approach starts with an empty subset and
performs a forward selection succeeded by a backward
attempt to eliminate a feature from the subset. During
each iteration of the forward selection exactly one
feature is added to the feature subset. To determine
which feature to add, the algorithm tentatively adds
to the candidate feature subset one feature that is not
already selected and tests the LOPO performance of
a classifier built on the tentative feature subset. The
feature that results in the largest area under the ROC
curve is added to the feature subset. During each
iteration of the backward elimination the algorithm
attempts to eliminate the feature that results in the
largest ROC area gain. This process goes on until no
or negligible improvement is gained. In this study the
algorithm stops when the increase on the ROC area after
a forward selection is less than 0.005. A total of 17
features is selected before this constraint is met.

6.3 Results and Discussion: Even though we
choose the computationally least expensive model for
SKFD this approach failed to run with the original
training set. Thus we were forced to run SKFD on a
smaller subset of the training dataset where we included
all the positive candidates and a random subset of size
1000 of the negative candidates. The 5 algorithms we
ran were

1. SFLD on the original training set.

2. GFLD on the original training set.

3. Conventional on the original training set.

4. SKFD on the subset training set.

5. SFLK on the subset training set (denoted as SFLD-
sub).

The ROC curves in Figure 2 demonstrates the
LOPO performance of the each algorithm and those in
Figure 3 show the performance on the test data set.
Table 1 shows the number of features selected (d), the
area of the ROC curve scaled by 100 (Area) and the
sensitivity corresponding to 90% specificity (Sens) for
all algorithms considered in this study.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

specificity (%)

se
ns

iti
vi

ty
 (

%
) FLD

SFLD
GFLD
SFLD−sub
SKFD

Figure 2: ROC curves for Training Results (LOPO
results)
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Table 1: The number of features selected (d), the area of
the ROC curve scaled by 100 (Area) and the sensitivity
corresponding to 90% specificity (Sens) is shown for
all algorithms considered in this study. The values
in parenthesis show the corresponding values for the
testing results.

Algorithm d Area Sens (%)

SFLD 25 94.8 (94.9) 89 (87)
SFLD-sub 17 94.7 (94.1) 92 (85)
GFLD 17 94.3 (94.7) 85 (83)
SKFD 18 88.0 (82.0) 65 (60)
FLD 207 80.3 (89.1) 63 (77)

These results show that Sparse (SFLD) and SFLD-
sub clearly outperform the greedy and conventional
FLD and SKFD both on the training and testing
datasets. Although SFLD-sub performs better than
SFLD on the training data, SFLD generalizes slightly
better on the testing data. This is not surprising be-
cause SFLD-sub uses a subset of the original training
data. GFLD performs almost equally well with SFLD-
sub and SFLD algorithms but the difference is hidden
in the computational cost required to select the features
in GFLD. The computational cost of GFLD is propor-
tional to d3 whereas that of SFLD is proportional to
d2.

7 Conclusions

In this study we proposed a sparse formulation of
famous Fisher Linear Discriminant and applied this
technique to a Colon dataset. Experimental results
favor the proposed algorithm over two other feature
selection/regularization techniques implemented in the
FLD framework both in terms of prediction accuracy
and the computational cost fir large data sets. Future
study will focus on obtaining sparse solutions in an
iterative scheme without truncating the discriminant
vector which will in turn guarantee convergence.
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